Expected Degree Sequence#

Random graph from given degree sequence.

Degree histogram
degree (#nodes) ****
 0 ( 0)
 1 ( 0)
 2 ( 0)
 3 ( 0)
 4 ( 0)
 5 ( 0)
 6 ( 0)
 7 ( 0)
 8 ( 0)
 9 ( 0)
10 ( 0)
11 ( 0)
12 ( 0)
13 ( 0)
14 ( 0)
15 ( 0)
16 ( 0)
17 ( 0)
18 ( 0)
19 ( 0)
20 ( 0)
21 ( 0)
22 ( 0)
23 ( 0)
24 ( 0)
25 ( 0)
26 ( 0)
27 ( 0)
28 ( 0)
29 ( 0)
30 ( 0)
31 ( 1) *
32 ( 1) *
33 ( 1) *
34 ( 0)
35 ( 3) ***
36 ( 5) *****
37 ( 4) ****
38 ( 5) *****
39 ( 8) ********
40 (11) ***********
41 ( 8) ********
42 (20) ********************
43 (25) *************************
44 (15) ***************
45 (26) **************************
46 (19) *******************
47 (37) *************************************
48 (33) *********************************
49 (23) ***********************
50 (32) ********************************
51 (29) *****************************
52 (28) ****************************
53 (27) ***************************
54 (25) *************************
55 (24) ************************
56 (20) ********************
57 (11) ***********
58 (14) **************
59 ( 5) *****
60 (11) ***********
61 ( 8) ********
62 ( 6) ******
63 ( 5) *****
64 ( 4) ****
65 ( 3) ***
66 ( 3) ***

import networkx as nx

# make a random graph of 500 nodes with expected degrees of 50
n = 500  # n nodes
p = 0.1
w = [p * n for i in range(n)]  # w = p*n for all nodes
G = nx.expected_degree_graph(w)  # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
for i, d in enumerate(dh):
    print(f"{i:2} ({d:2}) {'*' * d}")

Total running time of the script: (0 minutes 0.013 seconds)

Gallery generated by Sphinx-Gallery