
Intel®Open ImageDenoise
High-PerformanceDenoising Library
for Ray Tracing

Version 2.3.3
April 3, 2025

2

Contents

1 Overview 4
1.1 System Requirements . 5
1.2 Support and Contact . 5
1.3 Citation . 6
1.4 Version History . 6

2 Compilation 13
2.1 Prerequisites . 13
2.2 Compiling on Linux/macOS . 15
2.3 Compiling on Windows . 16
2.4 CMake Configuration . 17

3 Open Image Denoise API 19
3.1 Examples . 19

3.1.1 Basic Denoising (C99 API) 19
3.1.2 Basic Denoising (C++11 API) 20
3.1.3 Denoising with Prefiltering (C++11 API) 21

3.2 Upgrading from Open Image Denoise 1.x 21
3.2.1 Buffers . 21
3.2.2 Interop with Compute (SYCL, CUDA, HIP) and Graphics

(DX, Vulkan, Metal) APIs 22
3.2.3 Physical Devices . 23
3.2.4 Asynchronous Execution 23
3.2.5 Filter Quality . 23
3.2.6 Small API Changes . 24
3.2.7 Building as a Static Library 24

3.3 Physical Devices . 24
3.4 Devices . 25

3.4.1 Error Handling . 28
3.4.2 Environment Variables . 28

3.5 Buffers . 29
3.5.1 Data Format . 32

3.6 Filters . 32
3.6.1 RT . 35
3.6.2 RTLightmap . 40

4 Examples 41
4.1 oidnDenoise . 41
4.2 oidnBenchmark . 41

5 Training 42
5.1 Prerequisites . 42
5.2 Devices . 43
5.3 Datasets . 43

CONTENTS 3

5.4 Preprocessing (preprocess.py) . 44
5.5 Training (train.py) . 45
5.6 Inference (infer.py) . 46
5.7 Exporting Results (export.py) . 46
5.8 Image Conversion and Comparison 46

4

Chapter 1

Overview

Intel Open Image Denoise is an open source library of high-performance, high-
quality denoising filters for images rendered with ray tracing. Intel Open Image
Denoise is part of the Intel® Rendering Toolkit and is released under the permis-
sive Apache 2.0 license. It has been recognized with a Technical Achievement
Award by the Academy of Motion Picture Arts and Sciences in 2025 for its con-
tribution to the motion picture industry.

The purpose of Intel Open Image Denoise is to provide an open, high-quality,
efficient, and easy-to-use denoising library that allows one to significantly reduce
rendering times in ray tracing based rendering applications. It filters out the
Monte Carlo noise inherent to stochastic ray tracing methods like path tracing,
reducing the amount of necessary samples per pixel by even multiple orders of
magnitude (depending on the desired closeness to the ground truth). A simple
but flexible C/C++ API ensures that the library can be easily integrated into most
existing or new rendering solutions.

At the heart of the Intel Open Image Denoise library is a collection of efficient
deep learning based denoising filters, which were trained to handle a wide range
of samples per pixel (spp), from 1 spp to almost fully converged. Thus it is suit-
able for both preview and final-frame rendering. The filters can denoise images
either using only the noisy color (beauty) buffer, or, to preserve as much detail as
possible, can optionally utilize auxiliary feature buffers as well (e.g. albedo, nor-
mal). Such buffers are supported by most renderers as arbitrary output variables
(AOVs) or can be usually implemented with little effort.

Although the library ships with a set of pre-trained filter models, it is not
mandatory to use these. To optimize a filter for a specific renderer, sample count,
content type, scene, etc., it is possible to train the model using the included train-
ing toolkit and user-provided image datasets.

Intel Open Image Denoise supports a wide variety of CPUs and GPUs from
different vendors:

• Intel® 64 architecture compatible CPUs (with at least SSE4.1)

• ARM64 (AArch64) architecture CPUs (e.g. Apple silicon CPUs)

• Intel Xe, Xe2, and Xe3 architecture dedicated and integrated GPUs, includ-
ing Intel® Arc™ B-Series Graphics, Intel® Arc™ A-Series Graphics, Intel®
Arc™ Pro Series Graphics, Intel® Data Center GPU Flex Series, Intel® Data
Center GPU Max Series, Intel® Iris® Xe Graphics, Intel® Core™ Ultra Pro-
cessors with Intel® Arc™ Graphics, 11th-14th Gen Intel® Core™ proces-
sor graphics, and related Intel Pentium® and Celeron® processors (Xe-LP,
Xe-LPG, Xe-LPG+, Xe-HPG, Xe-HPC, Xe2-LPG, Xe2-HPG, and Xe3-LPG
microarchitectures)

https://software.intel.com/en-us/oneapi/render-kit
http://www.apache.org/licenses/LICENSE-2.0
https://press.oscars.org/news/14-achievements-be-honored-scientific-and-technical-awardsr
https://press.oscars.org/news/14-achievements-be-honored-scientific-and-technical-awardsr

Overview 5

• NVIDIA GPUs with Volta, Turing, Ampere, Ada Lovelace, Hopper, and
Blackwell architectures

• AMD GPUs with RDNA2 (Navi 21 only), RDNA3 (Navi 3x), and RDNA4
(Navi 4x) architectures

• Apple silicon GPUs (M1 and newer)

It runs on most machines ranging from laptops to workstations and compute
nodes in HPC systems. It is efficient enough to be suitable not only for offline
rendering, but, depending on the hardware used, also for interactive or even real-
time ray tracing.

Intel Open Image Denoise exploits modern instruction sets like SSE4, AVX2,
AVX-512, and NEON on CPUs, Intel® XeMatrix Extensions (Intel® XMX) on Intel
GPUs, and tensor cores on NVIDIAGPUs to achieve high denoising performance.

1.1 SystemRequirements

You need an Intel® 64 (with SSE4.1) or ARM64 architecture compatible CPU to
run Intel Open Image Denoise, and you need a 64-bit Windows, Linux, or macOS
operating system as well.

For Intel GPU support, please also install the latest Intel graphics drivers:

• Windows: Intel® Graphics Driver 31.0.101.4953 or newer

• Linux: Intel® software for General PurposeGPU capabilities release 20230323
or newer

Using older driver versions is not supported and Intel Open Image Denoise
might run with only limited capabilities, have suboptimal performance or might
be unstable. Also, Resizable BARmust be enabled in the BIOS for Intel dedicated
GPUs if running on Linux, and strongly recommended if running on Windows.

For NVIDIA GPU support, please also install the latest NVIDIA graphics
drivers:

• Windows: Version 528.33 or newer

• Linux: Version 525.60.13 or newer

For AMD GPU support, please also install the latest AMD graphics drivers:

• Windows: AMD Software: Adrenalin Edition 25.3.1 or newer

• Linux: Radeon Software for Linux version 24.30.4 or newer

For Apple GPU support, macOS Ventura or newer is required.

1.2 Support andContact

Intel Open Image Denoise is under active development, and though we do our
best to guarantee stable release versions a certain number of bugs, as-yet-missing
features, inconsistencies, or any other issues are still possible. Should you find
any such issues please report them immediately via the Intel Open Image De-
noise GitHub Issue Tracker (or, if you should happen to have a fix for it, you can
also send us a pull request); for missing features please contact us via email at
openimagedenoise@googlegroups.com.

Join our mailing list to receive release announcements and major news re-
garding Intel Open Image Denoise.

https://www.intel.com/content/www/us/en/download/726609/intel-arc-iris-xe-graphics-whql-windows.html
https://dgpu-docs.intel.com/driver/installation.html
https://dgpu-docs.intel.com/releases/stable_602_20230323.html
https://www.nvidia.com/en-us/geforce/drivers/
https://www.nvidia.com/en-us/geforce/drivers/
https://www.amd.com/en/support
https://www.amd.com/en/support/linux-drivers
https://github.com/OpenImageDenoise/oidn/issues
https://github.com/OpenImageDenoise/oidn/issues
mailto:openimagedenoise@googlegroups.com
https://groups.google.com/d/forum/openimagedenoise/

Overview 6

1.3 Citation

If you use Intel Open Image Denoise in a research publication, please cite the
project using the following BibTeX entry:

@misc{OpenImageDenoise,
author = {Attila T. {\'A}fra},
title = {{Intel\textregistered Open Image Denoise}},
year = {2025},
note = {\url{https://www.openimagedenoise.org}}

}

1.4 VersionHistory

Changes in v2.3.3:

• Added NVIDIA Blackwell GPU support
• Added AMD RDNA4 GPU support
• Improved performance for AMD RDNA3 GPUs
• Added OIDN_DEPENDENTLOADFLAG CMake option for setting the DEPEN-
DENTLOADFLAG linker flag on Windows

• Added OIDN_LIBRARY_VERSIONED CMake option for toggling versioning
in the Open Image Denoise library files

• Known issue: performance regression for AMD RDNA2 GPUs

Changes in v2.3.2:

• Improved performance for Intel Lunar Lake and Battlemage GPUs
• Added Intel Panther Lake GPU support
• Fixed compile error when building with OpenImageIO 3.x

Changes in v2.3.1:

• Fixed corrupted output when in-place denoising high-resolution (> 1080p)
images where the input and output are stored in different shared buffer
objects (created with oidnNewSharedBuffer*) that overlap in memory

• Fixed issues with cancellation through progress monitor callbacks:

– Fixed cancellation requests not being fulfilled on CPU devices since
v2.3.0

– Fixed not calling the callback anymore after requesting cancellation,
while the operation is still being executed

• Added support for creating shared buffers on Metal devices
• Enabled accessing system allocated memory for CUDA devices which sup-
port this feature (see systemMemorySupported device parameter)

• Added LUID support for HIP devices. Importing DX12 and Vulkan buffers
is now functional when using recent AMD GPU drivers on Windows

Changes in v2.3.0:

• Significantly improved image quality of the RT filter in high quality mode
for HDR denoising with prefiltering, i.e., the following combinations of in-
put features and parameters: - HDR color + albedo + normal + cleanAux -
albedo - normal In these cases a much more complex filter is used, which
results in lower performance than before (about 2x). To revert to the pre-
vious performance behavior, please switch to the balanced quality mode.

Overview 7

• Added fast quality mode (OIDN_QUALITY_FAST) for even higher perfor-
mance (about 1.5-2x) interactive/real-time previews and lower default
memory usage at the cost of somewhat lower image quality. Currently
this is implemented for the RT filter except prefiltering (albedo, normal).
In other cases denoising implicitly falls back to balanced mode.

• Added Intel Arrow Lake, Lunar Lake, and Battlemage GPU support
• Execute Async functions asynchronously on CPU devices as well
• Load/initialize device modules lazily (improves stability)
• Added oidnIsCPUDeviceSupported, oidnIsSYCLDeviceSupported, oid-
nIsCUDADeviceSupported, oidnIsHIPDeviceSupported, and oidnIs-
MetalDeviceSupported API functions for checking whether a physical
device of a particular type is supported

• Release the CUDA primary context when destroying the device object if
using the CUDA driver API

• Added OIDN_LIBRARY_NAME CMake option for setting the base name of
the Open Image Denoise library files

• Fixed device creation error with oidnNewDevice when the default device
of the specified type (e.g. CUDA) is not supported but there are other sup-
ported non-default devices of that type in the system

• Fixed CMake error when building with Metal support using non-Apple
Clang

• Fixed iOS build errors
• Added support for building with ROCm 6.x
• oidnNewCUDADevice and oidnNewHIPDevice no longer accept negative
device IDs. If the goal is to use the current device, its actual ID needs to be
passed.

• Upgraded to oneTBB 2021.12.0 in the official binaries
• Training:

– Improved training performance on CUDA and MPS devices, added
--compile option

– Added --quality option (high, balanced, fast) for selecting the
size of themodel to train, changed the default from balanced to high

– Added newmodels to the --model option (unet_small, unet_large,
unet_xl)

– Added support for trainingwith prefiltered auxiliary features by pass-
ing --aux_results to preprocess.py and train.py

– Added experimental support for depth (z)

Changes in v2.2.2:

• Fully fixed GPUmemory leak when releasing SYCL, CUDA and HIP device
objects

• Fixed CUDA context error in some cases when using the CUDA driver API
• Fixed crash on systems with an unsupported AMD Vega integrated GPU
and old driver

Changes in v2.2.1:

• Fixed memory leak when releasing SYCL, CUDA and HIP device objects
• Fixed memory leak when initializing Metal filters

Changes in v2.2.0:

• Improved denoising quality (better fine detail reconstruction)
• Added Intel Meteor Lake GPU support (in Intel® Core™ Ultra Processors)

Overview 8

• Added Metal device for Apple silicon GPUs (requires macOS Ventura or
newer)

• AddedARM64 (AArch64) CPU support onWindows and Linux (in addition
to macOS)

• Improved CPU performance
• Significantly reduced overhead of committing filter changes
• Switched to the CUDA driver API by default, added the OIDN_DEVICE_
CUDA_API CMake option for manually selecting between the driver and
runtime APIs

• Fixed crash when releasing a buffer after releasing the device

Changes in v2.1.0:

• Added support for denoising 1-channel (e.g. alpha) and 2-channel images
• Added support for arbitrary combinations of input image data types (e.g. OIDN_
FORMAT_FLOAT3 for color but OIDN_FORMAT_HALF3 for albedo)

• Improved performance for most dedicated GPU architectures
• Re-added OIDN_STATIC_LIB CMake option which enables building as a
static (CPU support only) or a hybrid static/shared (GPU support as well)
library

• Added release() method to C++ API objects (DeviceRef, BufferRef,
FilterRef)

• Fixed possible crash when releasing GPU devices, buffers or filters
• Fixed possible crash at process exit for some SYCL runtime versions
• Fixed image quality inconsistency on Intel integrated GPUs, but at the cost
of some performance loss

• Fixed future Windows driver compatibility for Intel integrated GPUs
• Fixed rare output corruption on AMD RDNA2 GPUs
• Fixed device detection on Windows when the path to the library has non-
ANSI characters

• Added support for Intel® oneAPI DPC++/C++ Compiler 2024.0 and com-
patible open source compiler versions

• Upgraded to oneTBB 2021.10.0 in the official binaries
• Improved detection of old oneTBB versions

Changes in v2.0.1:

• Fixed performance issue for Intel integrated GPUs using recent Linux
drivers

• Fixed crash on systems with both dedicated and integrated AMD GPUs
• Fixed importing D3D12_RESOURCE, D3D11_RESOURCE, D3D11_RESOURCE_
KMT, D3D11_TEXTURE and D3D11_TEXTURE_KMT external memory types on
CUDA and HIP devices

• Fixed the macOS deployment target of the official x86 binaries (lowered
from 11.0 to 10.11)

• Minor improvements to verbose output

Changes in v2.0.0:

• Added SYCL device for Intel Xe architecture GPUs (Xe-LP, Xe-HPG and
Xe-HPC)

• Added CUDA device for NVIDIA Volta, Turing, Ampere, Ada Lovelace and
Hopper architecture GPUs

• Added HIP device for AMD RDNA2 (Navi 21 only) and RDNA3 (Navi 3x)
architecture GPUs

Overview 9

• Added new buffer API functions for specifying the storage type (host, de-
vice or managed), copying data to/from the host, and importing external
buffers from graphics APIs (e.g. Vulkan, Direct3D 12)

• Removed the oidnMapBuffer and oidnUnmapBuffer functions
• Added support for asynchronous execution (e.g. oidnExecuteFilterAsync,
oidnSyncDevice functions)

• Added physical device API for querying the supported devices in the sys-
tem

• Added functions for creating a device from a physical device ID, UUID,
LUID or PCI address (e.g. oidnNewDeviceByID)

• Added SYCL, CUDAandHIP interoperability API functions (e.g. oidnNewSY-
CLDevice, oidnExecuteSYCLFilterAsync)

• Added type device parameter for querying the device type
• Added systemMemorySupported and managedMemorySupported device
parameters for querying memory allocations supported by the device

• Added externalMemoryTypes device parameter for querying the sup-
ported external memory handle types

• Added quality filter parameter for setting the filtering quality mode (high
or balanced quality)

• Minor API changes with backward compatibility:

– Added oidn(Get|Set)(Device|Filter)(Bool|Int|Float) func-
tions and deprecated oidn(Get|Set)(Device|Filter)(1b|1i|1f)
functions

– Added oidnUnsetFilter(Image|Data) functions and deprecated
oidnRemoveFilter(Image|Data) functions

– Renamed alignment and overlap filter parameters to tileAlign-
ment and tileOverlap but the old names remain supported

• Removed OIDN_STATIC_LIB and OIDN_STATIC_RUNTIME CMake options
due to technical limitations

• Fixed over-conservative buffer bounds checking for images with custom
strides

• Upgraded to oneTBB 2021.9.0 in the official binaries

Changes in v1.4.3:

• Fixed hardcoded library paths in installed macOS binaries
• Disabled VTune profiling support of oneDNN kernels by default, can be
enabled using CMake options if required (DNNL_ENABLE_JIT_PROFILING
and DNNL_ENABLE_ITT_TASKS)

• Upgraded to oneTBB 2021.5.0 in the official binaries

Changes in v1.4.2:

• Added support for 16-bit half-precision floating-point images
• Added oidnGetBufferData and oidnGetBufferSize functions
• Fixed performance issue on x86 hybrid architecture CPUs (e.g. Alder Lake)
• Fixed build error when using OpenImageIO 2.3 or later
• Upgraded to oneTBB 2021.4.0 in the official binaries

Changes in v1.4.1:

• Fixed crash when in-place denoising images with certain unusual resolu-
tions

• Fixed compile error when building for Apple Silicon using some unofficial
builds of ISPC

Overview 10

Changes in v1.4.0:

• Improved fine detail preservation
• Added the cleanAux filter parameter for further improving quality when
the auxiliary feature (albedo, normal) images are noise-free

• Added support for denoising auxiliary feature images, which can be used
together with the new cleanAux parameter for improving quality when
the auxiliary images are noisy (recommended for final frame denoising)

• Normals are expected to be in the [-1, 1] range (but still do not have to be
normalized)

• Added the oidnUpdateFilterData function which must be called when
the contents of an opaque data parameter bound to a filter (e.g. weights)
has been changed after committing the filter

• Added the oidnRemoveFilterImage and oidnRemoveFilterData func-
tions for removing previously set image and opaque data parameters of
filters

• Reduced the overhead of oidnCommitFilter to zero in some cases (e.g. when
changing already set image buffers/pointers or the inputScale parame-
ter)

• Reduced filter memory consumption by about 35%
• Reduced total memory consumption significantly when using multiple fil-
ters that belong to the same device

• Reduced the default maximum memory consumption to 3000 MB
• Added the OIDN_FILTER_RT and OIDN_FILTER_RTLIGHTMAP CMake op-
tions for excluding the trained filter weights from the build to significantly
decrease its size

• Fixed detection of static TBB builds on Windows
• Fixed compile error when using future glibc versions
• Added oidnBenchmark option for setting custom resolutions
• Upgraded to oneTBB 2021.2.0 in the official binaries

Changes in v1.3.0:

• Improved denoising quality

– Improved sharpness of fine details / less blurriness
– Fewer noisy artifacts

• Slightly improved performance and lowered memory consumption
• Added directional (e.g. spherical harmonics) lightmap denoising to the RT-
Lightmap filter

• Added inputScale filter parameter which generalizes the existing (and
thus now deprecated) hdrScale parameter for non-HDR images

• Added native support for Apple Silicon and the BNNS library on macOS
(currently requires rebuilding from source)

• Added OIDN_NEURAL_RUNTIME CMake option for setting the neural net-
work runtime library

• Reduced the size of the library binary
• Fixed compile error on some older macOS versions
• Upgraded release builds to use oneTBB 2021.1.1
• Removed tbbmalloc dependency
• Appended the library version to the name of the directory containing the
installed CMake files

• Training:

– Faster training performance
– Added mixed precision training (enabled by default)
– Added efficient data-parallel training on multiple GPUs

Overview 11

– Enabled preprocessing datasetsmultiple timeswith possibly different
options

– Minor bugfixes

Changes in v1.2.4:

• Added OIDN_API_NAMESPACE CMake option that allows to put all API
functions inside a user-defined namespace

• Fixed bug when TBB_USE_GLIBCXX_VERSION is defined
• Fixed compile error when using an old compiler which does not support
OpenMP SIMD

• Added compatibility with oneTBB 2021
• Export only necessary symbols on Linux and macOS

Changes in v1.2.3:

• Fixed incorrect detection of AVX-512 on macOS (sometimes causing a
crash)

• Fixed inconsistent performance and costly initialization for AVX-512
• Fixed JIT’ed AVX-512 kernels not showing up correctly in VTune

Changes in v1.2.2:

• Fixed unhandled exceptionwhen canceling filter execution from the progress
monitor callback function

Changes in v1.2.1:

• Fixed tiling artifacts when in-place denoising (using one of the input im-
ages as the output) high-resolution (> 1080p) images

• Fixed ghosting/color bleeding artifacts in black regionswhen using albedo/normal
buffers

• Fixed error when building as a static library (OIDN_STATIC_LIB option)
• Fixed compile error for ISPC 1.13 and later
• Fixed minor TBB detection issues
• Fixed crash on pre-SSE4CPUswhen using some recent compilers (e.g. GCC
10)

• Link C/C++ runtime library dynamically on Windows too by default
• Renamed example apps (oidnDenoise, oidnTest)
• Added benchmark app (oidnBenchmark)
• Fixed random data augmentation seeding in training
• Fixed training warning with PyTorch 1.5 and later

Changes in v1.2.0:

• Added neural network training code
• Added support for specifying user-trained models at runtime
• Slightly improved denoising quality (e.g. less ringing artifacts, less blurri-
ness in some cases)

• Improved denoising speed by about 7-38% (mostly depending on the com-
piler)

• Added OIDN_STATIC_RUNTIME CMake option (for Windows only)
• Added support for OpenImageIO to the example apps (disabled by default)
• Added check for minimum supported TBB version
• Find debug versions of TBB
• Added testing

Overview 12

Changes in v1.1.0:

• Added RTLightmap filter optimized for lightmaps
• Added hdrScale filter parameter for manually specifying the mapping of
HDR color values to luminance levels

Changes in v1.0.0:

• Improved denoising quality

– More details preserved
– Less artifacts (e.g. noisy spots, color bleeding with albedo/normal)

• Added maxMemoryMB filter parameter for limiting the maximum memory
consumption regardless of the image resolution, potentially at the cost of
lower denoising speed. This is internally implemented by denoising the
image in tiles

• Significantly reduced memory consumption (but slightly lower perfor-
mance) for high resolutions (> 2K) by default: limited to about 6 GB

• Added alignment and overlap filter parameters that can be queried for
manual tiled denoising

• Added verbose device parameter for setting the verbosity of the console
output, and disabled all console output by default

• Fixed crash for zero-sized images

Changes in v0.9.0:

• Reduced memory consumption by about 38%
• Added support for progress monitor callback functions
• Enabled fully concurrent execution when using multiple devices
• Clamp LDR input and output colors to 1
• Fixed issue where some memory allocation errors were not reported

Changes in v0.8.2:

• Fixed wrong HDR output when the input contains infinities/NaNs
• Fixed wrong output when multiple filters were executed concurrently on
separate devices with AVX-512 support. Currently the filter executions are
serialized as a temporary workaround, and a full fix will be included in a
future release.

• Added OIDN_STATIC_LIB CMake option for building as a static library (re-
quires CMake 3.13.0 or later)

• Fixed CMake error when adding the library with add_subdirectory() to a
project

Changes in v0.8.1:

• Fixed wrong path to TBB in the generated CMake configs
• Fixed wrong rpath in the binaries
• Fixed compile error on some macOS systems
• Fixed minor compile issues with Visual Studio
• Lowered the CPU requirement to SSE4.1
• Minor example update

Changes in v0.8.0:

• Initial beta release

13

Chapter 2

Compilation

The latest Intel Open Image Denoise sources are always available at the Intel
Open Image Denoise GitHub repository. The default master branch should al-
ways point to the latest tested bugfix release.

2.1 Prerequisites

You can clone the latest Intel Open Image Denoise sources using Git with the Git
Large File Storage (LFS) extension installed:

git clone --recursive https://github.com/OpenImageDenoise/oidn.git

Please note that installing the Git LFS extension is required to correctly clone
the repository. Cloning without Git LFS will seemingly succeed but actually
some of the files will be invalid and thus compilation will fail.

Intel Open Image Denoise currently supports 64-bit Linux, Windows, and
macOS operating systems. Before you can build Intel Open Image Denoise you
need the following basic prerequisites:

• CMake 3.15 or newer

• A C++11 compiler (we recommend using a Clang-based compiler but also
support GCC and Microsoft Visual Studio 2015 and newer)

• Python 3

To build support for different types of CPUs and GPUs, the following addi-
tional prerequisites are needed:

CPUdevice:

• Intel® SPMD Program Compiler (ISPC) 1.21.0 or newer. Please obtain a
release of ISPC from the ISPC downloads page. The build system looks for
ISPC in the PATH and in the directory right “next to” the checked-out Intel
Open Image Denoise sources. For example, if Intel Open Image Denoise
is in ~/Projects/oidn, ISPC will also be searched in ~/Projects/ispc-
v1.21.0-linux. Alternatively set the CMake variable ISPC_EXECUTABLE
to the location of the ISPC compiler.

• Intel® Threading Building Blocks (TBB) 2017 or newer

http://github.com/OpenImageDenoise/oidn
http://github.com/OpenImageDenoise/oidn
https://git-lfs.github.com/
https://git-lfs.github.com/
http://www.cmake.org
http://ispc.github.io
https://ispc.github.io/downloads.html
https://github.com/oneapi-src/oneTBB

Compilation 14

SYCL device for Intel GPUs:

• oneAPI DPC++ Compiler, one of the following versions (other versions
might work as well but have not been validated with Intel Open Image
Denoise):

– oneAPI DPC++ Compiler 6.0.1. This is the open source version of
the compiler, which needs to be built from source. We recommend
building it with the --disable-jit flag to minimize the size of the
SYCL runtime binaries.

– Intel® oneAPI DPC++/C++ Compiler 2024.1 or newer

• Intel® Graphics Offline Compiler for OpenCL™ Code (OCLOC)

– Windows: Version 2025.0.0 / 32.0.101.6129 or newer as a standalone
component of Intel® oneAPI Toolkits, which must be extracted and
its contents added to the PATH. Also included with Intel® oneAPI Base
Toolkit.

– Linux: Included with Intel® software for General Purpose GPU ca-
pabilities release 2441.19 or newer (install at least intel-opencl-
icd on Ubuntu, intel-ocloc on RHEL or SLES). Also available
with Intel® Graphics Compute Runtime for oneAPI Level Zero and
OpenCL™ Driver.

• If using Intel® oneAPI DPC++/C++ Compiler: CMake 3.25.2 or newer

• Ninja or Make as the CMake generator. The Visual Studio generator is not
supported.

CUDAdevice for NVIDIAGPUs:

• CMake 3.18 or newer

• NVIDIA CUDA Toolkit 12.8 or newer

HIP device for AMDGPUs:

• CMake 3.21 or newer

• Ninja or Make as the CMake generator. The Visual Studio generator is not
supported.

• AMD ROCm (HIP SDK) v6.2.4 or newer.

• Perl (e.g. Strawberry Perl on Windows)

Metal device for AppleGPUs:

• CMake 3.21 or newer

• Xcode 15.0 or newer

Depending on your operating system, you can install some required depen-
dencies (e.g., TBB) using yum or apt-get on Linux, Homebrew or MacPorts on
macOS, and vcpkg on Windows. For the other dependencies please download
the necessary packages or installers and follow the included instructions.

https://github.com/intel/llvm/releases/tag/v6.0.1
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7000f8d2-dda8-4dd6-8b63-3917e4476fa5/intel-ocloc-2025.0.0.257_offline.exe
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#base-kit
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#base-kit
https://dgpu-docs.intel.com
https://dgpu-docs.intel.com
https://dgpu-docs.intel.com/releases/rolling-release-notes.html#release-2024-10-31
https://github.com/intel/compute-runtime
https://github.com/intel/compute-runtime
http://www.cmake.org
https://ninja-build.org
http://www.cmake.org
https://developer.nvidia.com/cuda-toolkit
http://www.cmake.org
https://ninja-build.org
https://rocm.docs.amd.com
https://strawberryperl.com
http://www.cmake.org
https://developer.apple.com/xcode/
https://brew.sh
https://www.macports.org
https://vcpkg.io

Compilation 15

2.2 Compiling on Linux/macOS

If you are building with SYCL support on Linux, make sure that the DPC++ com-
piler is properly set up. The open source oneAPI DPC++ Compiler can be down-
loaded and simply extracted. However, before using the compiler, the environ-
ment must be set up as well with the following command:

source ./dpcpp_compiler/startup.sh

The startup.sh script will put clang and clang++ from the oneAPI DPC++
Compiler into your PATH.

Alternatively, if you have installed Intel® oneAPI DPC++/C++ Compiler in-
stead, you can set up the compiler by sourcing the vars.sh script in the env
directory of the compiler install directory, for example,

source /opt/intel/oneAPI/compiler/latest/env/vars.sh

This script will put the icx and icpx compiler executables from the Intel(R)
oneAPI DPC++/C++ Compiler in your PATH.

• Create a build directory, and go into it using a command prompt

mkdir oidn/build
cd oidn/build

(We do recommend having separate build directories for different configu-
rations such as release, debug, etc.).

• CMakewill use the default compiler, which onmost Linuxmachines is gcc,
but it can be switched to clang by executing the following:

cmake -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..

If you are building with SYCL support, you must set the DPC++ compiler
(clang/clang++ or icx/icpx) as the C/C++ compiler here. Note that the
compiler variables cannot be changed after the first cmake or ccmake run.

• Open the CMake configuration dialog

ccmake ..

• Make sure to properly set the build mode and enable the components and
options you need. By default only CPU support is built, so SYCL and other
device support must be enabled manually (e.g. with the OIDN_DEVICE_
SYCL option). Then type ’c’onfigure and ’g’enerate. When back on the
command prompt, build the library using

ninja

Compilation 16

2.3 Compiling onWindows

If you are building with SYCL support, make sure that the DPC++ compiler is
properly set up. The open source oneAPI DPC++ Compiler can be downloaded
and simply extracted. However, before using the compiler, the environmentmust
be set up. To achieve this, open the “x64 Native Tools Command Prompt for VS”
that ships with Visual Studio and execute the following commands:

set "DPCPP_DIR=path_to_dpcpp_compiler"
set "PATH=%DPCPP_DIR%\bin;%PATH%"
set "PATH=%DPCPP_DIR%\lib;%PATH%"
set "CPATH=%DPCPP_DIR%\include;%CPATH%"
set "INCLUDE=%DPCPP_DIR%\include;%INCLUDE%"
set "LIB=%DPCPP_DIR%\lib;%LIB%"

The path_to_dpcpp_compiler should point to the unpacked oneAPI DPC++
Compiler.

Alternatively, if you have installed Intel® oneAPI DPC++/C++ Compiler in-
stead, you can either open a regular “Command Prompt” and execute the vars.
bat script in the env directory of the compiler install directory, for example

C:\Program Files (x86)\Intel\oneAPI\compiler\latest\env\vars.bat

or simply open the installed “Intel oneAPI command prompt for Intel 64 for
Visual Studio”. Either way, the icx compiler executable from the Intel® oneAPI
DPC++/C++ Compiler will be added to your PATH.

On Windows we highly recommend to use Ninja as the CMake generator
because not all devices can be built using the Visual Studio generator (e.g. SYCL).

• Create a build directory, and go into it using a Visual Studio command
prompt

mkdir oidn/build
cd oidn/build

(We do recommend having separate build directories for different configu-
rations such as release, debug, etc.).

• CMake will use the default compiler, which on most Windows machines
is MSVC, but it can be switched to clang by executing the following:

cmake -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..

If you are building with SYCL support, you must set the DPC++ compiler
(clang/clang++ or icx) as the C/C++ compiler here. Note that the com-
piler variables cannot be changed after the first cmake or cmake-gui run.

• Open the CMake GUI (cmake-gui.exe)

cmake-gui ..

• Make sure to properly set the build mode and enable the components and
options you need. By default only CPU support is built, so SYCL and
other device support must be enabled manually (e.g. OIDN_DEVICE_SYCL
option). Then click on Configure and Generate. When back on the com-
mand prompt, build the library using

ninja

Compilation 17

2.4 CMakeConfiguration

The following list describes the options that can be configured in CMake:

• CMAKE_BUILD_TYPE: Can be used to switch between Debug mode (Debug),
Releasemode (Release) (default), and Releasemodewith enabled assertions
and debug symbols (RelWithDebInfo).

• OIDN_STATIC_LIB: Build Open Image Denoise as a static (if only CPU sup-
port is enabled) or a hybrid static/shared (if GPU support is enabled as well)
library.

• OIDN_LIBRARY_NAME: Specifies the base name of the Open Image Denoise
library files (OpenImageDenoise by default).

• OIDN_LIBRARY_VERSIONED: Enable versioning of the Open Image Denoise
library files, where available (ON by default).

• OIDN_API_NAMESPACE: Specifies a namespace to put all Open Image De-
noise API symbols inside. This is also added as an outer namespace for the
C++ wrapper API. By default no namespace is used and plain C symbols
are exported.

• OIDN_DEVICE_CPU: Enable CPU device support (ON by default).

• OIDN_DEVICE_SYCL: Enable SYCL device support for Intel GPUs (OFF by
default).

• OIDN_DEVICE_SYCL_AOT: Enable ahead-of-time (AOT) compilation for
SYCL kernels (ON by default). Turning this off removes dependency on
OCLOC at build time and decreases binary size but significantly increases
initialization time at runtime, so it is recommended only for development.

• OIDN_DEVICE_CUDA: Enable CUDA device support for NVIDIA GPUs (OFF
by default).

• OIDN_DEVICE_CUDA_API: Use the CUDA driver API (Driver, default), the
static CUDA runtime library (RuntimeStatic), or the shared CUDA run-
time library (RuntimeShared).

• OIDN_DEVICE_HIP: Enable HIP device support for AMD GPUs (OFF by
default).

• OIDN_DEVICE_METAL: Enable Metal device support for Apple GPUs (OFF
by default).

• OIDN_FILTER_RT: Include the trained weights of the RT filter in the build
(ON by default). Turning this OFF significantly decreases the size of the
library binary, while the filter remains functional if the weights are set by
the user at runtime.

• OIDN_FILTER_RTLIGHTMAP: Include the trainedweights of the RTLightmap
filter in the build (ON by default).

• OIDN_APPS: Enable building example and test applications (ON by default).

• OIDN_APPS_OPENIMAGEIO: Enable OpenImageIO support in the example
and test applications to be able to load/save OpenEXR, PNG, and other
image file formats (OFF by default).

• OIDN_INSTALL_DEPENDENCIES: Enable installing the dependencies (e.g. TBB,
SYCL runtime) as well.

http://openimageio.org/

Compilation 18

• OIDN_DEPENDENTLOADFLAG: Value for DEPENDENTLOADFLAG linker flag on
Windows. For more information, see SECURITY.md

• TBB_ROOT: The path to the TBB installation (autodetected by default).

• ROCM_PATH: The path to the ROCm installation (autodetected by default).

• OpenImageIO_ROOT: The path to the OpenImageIO installation (autode-
tected by default).

SECURITY.md#security-considerations

19

Chapter 3

Open ImageDenoise API

Open Image Denoise provides a C99 API (also compatible with C++) and a C++11
wrapper API as well. For simplicity, this document mostly refers to the C99
version of the API.

The API is designed in an object-oriented manner, e.g. it contains device ob-
jects (OIDNDevice type), buffer objects (OIDNBuffer type), and filter objects
(OIDNFilter type). All objects are reference-counted, and handles can be re-
leased by calling the appropriate release function (e.g. oidnReleaseDevice) or
retained by incrementing the reference count (e.g. oidnRetainDevice).

An important aspect of objects is that setting their parameters do not have
an immediate effect (with a few exceptions). Instead, objects with updated pa-
rameters are in an unusable state until the parameters get explicitly committed
to a given object. The commit semantic allows for batching up multiple small
changes, and specifies exactly when changes to objects will occur.

All API calls are thread-safe, but operations that use the same device will be
serialized, so the amount of API calls from different threads should be minimized.

3.1 Examples

To have a quick overview of the C99 and C++11 APIs, see the following simple
example code snippets.

3.1.1 Basic Denoising (C99API)

#include <OpenImageDenoise/oidn.h>
...

// Create an Open Image Denoise device
OIDNDevice device = oidnNewDevice(OIDN_DEVICE_TYPE_DEFAULT); // CPU or GPU if available
// OIDNDevice device = oidnNewDevice(OIDN_DEVICE_TYPE_CPU);
oidnCommitDevice(device);

// Create buffers for input/output images accessible by both host (CPU) and device (CPU/GPU)
OIDNBuffer colorBuf = oidnNewBuffer(device, width * height * 3 * sizeof(float));
OIDNBuffer albedoBuf = ...

// Create a filter for denoising a beauty (color) image using optional auxiliary images too
// This can be an expensive operation, so try not to create a new filter for every image!
OIDNFilter filter = oidnNewFilter(device, "RT"); // generic ray tracing filter
oidnSetFilterImage(filter, "color", colorBuf,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // beauty
oidnSetFilterImage(filter, "albedo", albedoBuf,

Open ImageDenoiseAPI 20

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // auxiliary
oidnSetFilterImage(filter, "normal", normalBuf,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // auxiliary
oidnSetFilterImage(filter, "output", colorBuf,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // denoised beauty
oidnSetFilterBool(filter, "hdr", true); // beauty image is HDR
oidnCommitFilter(filter);

// Fill the input image buffers
float* colorPtr = (float*)oidnGetBufferData(colorBuf);
...

// Filter the beauty image
oidnExecuteFilter(filter);

// Check for errors
const char* errorMessage;
if (oidnGetDeviceError(device, &errorMessage) != OIDN_ERROR_NONE)
printf("Error: %s\n", errorMessage);

// Cleanup
oidnReleaseBuffer(colorBuf);
...
oidnReleaseFilter(filter);
oidnReleaseDevice(device);

3.1.2 Basic Denoising (C++11 API)

#include <OpenImageDenoise/oidn.hpp>
...

// Create an Open Image Denoise device
oidn::DeviceRef device = oidn::newDevice(); // CPU or GPU if available
// oidn::DeviceRef device = oidn::newDevice(oidn::DeviceType::CPU);
device.commit();

// Create buffers for input/output images accessible by both host (CPU) and device (CPU/GPU)
oidn::BufferRef colorBuf = device.newBuffer(width * height * 3 * sizeof(float));
oidn::BufferRef albedoBuf = ...

// Create a filter for denoising a beauty (color) image using optional auxiliary images too
// This can be an expensive operation, so try no to create a new filter for every image!
oidn::FilterRef filter = device.newFilter("RT"); // generic ray tracing filter
filter.setImage("color", colorBuf, oidn::Format::Float3, width, height); // beauty
filter.setImage("albedo", albedoBuf, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("normal", normalBuf, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("output", colorBuf, oidn::Format::Float3, width, height); // denoised beauty
filter.set("hdr", true); // beauty image is HDR
filter.commit();

// Fill the input image buffers
float* colorPtr = (float*)colorBuf.getData();
...

// Filter the beauty image
filter.execute();

Open ImageDenoiseAPI 21

// Check for errors
const char* errorMessage;
if (device.getError(errorMessage) != oidn::Error::None)
std::cout << "Error: " << errorMessage << std::endl;

3.1.3 Denoisingwith Prefiltering (C++11 API)

// Create a filter for denoising a beauty (color) image using prefiltered auxiliary images too
oidn::FilterRef filter = device.newFilter("RT"); // generic ray tracing filter
filter.setImage("color", colorBuf, oidn::Format::Float3, width, height); // beauty
filter.setImage("albedo", albedoBuf, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("normal", normalBuf, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("output", outputBuf, oidn::Format::Float3, width, height); // denoised beauty
filter.set("hdr", true); // beauty image is HDR
filter.set("cleanAux", true); // auxiliary images will be prefiltered
filter.commit();

// Create a separate filter for denoising an auxiliary albedo image (in-place)
oidn::FilterRef albedoFilter = device.newFilter("RT"); // same filter type as for beauty
albedoFilter.setImage("albedo", albedoBuf, oidn::Format::Float3, width, height);
albedoFilter.setImage("output", albedoBuf, oidn::Format::Float3, width, height);
albedoFilter.commit();

// Create a separate filter for denoising an auxiliary normal image (in-place)
oidn::FilterRef normalFilter = device.newFilter("RT"); // same filter type as for beauty
normalFilter.setImage("normal", normalBuf, oidn::Format::Float3, width, height);
normalFilter.setImage("output", normalBuf, oidn::Format::Float3, width, height);
normalFilter.commit();

// Prefilter the auxiliary images
albedoFilter.execute();
normalFilter.execute();

// Filter the beauty image
filter.execute();

3.2 Upgrading fromOpen ImageDenoise 1.x

Open Image Denoise 2 introduces GPU support, which requires implementing
some minor changes in applications. There are also small API changes, additions
and improvements in this new version. In this section we summarize the neces-
sary code modifications and also briefly mention the new features that users
might find useful when upgrading to version 2.x. For a full description of the
changes and new functionality, please see the API reference.

3.2.1 Buffers

The most important required change is related to how data is passed to Open
Image Denoise. If the application is explicitly using only the CPU (by specifying
OIDN_DEVICE_TYPE_CPU), no changes should be necessary. But if it wants to
support GPUs as well, passing pointers to memory allocated with the system
allocator (e.g. malloc) would raise an error because GPUs cannot access such
memory in almost all cases.

To ensure compatibility with any kind of device, including GPUs, the applica-
tion should use OIDNBuffer objects to store all image data passed to the library.

Open ImageDenoiseAPI 22

Memory allocated using buffers is by default accessible by both the host (CPU)
and the device (CPU or GPU).

Ideally, the application should directly read and write image data to/from
such buffers to avoid redundant and inefficient data copying. If this cannot be
implemented, the application should try to minimize the overhead of copying as
much as possible:

• Data should be copied to/from buffers only if the data in system memory
indeed cannot be accessed by the device. This can be determined by sim-
ply querying the systemMemorySupported device parameter. If system
allocated memory is accessible by the device, no buffers are necessary and
filter image parameters can be set with oidnSetSharedFilterImage.

• If the image data cannot be accessed by the device, buffers must be created
and the data must be copied to/from these buffers. These buffers should
be directly passed to filters as image parameters instead of the original
pointers using oidnSetFilterImage.

• Data should be copied asynchronously using using the new oidnRead-
BufferAsync and oidnWriteBufferAsync functions, which may achieve
higher performance than plain memcpy.

• If image data must be copied, using the default buffer allocationmay not be
the most efficient method. If the device memory is not physically shared
with the host memory (e.g. for dedicated GPUs), higher performance may
be achieved by creating the buffers with device storage (OIDN_STORAGE_
DEVICE) using the new oidnNewBufferWithStorage function. This way,
the buffer data cannot be directly accessed by the host anymore but this
should not matter because the data must be copied from some other mem-
ory location anyway. However, this ensures that the data is stored only in
high-performance device memory, and the user has full control over when
and how the data is transferred between host and device.

The oidnMapBuffer and oidnUnmapBuffer functions have been removed
from the API due to these not being supported by any of the device backends.
Please use oidnReadBuffer(Async) and oidnWriteBuffer(Async) instead.

3.2.2 Interopwith Compute (SYCL, CUDA, HIP) andGraphics
(DX, Vulkan, Metal) APIs

If the application is explicitly using a particular device type which supports uni-
fied memory allocations, e.g. SYCL or CUDA, it may directly pass pointers allo-
cated using the native allocator of the respective computeAPI (e.g. sycl::malloc_
device, cudaMalloc) instead of using buffers. This way, it is the responsibility
of the user to correctly allocate the memory for the device.

In such cases, it often necessary to havemore control over the device creation
as well, to ensure that filtering is running on the intended device and command
queues or streams from the application can be shared to improve performance. If
the application is using the same compute or graphics API as the Open Image De-
noise device, this can be achieved by creating devices with oidnNewSYCLDevice,
oidnNewCUDADevice, etc. For some APIs there are additional interoperability
functions as well, e.g. oidnExecuteSYCLFilterAsync.

If the application is using a graphics APIwhich does not support unifiedmem-
ory allocations, e.g. DX12 or Vulkan, it may be still possible to share memory be-
tween the application andOpen ImageDenoise using buffers, avoiding expensive
copying through host memory. External buffers can be imported from graphics
APIs with the new oidnNewSharedBufferFromFD and oidnNewSharedBuffer-
FromWin32Handle functions. To use this feature, buffers must be exported in the

Open ImageDenoiseAPI 23

graphics API and must be imported in Open Image Denoise using the same kind
of handle. Care must be taken to select an external memory handle type which
is supported by both APIs. The external memory types supported by an Open
Image Denoise device can be queried using the externalMemoryTypes device
parameter. Note that some devices do not support importing external memory
at all (e.g. CPUs, and on GPUs it primarily depends on the installed drivers), so
the application should always implement a fallback too, which copies the data
through the host if there is no other supported way. Metal buffers can be used
directly with the oidnNewSharedBufferFromMetal function.

Sharing textures is currently not supported natively but it is still possible
avoid copying texture data by using a linear texture layout (e.g. VK_IMAGE_
TILING_LINEAR in Vulkan) and sharing the buffer that backs this data. In this
case, you should ensure that the row stride of the linear texture data is correctly
set.

Importing external synchronization primitives (e.g. semaphores) from graph-
ics APIs is not yet supported either but it is planned for a future release. Mean-
while, synchronizing access to shared memory should be done on the host using
oidnSyncDevice and the used graphics API.

When importing external memory, the application also needs to make sure
that the Open Image Denoise device is running on the same physical device as
the graphics API. This can be easily achieved by using the new physical device
feature, described in the next section.

3.2.3 Physical Devices

Although it is possible to explicitly create devices of a particular type (with, e.g.,
OIDN_DEVICE_TYPE_SYCL), this is often insufficient, especially if the system has
multiple devices of the same type, and with GPU support it is very common that
there are multiple different types of supported devices in the system (e.g. a CPU
and one or more GPUs).

Open Image Denoise 2 introduces a simple physical device API, which en-
ables the application to query the list of supported physical devices in the sys-
tem, including their name, type, UUID, LUID, PCI address, etc. (see oidnGet-
NumPhysicalDevices, oidnGetPhysicalDeviceString, etc.). New logical de-
vice (i.e. OIDNDevice) creation functions for have been also introduced, which
enable creating a logical device on a specific physical device: oidnNewDevice-
ByID, oidnNewDeviceByUUID, etc.

Creating a logical device on a physical device having a particular UUID, LUID
or PCI address is particularly important when importing external memory from
graphics APIs. However, not all device types support all types of IDs, and some
graphics drivers may even report mismatching UUIDs or LUIDs for the same
physical device, so applications should try to implement multiple identification
methods, or at least assume that identification might fail.

3.2.4 Asynchronous Execution

It is now possible to execute some operations asynchronously, most impor-
tantly filtering (oidnExecuteFilterAsync, oidnExecuteSYCLFilterAsync)
and copying data (the already mentioned oidnReadBufferAsync and oid-
nWriteBufferAsync).

When using any asynchronous function it is the responsibility of the appli-
cation to handle correct synchronization using oidnSyncDevice.

3.2.5 Filter Quality

Open Image Denoise still delivers the same high image quality on all device types
as before, including on GPUs. But often filtering performance is more important

Open ImageDenoiseAPI 24

than having the highest possible image quality, so it is now possible to switch be-
tweenmultiple filter qualitymodes. Filters have a new parameter called quality,
which defaults to the existing high image quality (OIDN_QUALITY_HIGH) but bal-
anced (OIDN_QUALITY_BALANCED) and fast (OIDN_QUALITY_FAST) qualitymodes
have been added as well for even higher performance. We recommend using bal-
anced or fast quality for interactive and real-time use cases.

3.2.6 Small API Changes

A few existingAPI functions have been renamed to improve clarity (e.g. oidnSet-
Filter1i to oidnSetFilterInt) but the old function names are still available
as deprecated functions. When compiling legacy code, warnings will be emitted
for these deprecated functions. To upgrade to the new API, please simply follow
the instructions in the warnings.

Some filter parameters have been also renamed (alignment to tileAlign-
ment, overlap to tileOverlap). When using the old names, warnings will be
emitted at runtime.

3.2.7 Building as a Static Library

The support to build Open Image Denoise as a static library (OIDN_STATIC_LIB
CMake option) has been limited to CPU-only builds due to switching to a mod-
ular library design that was necessary for adding multi-vendor GPU support. If
the library is built with GPU support as well, the OIDN_STATIC_LIB option is
still available but enabling it results in a hybrid static/shared library.

If the main reason for building as a static library would be is the ability to
use multiple versions of Open Image Denoise in the same process, please use
the existing OIDN_API_NAMESPACE CMake option instead. With this feature all
symbols of the library will be put into a custom namespace, which can prevent
symbol clashes.

3.3 Physical Devices

Systems often have multiple different types of devices supported by Open Image
Denoise (CPUs and GPUs). The application can get the list of supported physical
devices and select which of these to use for denoising.

The number of supported physical devices can be queried with

int oidnGetNumPhysicalDevices();

The physical devices can be identified using IDs between 0 and (oidnGet-
NumPhysicalDevices() − 1), and are ordered approximately from fastest to
slowest (e.g., ID of 0 corresponds to the likely fastest physical device). Note
that the reported number and order of physical devices may change between
application runs, so no assumptions should be made about this list.

Parameters of these physical devices can be queried using

bool oidnGetPhysicalDeviceBool (int physicalDeviceID, const char* name);
int oidnGetPhysicalDeviceInt (int physicalDeviceID, const char* name);
unsigned int oidnGetPhysicalDeviceUInt (int physicalDeviceID, const char* name);
const char* oidnGetPhysicalDeviceString(int physicalDeviceID, const char* name);
const void* oidnGetPhysicalDeviceData (int physicalDeviceID, const char* name,

size_t* byteSize);

where name is the name of the parameter, and byteSize is the number of
returned bytes for data parameters. The following parameters can be queried:

It is also possible to directly query whether a physical device of a particular
type is supported, without iterating over all supported physical devices:

Open ImageDenoiseAPI 25

Table 3.1 – Constant parameters supported by physical devices.

Type Name Description

Int type device type as an OIDNDeviceType value
String name name string
Bool uuidSupported device supports universally unique identifier (UUID)
Data uuid opaque UUID (OIDN_UUID_SIZE bytes, exists only if uuidSupported is true)
Bool luidSupported device supports locally unique identifier (UUID)
Data luid opaque LUID (OIDN_LUID_SIZE bytes, exists only if luidSupported is true)
UInt nodeMask bitfield identifying the node within a linked device adapter corresponding to

the device (exists only if luidSupported is true)
Bool pciAddressSupported device supports PCI address
Int pciDomain PCI domain (exists only if pciAddressSupported is true)
Int pciBus PCI bus (exists only if pciAddressSupported is true)
Int pciDevice PCI device (exists only if pciAddressSupported is true)
Int pciFunction PCI function (exists only if pciAddressSupported is true)

bool oidnIsCPUDeviceSupported();
bool oidnIsSYCLDeviceSupported(const sycl::device* device);
bool oidnIsCUDADeviceSupported(int deviceID);
bool oidnIsHIPDeviceSupported(int deviceID);
bool oidnIsMetalDeviceSupported(MTLDevice_id device);

3.4 Devices

Open Image Denoise has a logical device concept as well, or simply referred to
as device, which allows different components of the application to use the Open
Image Denoise API without interfering with each other. Each physical device
may be associated with one ore more logical devices. A basic way to create a
device is by calling

OIDNDevice oidnNewDevice(OIDNDeviceType type);

where the type enumeration maps to a specific device implementation,
which can be one of the following:

Table 3.2 – Supported device types, i.e., valid constants of type OIDNDeviceType.

Name Description

OIDN_DEVICE_TYPE_DEFAULT select the likely fastest device (same as physical device with ID 0)
OIDN_DEVICE_TYPE_CPU CPU device
OIDN_DEVICE_TYPE_SYCL SYCL device (requires a supported Intel GPU)
OIDN_DEVICE_TYPE_CUDA CUDA device (requires a supported NVIDIA GPU)
OIDN_DEVICE_TYPE_HIP HIP device (requires a supported AMD GPU)
OIDN_DEVICE_TYPE_METAL Metal device (requires a supported Apple GPU)

If there aremultiple supported devices of the specified type, an implementation-
dependent default will be selected.

A device can be created by specifying a physical device ID as well using

Open ImageDenoiseAPI 26

OIDNDevice oidnNewDeviceByID(int physicalDeviceID);

Applications can manually iterate over the list of physical devices and se-
lect from them based on their properties but there are also some built-in helper
functions as well, which make creating a device by a particular physical device
property easier:

OIDNDevice oidnNewDeviceByUUID(const void* uuid);
OIDNDevice oidnNewDeviceByLUID(const void* luid);
OIDNDevice oidnNewDeviceByPCIAddress(int pciDomain, int pciBus, int pciDevice,

int pciFunction);

These functions are particularly useful when the application needs interop-
erability with a graphics API (e.g. DX12, Vulkan). However, not all of these
properties may be supported by the intended physical device (or drivers might
even report inconsistent identifiers), so it is recommended to select by more than
one property, if possible.

If the application requires interoperability with a particular compute or
graphics API (SYCL, CUDA, HIP, Metal), it is recommended to use one of the
following dedicated functions instead:

OIDNDevice oidnNewSYCLDevice(const sycl::queue* queues, int numQueues);
OIDNDevice oidnNewCUDADevice(const int* deviceIDs, const cudaStream_t* streams,

int numPairs);
OIDNDevice oidnNewHIPDevice(const int* deviceIDs, const hipStream_t* streams,

int numPairs);
OIDNDevice oidnNewMetalDevice(const MTLCommandQueue_id* commandQueues,

int numQueues);

For SYCL, it is possible to pass one or more SYCL queues which will be used
by Open Image Denoise for all device operations. This is useful when the appli-
cation wants to use the same queues for both denoising and its own operations
(e.g. rendering). Passing multiple queues is not intended to be used for differ-
ent physical devices but just for a single SYCL root-device which consists of
multiple sub-devices (e.g. Intel® Data Center GPU Max Series having multiple
Xe-Stacks/tiles). The only supported SYCL backend is oneAPI Level Zero.

For CUDAandHIP, pairs of CUDA/HIP device IDs and corresponding streams
can be specified but the current implementation supports only one pair. A
NULL stream corresponds to the default stream on the corresponding device.
Open Image Denoise automatically sets and restores the current CUDA/HIP de-
vice/context on the calling thread when necessary, thus the current device does
not have to be changed manually by the application.

For Metal, a single command queue is supported.
Once a device is created, you can call

bool oidnGetDeviceBool(OIDNDevice device, const char* name);
void oidnSetDeviceBool(OIDNDevice device, const char* name, bool value);
int oidnGetDeviceInt (OIDNDevice device, const char* name);
void oidnSetDeviceInt (OIDNDevice device, const char* name, int value);
int oidnGetDeviceUInt(OIDNDevice device, const char* name);
void oidnSetDeviceUInt(OIDNDevice device, const char* name, unsigned int value);

to set and get parameter values on the device. Note that some parameters
are constants, thus trying to set them is an error. See the tables below for the
parameters supported by devices.

Note that the CPU device heavily relies on setting the thread affinities to
achieve optimal performance, so it is highly recommended to leave this option
enabled. However, this may interfere with the application if that also sets the

Open ImageDenoiseAPI 27

Table 3.3 – Parameters supported by all devices.

Type Name Default Description

Int type constant device type as an OIDNDeviceType value
Int version constant combined version number (major.minor.patch) with two decimal

digits per component
Int versionMajor constant major version number
Int versionMinor constant minor version number
Int versionPatch constant patch version number
Bool systemMemorySupported constant device can directly access memory allocated with the system

allocator (e.g. malloc)
Bool managedMemorySupported constant device supports buffers created with managed storage

(OIDN_STORAGE_MANAGED)
Int externalMemoryTypes constant bitfield of OIDNExternalMemoryTypeFlag values representing the

external memory types supported by the device
Int verbose 0 verbosity level of the console output between 0–4; when set to 0,

no output is printed, when set to a higher level more output is
printed

Table 3.4 – Additional parameters supported only by CPU devices.

Type Name Default Description

Int numThreads 0 maximum number of threads which the library should use; 0 will set it
automatically to get the best performance

Bool setAffinity true enables thread affinitization (pinning software threads to hardware threads) if it
is necessary for achieving optimal performance

thread affinities, potentially causing performance degradation. In such cases, the
recommended solution is to either disable setting the affinities in the application
or in Open Image Denoise, or to always set/reset the affinities before/after each
parallel region in the application (e.g., if using TBB, with tbb::task_arena and
tbb::task_scheduler_observer).

Once parameters are set on the created device, the device must be committed
with

void oidnCommitDevice(OIDNDevice device);

This device can then be used to construct further objects, such as buffers and
filters. Note that a device can be committed only once during its lifetime.

Some functions may execute asynchronously with respect to the host. The
names of these functions are suffixed with Async. Asynchronous operations are
executed in order on the device but may not block on the host. Eventually, it
is necessary to wait for all asynchronous operations to complete, which can be
done by calling

void oidnSyncDevice(OIDNDevice device);

If any errors have occurred during asynchronous operations (e.g., cancel-
lation through a progress monitor callback), those will be reported only when
synchronization is triggered explicitly with oidnSyncDevice or implicitly with
some other API call (e.g., oidnExecuteFilter, oidnCommitFilter).

Before the application exits, it should release all devices by invoking

Open ImageDenoiseAPI 28

void oidnReleaseDevice(OIDNDevice device);

Note that Open Image Denoise uses reference counting for all object types,
so this function decreases the reference count of the device, and if the count
reaches 0 the device will automatically get deleted. It is also possible to increase
the reference count by calling

void oidnRetainDevice(OIDNDevice device);

An application should typically create only a single device object per physical
device (one for all CPUs or one per GPU) as creation can be very expensive and
additional device objects may incur a significant memory overhead. If required
differently, it should only use a small number of device objects at any given time.

3.4.1 Error Handling

Each user thread has its own error code per device. If an error occurs when
calling an API function, this error code is set to the occurred error if it stores no
previous error. The currently stored error can be queried by the application via

OIDNError oidnGetDeviceError(OIDNDevice device, const char** outMessage);

where outMessage can be a pointer to a C string which will be set to a more
descriptive error message, or it can be NULL. This function also clears the error
code, which assures that the returned error code is always the first error occurred
since the last invocation of oidnGetDeviceError on the current thread. Note
that the optionally returned error message string is valid only until the next in-
vocation of the function.

Alternatively, the application can also register a callback function of type

typedef void (*OIDNErrorFunction)(void* userPtr, OIDNError code, const char* message);

via

void oidnSetDeviceErrorFunction(OIDNDevice device, OIDNErrorFunction func, void* userPtr);

to get notified when errors occur. Only a single callback function can be
registered per device, and further invocations overwrite the previously set call-
back function, which do not require also calling the oidnCommitDevice function.
Passing NULL as function pointer disables the registered callback function. When
the registered callback function is invoked, it gets passed the user-defined pay-
load (userPtr argument as specified at registration time), the error code (code
argument) of the occurred error, as well as a string (message argument) that fur-
ther describes the error. The error code is always set even if an error callback
function is registered. It is recommended to always set a error callback function,
to detect all errors.

When the device construction fails, oidnNewDevice returns NULL as device.
To detect the error code of a such failed device construction, pass NULL as device
to the oidnGetDeviceError function. For all other invocations of oidnGetDe-
viceError, a proper device handle must be specified.

The following errors are currently used by Open Image Denoise:

3.4.2 Environment Variables

Open Image Denoise supports environment variables for overriding certain set-
tings at runtime, which can be useful for debugging and development:

Open ImageDenoiseAPI 29

Table 3.5 – Possible error codes, i.e., valid constants of type OIDNError.

Name Description

OIDN_ERROR_NONE no error occurred
OIDN_ERROR_UNKNOWN an unknown error occurred
OIDN_ERROR_INVALID_ARGUMENT an invalid argument was specified
OIDN_ERROR_INVALID_OPERATION the operation is not allowed
OIDN_ERROR_OUT_OF_MEMORY not enough memory to execute the operation
OIDN_ERROR_UNSUPPORTED_HARDWARE the hardware (CPU/GPU) is not supported
OIDN_ERROR_CANCELLED the operation was cancelled by the user

Name Description

OIDN_DEFAULT_DEVICE overrides what physical device to use with
OIDN_DEVICE_TYPE_DEFAULT; can be cpu, sycl,
cuda, hip, or a physical device ID

OIDN_DEVICE_CPU value of 0 disables CPU device support
OIDN_DEVICE_SYCL value of 0 disables SYCL device support
OIDN_DEVICE_CUDA value of 0 disables CUDA device support
OIDN_DEVICE_HIP value of 0 disables HIP device support
OIDN_DEVICE_METAL value of 0 disables Metal device support
OIDN_NUM_THREADS overrides numThreads device parameter
OIDN_SET_AFFINITY overrides setAffinity device parameter
OIDN_NUM_SUBDEVICES overrides number of SYCL sub-devices to use

(e.g. for Intel® Data Center GPU Max Series)
OIDN_VERBOSE overrides verbose device parameter

Table 3.6 – Environment variables sup-
ported by Open Image Denoise.

3.5 Buffers

Image data can be passed to Open Image Denoise either via pointers to memory
allocated and managed by the user or by creating buffer objects. Regardless of
which method is used, the data must be allocated in a way that it is accessible by
the device (either CPU or GPU). Using buffers is typically the preferred approach
because this ensures that the allocation requirements are fulfilled regardless of
device type. To create a new data buffer with memory allocated and owned by
the device, use

OIDNBuffer oidnNewBuffer(OIDNDevice device, size_t byteSize);

The created buffer is bound to the specified device (device argument). The
specified number of bytes (byteSize) are allocated at buffer construction time
and deallocated when the buffer is destroyed. The memory is by default allo-
cated as managed memory automatically migrated between host and device, if
supported, or as pinned host memory otherwise.

If this default buffer allocation is not suitable, a buffer can be created with a
manually specified storage mode as well:

OIDNBuffer oidnNewBufferWithStorage(OIDNDevice device, size_t byteSize, OIDNStorage storage);

The supported storage modes are the following:

Open ImageDenoiseAPI 30

Table 3.7 – Supported storage modes for buffers, i.e., valid constants of type OIDNStorage.

Name Description

OIDN_STORAGE_UNDEFINED undefined storage mode
OIDN_STORAGE_HOST pinned host memory, accessible by both host and device
OIDN_STORAGE_DEVICE device memory, not accessible by the host
OIDN_STORAGE_MANAGED automatically migrated between host and device, accessible by both (not supported by

all devices, managedMemorySupported device parameter must be checked before use)

Note that the host and device storage modes are supported by all devices
but managed storage is an optional feature. Before using managed storage, the
managedMemorySupported device parameter should be queried.

It is also possible to create a “shared” data buffer with memory allocated and
managed by the user with

OIDNBuffer oidnNewSharedBuffer(OIDNDevice device, void* devPtr, size_t byteSize);

where devPtr points to user-managed device-accessible memory and byte-
Size is its size in bytes. At buffer construction time no buffer data is allocated,
but the buffer data provided by the user is used. The buffer data must remain
valid for as long as the buffer may be used, and the user is responsible to free
the buffer data when no longer required. The user must also ensure that the
memory is accessible to the device by using a supported allocation function (e.g.,
sycl::malloc_device, cudaMalloc, hipMalloc) and alignment (e.g., Metal re-
quires the allocation to be page-aligned).

Buffers can be also imported from graphics APIs as external memory, to avoid
expensive copying of data through host memory. Different types of external
memory can be imported from either POSIX file descriptors or Win32 handles
using

OIDNBuffer oidnNewSharedBufferFromFD(OIDNDevice device,
OIDNExternalMemoryTypeFlag fdType,
int fd, size_t byteSize);

OIDNBuffer oidnNewSharedBufferFromWin32Handle(OIDNDevice device,
OIDNExternalMemoryTypeFlag handleType,
void* handle, const void* name, size_t byteSize);

Before exporting memory from the graphics API, the application should
find a handle type which is supported by both the Open Image Denoise de-
vice (see externalMemoryTypes device parameter) and the graphics API. Note
that different GPU vendors may support different handle types. To ensure com-
patibility with all device types, applications should support at least OIDN_EX-
TERNAL_MEMORY_TYPE_FLAG_OPAQUE_WIN32 on Windows and both OIDN_EX-
TERNAL_MEMORY_TYPE_FLAG_OPAQUE_FD and OIDN_EXTERNAL_MEMORY_TYPE_
FLAG_DMA_BUF on Linux. All possible external memory types are listed in the
table below.

Metal buffers can be imported directly with

OIDNBuffer oidnNewSharedBufferFromMetal(OIDNDevice device, MTLBuffer_id buffer);

Note that if a buffer with an MTLStorageModeManaged storage mode is im-
ported, it is the responsibility of the user to synchronize the contents of the buffer
between the host and the device.

Similar to device objects, buffer objects are also reference-counted and can
be retained and released by calling the following functions:

Open ImageDenoiseAPI 31

Table 3.8 – Supported external memory type flags, i.e., valid constants of type OIDNExter-
nalMemoryTypeFlag.

Name Description

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_NONE

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_OPAQUE_FD opaque POSIX file descriptor handle (recommended on
Linux)

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_DMA_BUF file descriptor handle for a Linux dma_buf (recommended
on Linux)

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_OPAQUE_
WIN32

NT handle (recommended on Windows)

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_OPAQUE_
WIN32_KMT

global share (KMT) handle

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_D3D11_
TEXTURE

NT handle returned by
IDXGIResource1::CreateSharedHandle referring to a
Direct3D 11 texture resource

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_D3D11_
TEXTURE_KMT

global share (KMT) handle returned by
IDXGIResource::GetSharedHandle referring to a
Direct3D 11 texture resource

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_D3D11_
RESOURCE

NT handle returned by
IDXGIResource1::CreateSharedHandle referring to a
Direct3D 11 resource

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_D3D11_
RESOURCE_KMT

global share (KMT) handle returned by
IDXGIResource::GetSharedHandle referring to a
Direct3D 11 resource

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_D3D12_HEAP NT handle returned by
ID3D12Device::CreateSharedHandle referring to a
Direct3D 12 heap resource

OIDN_EXTERNAL_MEMORY_TYPE_FLAG_D3D12_
RESOURCE

NT handle returned by
ID3D12Device::CreateSharedHandle referring to a
Direct3D 12 committed resource

void oidnRetainBuffer (OIDNBuffer buffer);
void oidnReleaseBuffer(OIDNBuffer buffer);

The size of in bytes and storage mode of the buffer can be queried using

size_t oidnGetBufferSize (OIDNBuffer buffer);
OIDNStorage oidnGetBufferStorage(OIDNBuffer buffer);

It is possible to get a pointer directly to the buffer data, which is usually the
preferred way to access the data stored in the buffer:

void* oidnGetBufferData(OIDNBuffer buffer);

Accessing the data on the host through this pointer is possible only if the
buffer was created with OIDN_STORAGE_HOST or OIDN_STORAGE_MANAGED. Note
that a NULL pointer may be returned if the buffer is empty.

In some cases better performance can be achieved by using device storage for
buffers. Such data can be accessed on the host by copying to/from host memory
(including pageable system memory) using the following functions:

void oidnReadBuffer(OIDNBuffer buffer,
size_t byteOffset, size_t byteSize, void* dstHostPtr);

Open ImageDenoiseAPI 32

void oidnWriteBuffer(OIDNBuffer buffer,
size_t byteOffset, size_t byteSize, const void* srcHostPtr);

These functions will always block until the read/write operation has been
completed, which is often suboptimal. The following functions execute these
operations asynchronously:

void oidnReadBufferAsync(OIDNBuffer buffer,
size_t byteOffset, size_t byteSize, void* dstHostPtr);

void oidnWriteBufferAsync(OIDNBuffer buffer,
size_t byteOffset, size_t byteSize, const void* srcHostPtr);

When copying asynchronously, the usermust ensure correct synchronization
with the device by calling oidnSyncDevice before accessing the copied data or
releasing the buffer. Failure to do so will result in undefined behavior.

3.5.1 Data Format

Buffers store opaque data and thus have no information about the type and for-
mat of the data. Other objects, e.g. filters, typically require specifying the format
of the data stored in buffers or shared via pointers. This can be done using the
OIDNFormat enumeration type:

Name Description

OIDN_FORMAT_UNDEFINED undefined format
OIDN_FORMAT_FLOAT 32-bit floating-point scalar
OIDN_FORMAT_FLOAT[234] 32-bit floating-point [234]-element vector
OIDN_FORMAT_HALF 16-bit floating-point scalar
OIDN_FORMAT_HALF[234] 16-bit floating-point [234]-element vector

Table 3.9 – Supported data formats, i.e.,
valid constants of type OIDNFormat.

3.6 Filters

Filters are themain objects in Open Image Denoise that are responsible for the ac-
tual denoising. The library ships with a collection of filters which are optimized
for different types of images and use cases. To create a filter object, call

OIDNFilter oidnNewFilter(OIDNDevice device, const char* type);

where type is the name of the filter type to create. The supported filter types
are documented later in this section.

Creating filter objects can be very expensive, therefore it is strongly recom-
mended to reuse the same filter for denoising as many images as possible, as long
as the these images have the same same size, format, and features (i.e., only the
memory locations and pixel values may be different). Otherwise (e.g. for images
with different resolutions), reusing the same filter would not have any benefits.

Once created, filter objects can be retained and released with

void oidnRetainFilter (OIDNFilter filter);
void oidnReleaseFilter(OIDNFilter filter);

After creating a filter, it needs to be set up by specifying the input and output
images, and potentially setting other parameter values as well.

To set image parameters of a filter, you can use one of the following functions:

Open ImageDenoiseAPI 33

void oidnSetFilterImage(OIDNFilter filter, const char* name,
OIDNBuffer buffer, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t pixelByteStride, size_t rowByteStride);

void oidnSetSharedFilterImage(OIDNFilter filter, const char* name,
void* devPtr, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t pixelByteStride, size_t rowByteStride);

It is possible to specify either a data buffer object (buffer argument) with
the oidnSetFilterImage function, or directly a pointer to user-managed device-
accessible data (devPtr argument) with the oidnSetSharedFilterImage func-
tion. Regardless of whether a buffer or a pointer is specified, the data must be
accessible to the device. The easiest way to guarantee this regardless of the de-
vice type (CPU or GPU) is using buffer objects.

In both cases, you must also specify the name of the image parameter to set
(name argument, e.g. "color", "output"), the pixel format (format argument),
the width and height of the image in number of pixels (width and height argu-
ments), the starting offset of the image data (byteOffset argument), the pixel
stride (pixelByteStride argument) and the row stride (rowByteStride argu-
ment), in number of bytes.

If the pixels and/or rows are stored contiguously (tightly packed without any
gaps), you can set pixelByteStride and/or rowByteStride to 0 to let the li-
brary compute the actual strides automatically, as a convenience.

Images support only FLOAT and HALF pixel formats with up to 3 channels.
Custom image layouts with extra channels (e.g. alpha channel) or other data are
supported as well by specifying a non-zero pixel stride. This way, expensive
image layout conversion and copying can be avoided but the extra channels will
be ignored by the filter. If these channels also need to be denoised, separate filters
can be used.

To unset a previously set image parameter, returning it to a state as if it had
not been set, call

void oidnRemoveFilterImage(OIDNFilter filter, const char* name);

Some special data used by filters are opaque/untyped (e.g. trained model
weights blobs), which can be specified with the oidnSetSharedFilterData
function:

void oidnSetSharedFilterData(OIDNFilter filter, const char* name,
void* hostPtr, size_t byteSize);

This data (hostPtr) must be accessible to the host, therefore system memory
allocation is suitable (i.e., there is no reason to use buffer objects for allocation).

Modifying the contents of an opaque data parameter after setting it as a filter
parameter is allowed but the filter needs to be notified that the data has been
updated by calling

void oidnUpdateFilterData(OIDNFilter filter, const char* name);

Unsetting an opaque data parameter can be performed with

void oidnRemoveFilterData(OIDNFilter filter, const char* name);

Filters may have parameters other than buffers as well, which you can set
and get using the following functions:

Open ImageDenoiseAPI 34

bool oidnGetFilterBool (OIDNFilter filter, const char* name);
void oidnSetFilterBool (OIDNFilter filter, const char* name, bool value);
int oidnGetFilterInt (OIDNFilter filter, const char* name);
void oidnSetFilterInt (OIDNFilter filter, const char* name, int value);
float oidnGetFilterFloat(OIDNFilter filter, const char* name);
void oidnSetFilterFloat(OIDNFilter filter, const char* name, float value);

Filters support a progress monitor callback mechanism that can be used to
report progress of filter operations and to cancel them as well. Calling oidnSet-
FilterProgressMonitorFunction registers a progress monitor callback func-
tion (func argument) with payload (userPtr argument) for the specified filter
(filter argument):

typedef bool (*OIDNProgressMonitorFunction)(void* userPtr, double n);

void oidnSetFilterProgressMonitorFunction(OIDNFilter filter,
OIDNProgressMonitorFunction func,
void* userPtr);

Only a single callback function can be registered per filter, and further invo-
cations overwrite the previously set callback function. Passing NULL as function
pointer disables the registered callback function. Once registered, Open Image
Denoise will invoke the callback function multiple times during filter operations,
by passing the payload as set at registration time (userPtr argument), and a
double in the range [0, 1] which estimates the progress of the operation (n argu-
ment). When returning true from the callback function, Open Image Denoise
will continue the filter operation normally. When returning false, the library
will attempt to cancel the filter operation as soon as possible, and if that is ful-
filled, it will raise an OIDN_ERROR_CANCELLED error. Note that cancellation is
not guaranteed.

Using a progress monitor callback function introduces some overhead, which
may be significant on GPU devices, hurting performance. Therefore we strongly
recommend progress monitoring only for offline denoising, when denoising an
image is expected to take several seconds.

After setting all necessary parameters for the filter, the changes must be com-
mitted by calling

void oidnCommitFilter(OIDNFilter filter);

The parameters can be updated after committing the filter, but it must be re-
committed for any new changes to take effect. Committing major changes to the
filter (e.g. setting new image parameters, changing the image resolution) can be
expensive, and thus should not be done frequently (e.g. per frame).

Finally, an image can be filtered by executing the filter with

void oidnExecuteFilter(OIDNFilter filter);

which will read the input image data from the specified buffers and produce
the denoised output image.

This function will always block until the filtering operation has been com-
pleted. The following function executes the operation asynchronously:

void oidnExecuteFilterAsync(OIDNFilter filter);

For filters created on a SYCL device it is also possible to specify dependent
SYCL events (depEvents and numDepEvents arguments, may be NULL/0) and get
a completion event as well (doneEvent argument, may be NULL):

Open ImageDenoiseAPI 35

void oidnExecuteSYCLFilterAsync(OIDNFilter filter,
const sycl::event* depEvents, int numDepEvents,
sycl::event* doneEvent);

When filtering asynchronously, the user must ensure correct synchroniza-
tion with the device by calling oidnSyncDevice before accessing the output im-
age data or releasing the filter. Failure to do so will result in undefined behavior.

In the following we describe the different filters that are currently imple-
mented in Open Image Denoise.

3.6.1 RT

The RT (ray tracing) filter is a generic ray tracing denoising filter which is suitable
for denoising images rendered with Monte Carlo ray tracing methods like uni-
directional and bidirectional path tracing. It supports depth of field and motion
blur as well, but it is not temporally stable. The filter is based on a convolutional
neural network (CNN) and comes with a set of pre-trained models that work well
with a wide range of ray tracing based renderers and noise levels.

Figure 3.1 – Example noisy beauty image
rendered using unidirectional path trac-
ing (4 samples per pixel). Scene by Ever-
motion.

Figure 3.2 – Example output beauty im-
age denoised using prefiltered auxiliary
feature images (albedo and normal) too.

For denoising beauty images, it accepts either a low dynamic range (LDR) or
high dynamic range (HDR) image (color) as themain input image. In addition to
this, it also accepts auxiliary feature images, albedo and normal, which are op-
tional inputs that usually improve the denoising quality significantly, preserving
more details.

It is possible to denoise auxiliary images as well, in which case only the re-
spective auxiliary image has to be specified as input, instead of the beauty image.

Open ImageDenoiseAPI 36

This can be done as a prefiltering step to further improve the quality of the de-
noised beauty image.

The RT filter has certain limitations regarding the supported input images.
Most notably, it cannot denoise images that were not rendered with ray trac-
ing. Another important limitation is related to anti-aliasing filters. Most render-
ers use a high-quality pixel reconstruction filter instead of a trivial box filter to
minimize aliasing artifacts (e.g. Gaussian, Blackman-Harris). The RT filter does
support such pixel filters but only if implemented with importance sampling.
Weighted pixel sampling (sometimes called splatting) introduces correlation be-
tween neighboring pixels, which causes the denoising to fail (the noise will not
be filtered), thus it is not supported.

The filter can be created by passing "RT" to the oidnNewFilter function as
the filter type. The filter supports the parameters listed in the table below. All
specified images must have the same dimensions. The output image can be one
of the input images (i.e. in-place denoising is supported). See section Examples
for simple code snippets that demonstrate the usage of the filter.

Using auxiliary feature images like albedo and normal helps preserving fine
details and textures in the image thus can significantly improve denoising qual-
ity. These images should typically contain feature values for the first hit (i.e. the
surface which is directly visible) per pixel. This works well for most surfaces but
does not provide any benefits for reflections and objects visible through trans-
parent surfaces (compared to just using the color as input). However, this issue
can be usually fixed by storing feature values for a subsequent hit (i.e. the reflec-
tion and/or refraction) instead of the first hit. For example, it usually works well
to follow perfect specular (delta) paths and store features for the first diffuse or
glossy surface hit instead (e.g. for perfect specular dielectrics and mirrors). This
can greatly improve the quality of reflections and transmission. We will describe
this approach in more detail in the following subsections.

The auxiliary feature images should be as noise-free as possible. It is not a
strict requirement but too much noise in the feature images may cause residual
noise in the output. Ideally, these should be completely noise-free. If this is the
case, this should be hinted to the filter using the cleanAux parameter to ensure
the highest possible image quality. But this parameter should be used with care:
if enabled, any noise present in the auxiliary images will end up in the denoised
image as well, as residual noise. Thus, cleanAux should be enabled only if the
auxiliary images are guaranteed to be noise-free.

Usually it is difficult to provide clean feature images, and some residual noise
might be present in the output even with cleanAux being disabled. To eliminate
this noise and to even improve the sharpness of texture details, the auxiliary im-
ages should be first denoised in a prefiltering step, as mentioned earlier. Then,
these denoised auxiliary images could be used for denoising the beauty image.
Since these are now noise-free, the cleanAux parameter should be enabled. See
section Denoising with prefiltering (C++11 API) for a simple code example. Pre-
filtering makes denoising much more expensive but if there are multiple color
AOVs to denoise, the prefiltered auxiliary images can be reused for denoising
multiple AOVs, amortizing the cost of the prefiltering step.

Thus, for final-frame denoising, where the best possible image quality is re-
quired, it is recommended to prefilter the auxiliary features if they are noisy and
enable the cleanAux parameter. Denoising with noisy auxiliary features should
be reserved for previews and interactive rendering.

All auxiliary images should use the same pixel reconstruction filter as the
beauty image. Using a properly anti-aliased beauty image but aliased albedo or
normal images will likely introduce artifacts around edges.

Open ImageDenoiseAPI 37

Table 3.10 – Parameters supported by the RT filter.

Type Name Default Description

Image color optional input beauty image (1–3 channels, LDR values in [0, 1] or HDR values in [0,
+∞), values being interpreted such that, after scaling with the inputScale
parameter, a value of 1 corresponds to a luminance level of 100 cd/m²)

Image albedo optional input auxiliary image containing the albedo per pixel (1–3 channels, values
in [0, 1])

Image normal optional input auxiliary image containing the shading normal per pixel (1–3 channels,
world-space or view-space vectors with arbitrary length, values in [-1, 1])

Image output required output image (1–3 channels); can be one of the input images
Bool hdr false the main input image is HDR
Bool srgb false the main input image is encoded with the sRGB (or 2.2 gamma) curve (LDR

only) or is linear; the output will be encoded with the same curve
Float inputScale NaN scales values in the main input image before filtering, without scaling the

output too, which can be used to map color or auxiliary feature values to the
expected range, e.g. for mapping HDR values to physical units (which affects
the quality of the output but not the range of the output values); if set to
NaN, the scale is computed implicitly for HDR images or set to 1 otherwise

Bool cleanAux false the auxiliary feature (albedo, normal) images are noise-free; recommended
for highest quality but should not be enabled for noisy auxiliary images to
avoid residual noise

Int quality high image quality mode as an OIDNQuality value
Data weights optional trained model weights blob
Int maxMemoryMB -1 if set to >= 0, a request is made to limit the memory usage below the

specified amount in megabytes at the potential cost of slower performance,
but actual memory usage may be higher (the target may not be achievable or
there may be additional allocations beyond the control of the library);
otherwise, memory usage will be limited to an unspecified device-dependent
amount; in both cases, filters on the same device share almost all of their
allocated memory to minimize total memory usage

Int tileAlignment constant when manually denoising in tiles, the tile size and offsets should be multiples
of this amount of pixels to avoid artifacts; when denoising HDR images
inputScale must be set by the user to avoid seam artifacts

Int tileOverlap constant when manually denoising in tiles, the tiles should overlap by this amount of
pixels

3.6.1.1 Albedos

The albedo image is the feature image that usually provides the biggest quality
improvement. It should contain the approximate color of the surfaces indepen-
dent of illumination and viewing angle.

For simple matte surfaces this means using the diffuse color/texture as the
albedo. For other, more complex surfaces it is not always obvious what is the best
way to compute the albedo, but the denoising filter is flexible to a certain extent
and works well with differently computed albedos. Thus it is not necessary to
compute the strict, exact albedo values but must be always between 0 and 1.

For metallic surfaces the albedo should be either the reflectivity at normal
incidence (e.g. from the artist friendly metallic Fresnel model) or the average
reflectivity; or if these are constant (not textured) or unknown, the albedo can
be simply 1 as well.

Open ImageDenoiseAPI 38

Figure 3.3 – Example albedo image ob-
tained using the first hit. Note that the
albedos of all transparent surfaces are 1.

Figure 3.4 – Example albedo image ob-
tained using the first diffuse or glossy
(non-delta) hit. Note that the albedos of
perfect specular (delta) transparent sur-
faces are computed as the Fresnel blend
of the reflected and transmitted albedos.

The albedo for dielectric surfaces (e.g. glass) should be either 1 or, if the sur-
face is perfect specular (i.e. has a delta BSDF), the Fresnel blend of the reflected
and transmitted albedos. The latter usually works better but only if it does not
introduce too much noise or the albedo is prefiltered. If noise is an issue, we
recommend to split the path into a reflected and a transmitted path at the first
hit, and perhaps fall back to an albedo of 1 for subsequent dielectric hits. The
reflected albedo in itself can be used for mirror-like surfaces as well.

The albedo for layered surfaces can be computed as the weighted sum of the
albedos of the individual layers. Non-absorbing clear coat layers can be simply
ignored (or the albedo of the perfect specular reflection can be used as well) but
absorption should be taken into account.

3.6.1.2 Normals

The normal image should contain the shading normals of the surfaces either in
world-space or view-space. It is recommended to include normal maps to pre-
serve as much detail as possible.

Just like any other input image, the normal image should be anti-aliased (i.e.
by accumulating the normalized normals per pixel). The final accumulated nor-
mals do not have to be normalized but must be in the [-1, 1] range (i.e. normals
mapped to [0, 1] are not acceptable and must be remapped to [−1, 1]).

Similar to the albedo, the normal can be stored for either the first or a subse-
quent hit (if the first hit has a perfect specular/delta BSDF).

Open ImageDenoiseAPI 39

Figure 3.5 – Example normal image ob-
tained using the first hit (the values are
actually in [−1, 1] but were mapped to
[0, 1] for illustration purposes).

Figure 3.6 – Example normal image ob-
tained using the first diffuse or glossy
(non-delta) hit. Note that the normals
of perfect specular (delta) transparent
surfaces are computed as the Fresnel
blend of the reflected and transmitted
normals.

3.6.1.3 Quality

The filter supports setting an image quality mode, which determines whether to
favor quality, performance, or have a balanced solution between the two. The
supported quality modes are listed in the following table.

Name Description

OIDN_QUALITY_DEFAULT default quality
OIDN_QUALITY_FAST high performance (for interactive/real-time

preview rendering)
OIDN_QUALITY_BALANCED balanced quality/performance (for

interactive/real-time rendering)
OIDN_QUALITY_HIGH high quality (for final-frame rendering); default

Table 3.11 – Supported image quality
modes, i.e., valid constants of type OID-
NQuality.

By default, filtering is performed in high quality mode, which is recom-
mended for final-frame rendering. Using this setting the results have the same
high quality regardless of what kind of device (CPU or GPU) is used. How-
ever, due to significant hardware architecture differences between devices, there
might be small numerical differences between the produced outputs.

The balanced quality mode may provide somewhat lower image quality but
higher performance and lower default memory usage, and is thus recommended
for interactive and real-time rendering. For even higher performance and lower
memory usage, a fast quality mode is also available but has noticeably lower
image quality, making it suitable mainly for fast previews. Note that in the bal-

Open ImageDenoiseAPI 40

anced and fast quality modes larger numerical differences should be expected
across devices compared to the high quality mode.

The difference in quality and performance between quality modes depends
on the combination of input features, parameters (e.g. cleanAux), and the device
architecture. In some cases the difference may be small or even none.

3.6.1.4 Weights

Instead of using the built-in trained models for filtering, it is also possible to
specify user-trained models at runtime. This can be achieved by passing the
model weights blob corresponding to the specified set of features and other filter
parameters, produced by the included training tool. See Section Training for
details.

3.6.2 RTLightmap

The RTLightmap filter is a variant of the RT filter optimized for denoising HDR
and normalized directional (e.g. spherical harmonics) lightmaps. It does not sup-
port LDR images.

The filter can be created by passing "RTLightmap" to the oidnNewFilter
function as the filter type. The filter supports the following parameters:

Table 3.12 – Parameters supported by the RTLightmap filter.

Type Name Default Description

Image color required input beauty image (1–3 channels, HDR values in [0, +∞), interpreted such
that, after scaling with the inputScale parameter, a value of 1 corresponds
to a luminance level of 100 cd/m²; directional values in [-1, 1])

Image output required output image (1–3 channels); can be one of the input images
Bool directional false whether the input contains normalized coefficients (in [-1, 1]) of a directional

lightmap (e.g. normalized L1 or higher spherical harmonics band with the L0
band divided out); if the range of the coefficients is different from [-1, 1], the
inputScale parameter can be used to adjust the range without changing the
stored values

Float inputScale NaN scales input color values before filtering, without scaling the output too,
which can be used to map color values to the expected range, e.g. for
mapping HDR values to physical units (which affects the quality of the
output but not the range of the output values); if set to NaN, the scale is
computed implicitly for HDR images or set to 1 otherwise

Int quality high image quality mode as an OIDNQuality value
Data weights optional trained model weights blob
Int maxMemoryMB -1 if set to >= 0, a request is made to limit the memory usage below the

specified amount in megabytes at the potential cost of slower performance,
but actual memory usage may be higher (the target may not be achievable or
there may be additional allocations beyond the control of the library);
otherwise, memory usage will be limited to an unspecified device-dependent
amount; in both cases, filters on the same device share almost all of their
allocated memory to minimize total memory usage

Int tileAlignment constant when manually denoising in tiles, the tile size and offsets should be multiples
of this amount of pixels to avoid artifacts; when denoising HDR images
inputScale must be set by the user to avoid seam artifacts

Int tileOverlap constant when manually denoising in tiles, the tiles should overlap by this amount of
pixels

41

Chapter 4

Examples

Intel Open Image Denoise ships with a couple of simple example applications.

4.1 oidnDenoise

oidnDenoise is a minimal working example demonstrating how to use Intel
Open Image Denoise, which can be found at apps/oidnDenoise.cpp. It uses
the C++11 convenience wrappers of the C99 API.

This example is a simple command-line application that denoises the pro-
vided image, which can optionally have auxiliary feature images aswell (e.g. albedo
and normal). By default the images must be stored in the Portable FloatMap
(PFM) format, and the color values must be encoded in little-endian format. To
enable other image formats (e.g. OpenEXR, PNG) as well, the project has to be
rebuilt with OpenImageIO support enabled.

Running oidnDenoisewithout any arguments or the -h argument will bring
up a list of command-line options.

4.2 oidnBenchmark

oidnBenchmark is a basic command-line benchmarking application for measur-
ing denoising speed, which can be found at apps/oidnBenchmark.cpp.

Running oidnBenchmarkwith the -h argumentwill bring up a list of command-
line options.

http://www.pauldebevec.com/Research/HDR/PFM/

42

Chapter 5

Training

The Intel Open Image Denoise source distribution includes a Python-based neu-
ral network training toolkit (located in the training directory), which can be
used to train the denoising filter models with image datasets provided by the
user. This is an advanced feature of the library which usage requires some back-
ground knowledge of machine learning and basic familiarity with deep learning
frameworks and toolkits (e.g. PyTorch or TensorFlow, TensorBoard).

The training toolkit consists of the following command-line scripts:

• preprocess.py: Preprocesses training and validation datasets.

• train.py: Trains a model using preprocessed datasets.

• infer.py: Performs inference on a dataset using the specified training
result.

• export.py: Exports a training result to the runtime model weights format.

• find_lr.py: Tool for finding the optimal minimum and maximum learn-
ing rates.

• visualize.py: Invokes TensorBoard for visualizing statistics of a training
result.

• split_exr.py: Splits a multi-channel EXR image into multiple feature
images.

• convert_image.py: Converts a feature image to a different image format.

• compare_image.py: Compares two feature images using the specified
quality metrics.

5.1 Prerequisites

Before you can run the training toolkit you need the following prerequisites:

• Linux (other operating systems are currently not supported)

• Python 3.7 or later

• PyTorch 2.4 or later

• NumPy 1.19 or later

• OpenImageIO 2.1 or later

• TensorBoard 2.4 or later

https://pytorch.org/
https://numpy.org/
http://openimageio.org/
https://www.tensorflow.org/tensorboard

Training 43

5.2 Devices

Most scripts in the training toolkit support selectingwhat kind of device (e.g. CPU,
GPU) to use for the computations (--device or -d option). If multiple devices
of the same kind are available (e.g. multiple GPUs), the user can specify which
one of these to use (--device_id or -k option). Additionally, some scripts, like
train.py, support data-parallel execution on multiple devices for faster perfor-
mance (--num_devices or -n option).

5.3 Datasets

A dataset should consist of a collection of noisy and corresponding noise-free
reference images. It is possible to have more than one noisy version of the same
image in the dataset, e.g. rendered at different samples per pixel and/or using
different seeds.

The training toolkit expects to have all datasets (e.g. training, validation) in
the same parent directory (e.g. data). Each dataset is stored in its own subdirec-
tory (e.g. train, valid), which can have an arbitrary name.

The images must be stored in OpenEXR format (.exr files), and the filenames
must have a specific format but the files can be stored in an arbitrary directory
structure inside the dataset directory. The only restriction is that all versions of
an image (noisy images and the reference image) must be located in the same
subdirectory. Each feature of an image (e.g. color, albedo) must be stored in a
separate image file, i.e. multi-channel EXR image files are not supported. If you
have multi-channel EXRs, you can split them into separate images per feature
using the included split_exr.py tool.

An image filename must consist of a base name, a suffix with the number of
samples per pixel or whether it is the reference image (e.g. _0128spp, _ref), the
feature type extension (e.g. .hdr, .alb), and the image format extension (.exr).
The exact filename format as a regular expression is the following:

.+_([0-9]+(spp)?|ref|reference|gt|target)\.(hdr|ldr|sh1[xyz]|alb|nrm)\.exr

The number of samples per pixel should be padded with leading zeros to have
a fixed number of digits. If the reference image is not explicitly named as such
(i.e. has the number of samples instead), the image with the most samples per
pixel will be considered the reference.

The following image features are supported:

Feature Description Channels File extension

hdr color (HDR) 3 .hdr.exr

ldr color (LDR) 3 .ldr.exr

sh1 color (normalized L1
spherical harmonics)

3 × 3 images .sh1x.exr, .sh1y.exr,
.sh1z.exr

alb albedo 3 .alb.exr
nrm normal 3 .nrm.exr

Table 5.1 – Image features supported by
the training toolkit.

The following directory tree demonstrates an example root dataset directory
(data) containing one dataset (rt_train) with HDR color and albedo feature
images:

data
`-- rt_train

|-- scene1

https://www.openexr.com/

Training 44

| |-- view1_0001.alb.exr
| |-- view1_0001.hdr.exr
| |-- view1_0004.alb.exr
| |-- view1_0004.hdr.exr
| |-- view1_8192.alb.exr
| |-- view1_8192.hdr.exr
| |-- view2_0001.alb.exr
| |-- view2_0001.hdr.exr
| |-- view2_8192.alb.exr
| `-- view2_8192.hdr.exr
|-- scene2_000008spp.alb.exr
|-- scene2_000008spp.hdr.exr
|-- scene2_000064spp.alb.exr
|-- scene2_000064spp.hdr.exr
|-- scene2_reference.alb.exr
`-- scene2_reference.hdr.exr

5.4 Preprocessing (preprocess.py)

Training and validation datasets can be used only after preprocessing them using
the preprocess.py script. This will convert the specified training (--train_
data or -t option) and validation datasets (--valid_data or -v option) located
in the root dataset directory (--data_dir or -D option) to a format that can be
loaded more efficiently during training. All preprocessed datasets will be stored
in a root preprocessed dataset directory (--preproc_dir or -P option).

The preprocessing script requires the set of image features to include in the
preprocessed dataset as command-line arguments. Only these specified features
will be available for training but it is not required to use all of them at the same
time. Thus, a single preprocessed dataset can be reused for training multiple
models with different combinations of the preprocessed features.

By default, all input features are assumed to be noisy, including the auxiliary
features (e.g. albedo, normal), each having versions at different samples per pixel.
It is also possible to train with noise-free auxiliary features, in which case the
reference auxiliary features are used instead of the various noisy ones (--clean_
aux option). This improves quality significantly if the auxiliary features used for
inferencewill be either originally noise-free or prefilteredwith separately trained
auxiliary feature denoisingmodels. If inferencewill be done onlywith prefiltered
features, even higher quality can be achieved by trainingwith prefiltered features
instead of the reference onces. This can be achieved by first training the auxiliary
feature models and then specifying the list of these results when preprocessing
the dataset for the main feature (--aux_results or -a option).

Preprocessing also depends on the filter that will be trained (e.g. determines
which HDR/LDR transfer function has to be used), which should be also specified
(--filter or -f option). The alternative is to manually specify the transfer
function (--transfer or -x option) and other filter-specific parameters, which
could be useful for training custom filters.

For example, to preprocess the training and validation datasets (rt_train
and rt_valid) with HDR color, albedo, and normal image features, for training
the RT filter, the following command can be used:

./preprocess.py hdr alb nrm --filter RT --train_data rt_train --valid_data rt_valid

It is possible to preprocess the same dataset multiple times, with possibly
different combinations of features and options. The training script will use the
most suitable and most recent preprocessed version depending on the training
parameters.

Training 45

For more details about using the preprocessing script, including other op-
tions, please have a look at the help message:

./preprocess.py -h

5.5 Training (train.py)

The filters require separate trained models for each supported combination of in-
put features. Thus, depending on which combinations of features the user wants
to support for a particular filter, one or more models have to be trained.

After preprocessing the datasets, it is possible to start training a model us-
ing the train.py script. Similar to the preprocessing script, the input features
must be specified (could be a subset of the preprocessed features), and the dataset
names, directory paths, and the filter can be also passed. If the --clean_aux or
--aux_results options were specified for preprocessing, these must be passed
identically to the training script as well.

Open ImageDenoise usesmodels of different sizes for different qualitymodes
(high, balanced, fast). Specifying the quality mode (--quality or -q option) will
cause the model to be implicitly selected, or the model can be specified explicitly
as well (--model or -m option).

The tool will produce a training result, the name of which can be either speci-
fied (--result or -r option) or automatically generated (by default). Each result
is stored in its own subdirectory, and these are located in a common parent direc-
tory (--results_dir or -R option). If a training result already exists, the tool
will resume training that result from the latest checkpoint.

The default training hyperparameters should work reasonably well in gen-
eral, but some adjustments might be necessary for certain datasets to attain opti-
mal performance, most importantly: the number of epochs (--num_epochs or -e
option), the globalmini-batch size (--batch_size or -b option), and the learning
rate. The training tool uses a one-cycle learning rate schedule with cosine anneal-
ing, which can be configured by setting the base learning rate (--learning_rate
or --lr option), the maximum learning rate (--max_learning_rate or --max_
lr option), and the percentage of the cycle spent increasing the learning rate
(--learning_rate_warmup or --lr_warmup option).

Example usage:

./train.py hdr alb --filter RT --train_data rt_train --valid_data rt_valid --result rt_hdr_alb

For finding the optimal learning rate range, we recommend using the in-
cluded find_lr.py script, which trains one epoch using an increasing learning
rate and logs the resulting losses in a comma-separated values (CSV) file. Plot-
ting the loss curve can show when the model starts to learn (the base learning
rate) and when it starts to diverge (the maximum learning rate).

The model is evaluated with the validation dataset at regular intervals (--
num_valid_epochs option), and checkpoints are also regularly created (--num_
save_epochs option) to save training progress. Also, some statistics are logged
(e.g. training and validation losses, learning rate) per epoch, which can be later
visualized with TensorBoard by running the visualize.py script, e.g.:

./visualize.py --result rt_hdr_alb

Training is performed with mixed precision (FP16 and FP32) by default, if it
supported by the hardware, which makes training faster and use less memory.
However, in some rare cases this might cause some convergence issues. The
training precision can be manually set to FP32 if necessary (--precision or -p
option).

Training 46

5.6 Inference (infer.py)

A training result can be tested by performing inference on an image dataset (--
input_data or -i option) using the infer.py script. The dataset does not have
to be preprocessed. In addition to the result to use, it is possible to specify which
checkpoint to load as well (-e or --num_epochs option). By default the latest
checkpoint is loaded.

The tool saves the output images in a separate directory (--output_dir or
-O option) in the requested formats (--format or -F option). It also evaluates a
set of image quality metrics (--metric or -M option), e.g. PSNR, SSIM, for images
that have reference images available. All metrics are computed in tonemapped
non-linear sRGB space. Thus, HDR images are first tonemapped (with Naughty
Dog’s Filmic Tonemapper from John Hable’s Uncharted 2: HDR Lighting presen-
tation) and converted to sRGB before evaluating the metrics.

Example usage:

./infer.py --result rt_hdr_alb --input_data rt_test --format exr png --metric ssim

The inference tool supports prefiltering of auxiliary features as well, which
can be performed by specifying the list of training results for each feature to
prefilter (--aux_results or -a option).

5.7 Exporting Results (export.py)

The training result produced by the train.py script cannot be immediately used
by the main library. It has to be first exported to the runtime model weights
format, a Tensor Archive (TZA) file. Running the export.py script for a training
result (and optionally a checkpoint epoch) will create a binary .tza file in the
directory of the result, which can be either used at runtime through the API or it
can be included in the library build by replacing one of the built-in weights files.

Example usage:

./export.py --result rt_hdr_alb

5.8 ImageConversion andComparison

In addition to the already mentioned split_exr.py script, the toolkit contains
a few other image utilities as well.

convert_image.py converts a feature image to a different image format
(and/or a different feature, e.g. HDR color to LDR), performing tonemapping and
other transforms as well if needed. For HDR images the exposure can be adjusted
by passing a linear exposure scale (--exposure or -E option). Example usage:

./convert_image.py view1_0004.hdr.exr view1_0004.png --exposure 2.5

The compare_image.py script compares two feature images (preferably hav-
ing the dataset filename format to correctly detect the feature) using the specified
image quality metrics, similar to the infer.py tool. Example usage:

./compare_image.py view1_0004.hdr.exr view1_8192.hdr.exr --exposure 2.5 --metric mse ssim

Training 47

© 2018–2025 Intel Corporation

Intel, the Intel logo, Xeon, Intel Xeon Phi, and Intel Core are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Intel optimizations, for Intel compilers or other products, may not optimize to the same degree for non-Intel products.

	Overview
	System Requirements
	Support and Contact
	Citation
	Version History

	Compilation
	Prerequisites
	Compiling on Linux/macOS
	Compiling on Windows
	CMake Configuration

	Open Image Denoise API
	Examples
	Basic Denoising (C99 API)
	Basic Denoising (C++11 API)
	Denoising with Prefiltering (C++11 API)

	Upgrading from Open Image Denoise 1.x
	Buffers
	Interop with Compute (SYCL, CUDA, HIP) and Graphics (DX, Vulkan, Metal) APIs
	Physical Devices
	Asynchronous Execution
	Filter Quality
	Small API Changes
	Building as a Static Library

	Physical Devices
	Devices
	Error Handling
	Environment Variables

	Buffers
	Data Format

	Filters
	RT
	RTLightmap

	Examples
	oidnDenoise
	oidnBenchmark

	Training
	Prerequisites
	Devices
	Datasets
	Preprocessing (preprocess.py)
	Training (train.py)
	Inference (infer.py)
	Exporting Results (export.py)
	Image Conversion and Comparison

