{
“cells”: [
{

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“# Using multiple blocksn”, “n”, “Here we are going to use 2 different blocks in our animation.n”, “n”, “First we need some imports:”

]

}, {

“cell_type”: “code”, “execution_count”: 1, “metadata”: {}, “outputs”: [], “source”: [

“%matplotlib notebookn”, “import numpy as npn”, “import matplotlib.pyplot as pltn”, “import animatplot as amp”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“We are going to plot a pcolormesh and a line on 2 different axes.n”, “n”, “Let’s use: $z = \sin(x^2+y^2-t)$ for the pcolormesh, and a cross-section of $y=0$: $z = \sin(x^2-t)$ for the line.n”, “n”, “First, we generate the data.”

]

}, {

“cell_type”: “code”, “execution_count”: 2, “metadata”: {}, “outputs”: [], “source”: [

“x = np.linspace(-2, 2, 41)n”, “y = np.linspace(-2, 2, 41)n”, “t = np.linspace(0, 2 * np.pi, 30)n”, “n”, “X, Y, T = np.meshgrid(x, y, t)n”, “n”, “pcolormesh_data = np.sin(X * X + Y * Y - T)n”, “line_data = pcolormesh_data[20, :, :] # the slice where y=0”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“We need to be careful here. Our time axis is the last axis of our data, but animatplot assumes it is the first axis by default. Fortunately, we can use the `t_axis` argument.n”, “n”, “We use the `ax` argument to attached the data to a specific subplot.”

]

}, {

“cell_type”: “code”, “execution_count”: 3, “metadata”: {

“scrolled”: false

}, “outputs”: [

{
“data”: {
“application/javascript”: [

“/* Put everything inside the global mpl namespace /n”, “window.mpl = {};n”, “n”, “n”, “mpl.get_websocket_type = function() {n”, “ if (typeof(WebSocket) !== ‘undefined’) {n”, “ return WebSocket;n”, “ } else if (typeof(MozWebSocket) !== ‘undefined’) {n”, “ return MozWebSocket;n”, “ } else {n”, “ alert(‘Your browser does not have WebSocket support.’ +n”, “ ‘Please try Chrome, Safari or Firefox ≥ 6. ‘ +n”, “ ‘Firefox 4 and 5 are also supported but you ‘ +n”, “ ‘have to enable WebSockets in about:config.’);n”, “ };n”, “}n”, “n”, “mpl.figure = function(figure_id, websocket, ondownload, parent_element) {n”, “ this.id = figure_id;n”, “n”, “ this.ws = websocket;n”, “n”, “ this.supports_binary = (this.ws.binaryType != undefined);n”, “n”, “ if (!this.supports_binary) {n”, “ var warnings = document.getElementById("mpl-warnings");n”, “ if (warnings) {n”, “ warnings.style.display = ‘block’;n”, “ warnings.textContent = (n”, “ "This browser does not support binary websocket messages. " +n”, “ "Performance may be slow.");n”, “ }n”, “ }n”, “n”, “ this.imageObj = new Image();n”, “n”, “ this.context = undefined;n”, “ this.message = undefined;n”, “ this.canvas = undefined;n”, “ this.rubberband_canvas = undefined;n”, “ this.rubberband_context = undefined;n”, “ this.format_dropdown = undefined;n”, “n”, “ this.image_mode = ‘full’;n”, “n”, “ this.root = $(‘<div/>’);n”, “ this._root_extra_style(this.root)n”, “ this.root.attr(‘style’, ‘display: inline-block’);n”, “n”, “ $(parent_element).append(this.root);n”, “n”, “ this._init_header(this);n”, “ this._init_canvas(this);n”, “ this._init_toolbar(this);n”, “n”, “ var fig = this;n”, “n”, “ this.waiting = false;n”, “n”, “ this.ws.onopen = function () {n”, “ fig.send_message("supports_binary", {value: fig.supports_binary});n”, “ fig.send_message("send_image_mode", {});n”, “ if (mpl.ratio != 1) {n”, “ fig.send_message("set_dpi_ratio", {‘dpi_ratio’: mpl.ratio});n”, “ }n”, “ fig.send_message("refresh", {});n”, “ }n”, “n”, “ this.imageObj.onload = function() {n”, “ if (fig.image_mode == ‘full’) {n”, “ // Full images could contain transparency (where diff imagesn”, “ // almost always do), so we need to clear the canvas so thatn”, “ // there is no ghosting.n”, “ fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);n”, “ }n”, “ fig.context.drawImage(fig.imageObj, 0, 0);n”, “ };n”, “n”, “ this.imageObj.onunload = function() {n”, “ fig.ws.close();n”, “ }n”, “n”, “ this.ws.onmessage = this._make_on_message_function(this);n”, “n”, “ this.ondownload = ondownload;n”, “}n”, “n”, “mpl.figure.prototype._init_header = function() {n”, “ var titlebar = $(n”, “ ‘<div class="ui-dialog-titlebar ui-widget-header ui-corner-all ‘ +n”, “ ‘ui-helper-clearfix"/>’);n”, “ var titletext = $(n”, “ ‘<div class="ui-dialog-title" style="width: 100%; ‘ +n”, “ ‘text-align: center; padding: 3px;"/>’);n”, “ titlebar.append(titletext)n”, “ this.root.append(titlebar);n”, “ this.header = titletext[0];n”, “}n”, “n”, “n”, “n”, “mpl.figure.prototype._canvas_extra_style = function(canvas_div) {n”, “n”, “}n”, “n”, “n”, “mpl.figure.prototype._root_extra_style = function(canvas_div) {n”, “n”, “}n”, “n”, “mpl.figure.prototype._init_canvas = function() {n”, “ var fig = this;n”, “n”, “ var canvas_div = $(‘<div/>’);n”, “n”, “ canvas_div.attr(‘style’, ‘position: relative; clear: both; outline: 0’);n”, “n”, “ function canvas_keyboard_event(event) {n”, “ return fig.key_event(event, event[‘data’]);n”, “ }n”, “n”, “ canvas_div.keydown(‘key_press’, canvas_keyboard_event);n”, “ canvas_div.keyup(‘key_release’, canvas_keyboard_event);n”, “ this.canvas_div = canvas_divn”, “ this._canvas_extra_style(canvas_div)n”, “ this.root.append(canvas_div);n”, “n”, “ var canvas = $(‘<canvas/>’);n”, “ canvas.addClass(‘mpl-canvas’);n”, “ canvas.attr(‘style’, "left: 0; top: 0; z-index: 0; outline: 0")n”, “n”, “ this.canvas = canvas[0];n”, “ this.context = canvas[0].getContext("2d");n”, “n”, “ var backingStore = this.context.backingStorePixelRatio ||n”, “tthis.context.webkitBackingStorePixelRatio ||n”, “tthis.context.mozBackingStorePixelRatio ||n”, “tthis.context.msBackingStorePixelRatio ||n”, “tthis.context.oBackingStorePixelRatio ||n”, “tthis.context.backingStorePixelRatio || 1;n”, “n”, “ mpl.ratio = (window.devicePixelRatio || 1) / backingStore;n”, “n”, “ var rubberband = $(‘<canvas/>’);n”, “ rubberband.attr(‘style’, "position: absolute; left: 0; top: 0; z-index: 1;")n”, “n”, “ var pass_mouse_events = true;n”, “n”, “ canvas_div.resizable({n”, “ start: function(event, ui) {n”, “ pass_mouse_events = false;n”, “ },n”, “ resize: function(event, ui) {n”, “ fig.request_resize(ui.size.width, ui.size.height);n”, “ },n”, “ stop: function(event, ui) {n”, “ pass_mouse_events = true;n”, “ fig.request_resize(ui.size.width, ui.size.height);n”, “ },n”, “ });n”, “n”, “ function mouse_event_fn(event) {n”, “ if (pass_mouse_events)n”, “ return fig.mouse_event(event, event[‘data’]);n”, “ }n”, “n”, “ rubberband.mousedown(‘button_press’, mouse_event_fn);n”, “ rubberband.mouseup(‘button_release’, mouse_event_fn);n”, “ // Throttle sequential mouse events to 1 every 20ms.n”, “ rubberband.mousemove(‘motion_notify’, mouse_event_fn);n”, “n”, “ rubberband.mouseenter(‘figure_enter’, mouse_event_fn);n”, “ rubberband.mouseleave(‘figure_leave’, mouse_event_fn);n”, “n”, “ canvas_div.on("wheel", function (event) {n”, “ event = event.originalEvent;n”, “ event[‘data’] = ‘scroll’n”, “ if (event.deltaY < 0) {n”, “ event.step = 1;n”, “ } else {n”, “ event.step = -1;n”, “ }n”, “ mouse_event_fn(event);n”, “ });n”, “n”, “ canvas_div.append(canvas);n”, “ canvas_div.append(rubberband);n”, “n”, “ this.rubberband = rubberband;n”, “ this.rubberband_canvas = rubberband[0];n”, “ this.rubberband_context = rubberband[0].getContext("2d");n”, “ this.rubberband_context.strokeStyle = "#000000";n”, “n”, “ this._resize_canvas = function(width, height) {n”, “ // Keep the size of the canvas, canvas container, and rubber bandn”, “ // canvas in synch.n”, “ canvas_div.css(‘width’, width)n”, “ canvas_div.css(‘height’, height)n”, “n”, “ canvas.attr(‘width’, width * mpl.ratio);n”, “ canvas.attr(‘height’, height * mpl.ratio);n”, “ canvas.attr(‘style’, ‘width: ‘ + width + ‘px; height: ‘ + height + ‘px;’);n”, “n”, “ rubberband.attr(‘width’, width);n”, “ rubberband.attr(‘height’, height);n”, “ }n”, “n”, “ // Set the figure to an initial 600x600px, this will subsequently be updatedn”, “ // upon first draw.n”, “ this._resize_canvas(600, 600);n”, “n”, “ // Disable right mouse context menu.n”, “ $(this.rubberband_canvas).bind("contextmenu",function(e){n”, “ return false;n”, “ });n”, “n”, “ function set_focus () {n”, “ canvas.focus();n”, “ canvas_div.focus();n”, “ }n”, “n”, “ window.setTimeout(set_focus, 100);n”, “}n”, “n”, “mpl.figure.prototype._init_toolbar = function() {n”, “ var fig = this;n”, “n”, “ var nav_element = $(‘<div/>’)n”, “ nav_element.attr(‘style’, ‘width: 100%’);n”, “ this.root.append(nav_element);n”, “n”, “ // Define a callback function for later on.n”, “ function toolbar_event(event) {n”, “ return fig.toolbar_button_onclick(event[‘data’]);n”, “ }n”, “ function toolbar_mouse_event(event) {n”, “ return fig.toolbar_button_onmouseover(event[‘data’]);n”, “ }n”, “n”, “ for(var toolbar_ind in mpl.toolbar_items) {n”, “ var name = mpl.toolbar_items[toolbar_ind][0];n”, “ var tooltip = mpl.toolbar_items[toolbar_ind][1];n”, “ var image = mpl.toolbar_items[toolbar_ind][2];n”, “ var method_name = mpl.toolbar_items[toolbar_ind][3];n”, “n”, “ if (!name) {n”, “ // put a spacer in here.n”, “ continue;n”, “ }n”, “ var button = $(‘<button/>’);n”, “ button.addClass(‘ui-button ui-widget ui-state-default ui-corner-all ‘ +n”, “ ‘ui-button-icon-only’);n”, “ button.attr(‘role’, ‘button’);n”, “ button.attr(‘aria-disabled’, ‘false’);n”, “ button.click(method_name, toolbar_event);n”, “ button.mouseover(tooltip, toolbar_mouse_event);n”, “n”, “ var icon_img = $(‘<span/>’);n”, “ icon_img.addClass(‘ui-button-icon-primary ui-icon’);n”, “ icon_img.addClass(image);n”, “ icon_img.addClass(‘ui-corner-all’);n”, “n”, “ var tooltip_span = $(‘<span/>’);n”, “ tooltip_span.addClass(‘ui-button-text’);n”, “ tooltip_span.html(tooltip);n”, “n”, “ button.append(icon_img);n”, “ button.append(tooltip_span);n”, “n”, “ nav_element.append(button);n”, “ }n”, “n”, “ var fmt_picker_span = $(‘<span/>’);n”, “n”, “ var fmt_picker = $(‘<select/>’);n”, “ fmt_picker.addClass(‘mpl-toolbar-option ui-widget ui-widget-content’);n”, “ fmt_picker_span.append(fmt_picker);n”, “ nav_element.append(fmt_picker_span);n”, “ this.format_dropdown = fmt_picker[0];n”, “n”, “ for (var ind in mpl.extensions) {n”, “ var fmt = mpl.extensions[ind];n”, “ var option = $(n”, “ ‘<option/>’, {selected: fmt === mpl.default_extension}).html(fmt);n”, “ fmt_picker.append(option)n”, “ }n”, “n”, “ // Add hover states to the ui-buttonsn”, “ $( ".ui-button" ).hover(n”, “ function() { $(this).addClass("ui-state-hover");},n”, “ function() { $(this).removeClass("ui-state-hover");}n”, “ );n”, “n”, “ var status_bar = $(‘<span class="mpl-message"/>’);n”, “ nav_element.append(status_bar);n”, “ this.message = status_bar[0];n”, “}n”, “n”, “mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {n”, “ // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,n”, “ // which will in turn request a refresh of the image.n”, “ this.send_message(‘resize’, {‘width’: x_pixels, ‘height’: y_pixels});n”, “}n”, “n”, “mpl.figure.prototype.send_message = function(type, properties) {n”, “ properties[‘type’] = type;n”, “ properties[‘figure_id’] = this.id;n”, “ this.ws.send(JSON.stringify(properties));n”, “}n”, “n”, “mpl.figure.prototype.send_draw_message = function() {n”, “ if (!this.waiting) {n”, “ this.waiting = true;n”, “ this.ws.send(JSON.stringify({type: "draw", figure_id: this.id}));n”, “ }n”, “}n”, “n”, “n”, “mpl.figure.prototype.handle_save = function(fig, msg) {n”, “ var format_dropdown = fig.format_dropdown;n”, “ var format = format_dropdown.options[format_dropdown.selectedIndex].value;n”, “ fig.ondownload(fig, format);n”, “}n”, “n”, “n”, “mpl.figure.prototype.handle_resize = function(fig, msg) {n”, “ var size = msg[‘size’];n”, “ if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {n”, “ fig._resize_canvas(size[0], size[1]);n”, “ fig.send_message("refresh", {});n”, “ };n”, “}n”, “n”, “mpl.figure.prototype.handle_rubberband = function(fig, msg) {n”, “ var x0 = msg[‘x0’] / mpl.ratio;n”, “ var y0 = (fig.canvas.height - msg[‘y0’]) / mpl.ratio;n”, “ var x1 = msg[‘x1’] / mpl.ratio;n”, “ var y1 = (fig.canvas.height - msg[‘y1’]) / mpl.ratio;n”, “ x0 = Math.floor(x0) + 0.5;n”, “ y0 = Math.floor(y0) + 0.5;n”, “ x1 = Math.floor(x1) + 0.5;n”, “ y1 = Math.floor(y1) + 0.5;n”, “ var min_x = Math.min(x0, x1);n”, “ var min_y = Math.min(y0, y1);n”, “ var width = Math.abs(x1 - x0);n”, “ var height = Math.abs(y1 - y0);n”, “n”, “ fig.rubberband_context.clearRect(n”, “ 0, 0, fig.canvas.width, fig.canvas.height);n”, “n”, “ fig.rubberband_context.strokeRect(min_x, min_y, width, height);n”, “}n”, “n”, “mpl.figure.prototype.handle_figure_label = function(fig, msg) {n”, “ // Updates the figure title.n”, “ fig.header.textContent = msg[‘label’];n”, “}n”, “n”, “mpl.figure.prototype.handle_cursor = function(fig, msg) {n”, “ var cursor = msg[‘cursor’];n”, “ switch(cursor)n”, “ {n”, “ case 0:n”, “ cursor = ‘pointer’;n”, “ break;n”, “ case 1:n”, “ cursor = ‘default’;n”, “ break;n”, “ case 2:n”, “ cursor = ‘crosshair’;n”, “ break;n”, “ case 3:n”, “ cursor = ‘move’;n”, “ break;n”, “ }n”, “ fig.rubberband_canvas.style.cursor = cursor;n”, “}n”, “n”, “mpl.figure.prototype.handle_message = function(fig, msg) {n”, “ fig.message.textContent = msg[‘message’];n”, “}n”, “n”, “mpl.figure.prototype.handle_draw = function(fig, msg) {n”, “ // Request the server to send over a new figure.n”, “ fig.send_draw_message();n”, “}n”, “n”, “mpl.figure.prototype.handle_image_mode = function(fig, msg) {n”, “ fig.image_mode = msg[‘mode’];n”, “}n”, “n”, “mpl.figure.prototype.updated_canvas_event = function() {n”, “ // Called whenever the canvas gets updated.n”, “ this.send_message("ack", {});n”, “}n”, “n”, “// A function to construct a web socket function for onmessage handling.n”, “// Called in the figure constructor.n”, “mpl.figure.prototype._make_on_message_function = function(fig) {n”, “ return function socket_on_message(evt) {n”, “ if (evt.data instanceof Blob) {n”, “ / FIXME: We get "Resource interpreted as Image butn”, “ * transferred with MIME type text/plain:" errors onn”, “ * Chrome. But how to set the MIME type? It doesn’t seemn”, “ * to be part of the websocket stream /n”, “ evt.data.type = "image/png";n”, “n”, “ / Free the memory for the previous frames /n”, “ if (fig.imageObj.src) {n”, “ (window.URL || window.webkitURL).revokeObjectURL(n”, “ fig.imageObj.src);n”, “ }n”, “n”, “ fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(n”, “ evt.data);n”, “ fig.updated_canvas_event();n”, “ fig.waiting = false;n”, “ return;n”, “ }n”, “ else if (typeof evt.data === ‘string’ && evt.data.slice(0, 21) == "data:image/png;base64") {n”, “ fig.imageObj.src = evt.data;n”, “ fig.updated_canvas_event();n”, “ fig.waiting = false;n”, “ return;n”, “ }n”, “n”, “ var msg = JSON.parse(evt.data);n”, “ var msg_type = msg[‘type’];n”, “n”, “ // Call the "handle_{type}" callback, which takesn”, “ // the figure and JSON message as its only arguments.n”, “ try {n”, “ var callback = fig["handle_" + msg_type];n”, “ } catch (e) {n”, “ console.log("No handler for the ‘" + msg_type + "’ message type: ", msg);n”, “ return;n”, “ }n”, “n”, “ if (callback) {n”, “ try {n”, “ // console.log("Handling ‘" + msg_type + "’ message: ", msg);n”, “ callback(fig, msg);n”, “ } catch (e) {n”, “ console.log("Exception inside the ‘handler_" + msg_type + "’ callback:", e, e.stack, msg);n”, “ }n”, “ }n”, “ };n”, “}n”, “n”, “// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvasn”, “mpl.findpos = function(e) {n”, “ //this section is from http://www.quirksmode.org/js/events_properties.htmln”, “ var targ;n”, “ if (!e)n”, “ e = window.event;n”, “ if (e.target)n”, “ targ = e.target;n”, “ else if (e.srcElement)n”, “ targ = e.srcElement;n”, “ if (targ.nodeType == 3) // defeat Safari bugn”, “ targ = targ.parentNode;n”, “n”, “ // jQuery normalizes the pageX and pageYn”, “ // pageX,Y are the mouse positions relative to the documentn”, “ // offset() returns the position of the element relative to the documentn”, “ var x = e.pageX - $(targ).offset().left;n”, “ var y = e.pageY - $(targ).offset().top;n”, “n”, “ return {"x": x, "y": y};n”, “};n”, “n”, “/n”, “ * return a copy of an object with only non-object keysn”, “ * we need this to avoid circular referencesn”, “ * http://stackoverflow.com/a/24161582/3208463n”, “ /n”, “function simpleKeys (original) {n”, “ return Object.keys(original).reduce(function (obj, key) {n”, “ if (typeof original[key] !== ‘object’)n”, “ obj[key] = original[key]n”, “ return obj;n”, “ }, {});n”, “}n”, “n”, “mpl.figure.prototype.mouse_event = function(event, name) {n”, “ var canvas_pos = mpl.findpos(event)n”, “n”, “ if (name === ‘button_press’)n”, “ {n”, “ this.canvas.focus();n”, “ this.canvas_div.focus();n”, “ }n”, “n”, “ var x = canvas_pos.x * mpl.ratio;n”, “ var y = canvas_pos.y * mpl.ratio;n”, “n”, “ this.send_message(name, {x: x, y: y, button: event.button,n”, “ step: event.step,n”, “ guiEvent: simpleKeys(event)});n”, “n”, “ / This prevents the web browser from automatically changing ton”, “ * the text insertion cursor when the button is pressed. We wantn”, “ * to control all of the cursor setting manually through then”, “ * ‘cursor’ event from matplotlib /n”, “ event.preventDefault();n”, “ return false;n”, “}n”, “n”, “mpl.figure.prototype._key_event_extra = function(event, name) {n”, “ // Handle any extra behaviour associated with a key eventn”, “}n”, “n”, “mpl.figure.prototype.key_event = function(event, name) {n”, “n”, “ // Prevent repeat eventsn”, “ if (name == ‘key_press’)n”, “ {n”, “ if (event.which === this._key)n”, “ return;n”, “ elsen”, “ this._key = event.which;n”, “ }n”, “ if (name == ‘key_release’)n”, “ this._key = null;n”, “n”, “ var value = ‘’;n”, “ if (event.ctrlKey && event.which != 17)n”, “ value += "ctrl+";n”, “ if (event.altKey && event.which != 18)n”, “ value += "alt+";n”, “ if (event.shiftKey && event.which != 16)n”, “ value += "shift+";n”, “n”, “ value += ‘k’;n”, “ value += event.which.toString();n”, “n”, “ this._key_event_extra(event, name);n”, “n”, “ this.send_message(name, {key: value,n”, “ guiEvent: simpleKeys(event)});n”, “ return false;n”, “}n”, “n”, “mpl.figure.prototype.toolbar_button_onclick = function(name) {n”, “ if (name == ‘download’) {n”, “ this.handle_save(this, null);n”, “ } else {n”, “ this.send_message("toolbar_button", {name: name});n”, “ }n”, “};n”, “n”, “mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {n”, “ this.message.textContent = tooltip;n”, “};n”, “mpl.toolbar_items = [["Home", "Reset original view", "fa fa-home icon-home", "home"], ["Back", "Back to previous view", "fa fa-arrow-left icon-arrow-left", "back"], ["Forward", "Forward to next view", "fa fa-arrow-right icon-arrow-right", "forward"], ["", "", "", ""], ["Pan", "Pan axes with left mouse, zoom with right", "fa fa-arrows icon-move", "pan"], ["Zoom", "Zoom to rectangle", "fa fa-square-o icon-check-empty", "zoom"], ["", "", "", ""], ["Download", "Download plot", "fa fa-floppy-o icon-save", "download"]];n”, “n”, “mpl.extensions = ["eps", "jpeg", "pdf", "png", "ps", "raw", "svg", "tif"];n”, “n”, “mpl.default_extension = "png";var comm_websocket_adapter = function(comm) {n”, “ // Create a "websocket"-like object which calls the given IPython commn”, “ // object with the appropriate methods. Currently this is a non binaryn”, “ // socket, so there is still some room for performance tuning.n”, “ var ws = {};n”, “n”, “ ws.close = function() {n”, “ comm.close()n”, “ };n”, “ ws.send = function(m) {n”, “ //console.log(‘sending’, m);n”, “ comm.send(m);n”, “ };n”, “ // Register the callback with on_msg.n”, “ comm.on_msg(function(msg) {n”, “ //console.log(‘receiving’, msg[‘content’][‘data’], msg);n”, “ // Pass the mpl event to the overridden (by mpl) onmessage function.n”, “ ws.onmessage(msg[‘content’][‘data’])n”, “ });n”, “ return ws;n”, “}n”, “n”, “mpl.mpl_figure_comm = function(comm, msg) {n”, “ // This is the function which gets called when the mpl processn”, “ // starts-up an IPython Comm through the "matplotlib" channel.n”, “n”, “ var id = msg.content.data.id;n”, “ // Get hold of the div created by the display call when the Commn”, “ // socket was opened in Python.n”, “ var element = $("#" + id);n”, “ var ws_proxy = comm_websocket_adapter(comm)n”, “n”, “ function ondownload(figure, format) {n”, “ window.open(figure.imageObj.src);n”, “ }n”, “n”, “ var fig = new mpl.figure(id, ws_proxy,n”, “ ondownload,n”, “ element.get(0));n”, “n”, “ // Call onopen now - mpl needs it, as it is assuming we’ve passed it a realn”, “ // web socket which is closed, not our websocket->open comm proxy.n”, “ ws_proxy.onopen();n”, “n”, “ fig.parent_element = element.get(0);n”, “ fig.cell_info = mpl.find_output_cell("<div id=’" + id + "’></div>");n”, “ if (!fig.cell_info) {n”, “ console.error("Failed to find cell for figure", id, fig);n”, “ return;n”, “ }n”, “n”, “ var output_index = fig.cell_info[2]n”, “ var cell = fig.cell_info[0];n”, “n”, “};n”, “n”, “mpl.figure.prototype.handle_close = function(fig, msg) {n”, “ var width = fig.canvas.width/mpl.ration”, “ fig.root.unbind(‘remove’)n”, “n”, “ // Update the output cell to use the data from the current canvas.n”, “ fig.push_to_output();n”, “ var dataURL = fig.canvas.toDataURL();n”, “ // Re-enable the keyboard manager in IPython - without this line, in FF,n”, “ // the notebook keyboard shortcuts fail.n”, “ IPython.keyboard_manager.enable()n”, “ $(fig.parent_element).html(‘<img src="’ + dataURL + ‘" width="’ + width + ‘">’);n”, “ fig.close_ws(fig, msg);n”, “}n”, “n”, “mpl.figure.prototype.close_ws = function(fig, msg){n”, “ fig.send_message(‘closing’, msg);n”, “ // fig.ws.close()n”, “}n”, “n”, “mpl.figure.prototype.push_to_output = function(remove_interactive) {n”, “ // Turn the data on the canvas into data in the output cell.n”, “ var width = this.canvas.width/mpl.ration”, “ var dataURL = this.canvas.toDataURL();n”, “ this.cell_info[1][‘text/html’] = ‘<img src="’ + dataURL + ‘" width="’ + width + ‘">’;n”, “}n”, “n”, “mpl.figure.prototype.updated_canvas_event = function() {n”, “ // Tell IPython that the notebook contents must change.n”, “ IPython.notebook.set_dirty(true);n”, “ this.send_message("ack", {});n”, “ var fig = this;n”, “ // Wait a second, then push the new image to the DOM son”, “ // that it is saved nicely (might be nice to debounce this).n”, “ setTimeout(function () { fig.push_to_output() }, 1000);n”, “}n”, “n”, “mpl.figure.prototype._init_toolbar = function() {n”, “ var fig = this;n”, “n”, “ var nav_element = $(‘<div/>’)n”, “ nav_element.attr(‘style’, ‘width: 100%’);n”, “ this.root.append(nav_element);n”, “n”, “ // Define a callback function for later on.n”, “ function toolbar_event(event) {n”, “ return fig.toolbar_button_onclick(event[‘data’]);n”, “ }n”, “ function toolbar_mouse_event(event) {n”, “ return fig.toolbar_button_onmouseover(event[‘data’]);n”, “ }n”, “n”, “ for(var toolbar_ind in mpl.toolbar_items){n”, “ var name = mpl.toolbar_items[toolbar_ind][0];n”, “ var tooltip = mpl.toolbar_items[toolbar_ind][1];n”, “ var image = mpl.toolbar_items[toolbar_ind][2];n”, “ var method_name = mpl.toolbar_items[toolbar_ind][3];n”, “n”, “ if (!name) { continue; };n”, “n”, “ var button = $(‘<button class="btn btn-default" href="#" title="’ + name + ‘"><i class="fa ‘ + image + ‘ fa-lg"></i></button>’);n”, “ button.click(method_name, toolbar_event);n”, “ button.mouseover(tooltip, toolbar_mouse_event);n”, “ nav_element.append(button);n”, “ }n”, “n”, “ // Add the status bar.n”, “ var status_bar = $(‘<span class="mpl-message" style="text-align:right; float: right;"/>’);n”, “ nav_element.append(status_bar);n”, “ this.message = status_bar[0];n”, “n”, “ // Add the close button to the window.n”, “ var buttongrp = $(‘<div class="btn-group inline pull-right"></div>’);n”, “ var button = $(‘<button class="btn btn-mini btn-primary" href="#" title="Stop Interaction"><i class="fa fa-power-off icon-remove icon-large"></i></button>’);n”, “ button.click(function (evt) { fig.handle_close(fig, {}); } );n”, “ button.mouseover(‘Stop Interaction’, toolbar_mouse_event);n”, “ buttongrp.append(button);n”, “ var titlebar = this.root.find($(‘.ui-dialog-titlebar’));n”, “ titlebar.prepend(buttongrp);n”, “}n”, “n”, “mpl.figure.prototype._root_extra_style = function(el){n”, “ var fig = thisn”, “ el.on("remove", function(){n”, “tfig.close_ws(fig, {});n”, “ });n”, “}n”, “n”, “mpl.figure.prototype._canvas_extra_style = function(el){n”, “ // this is important to make the div ‘focusablen”, “ el.attr(‘tabindex’, 0)n”, “ // reach out to IPython and tell the keyboard manager to turn it’s selfn”, “ // off when our div gets focusn”, “n”, “ // location in version 3n”, “ if (IPython.notebook.keyboard_manager) {n”, “ IPython.notebook.keyboard_manager.register_events(el);n”, “ }n”, “ else {n”, “ // location in version 2n”, “ IPython.keyboard_manager.register_events(el);n”, “ }n”, “n”, “}n”, “n”, “mpl.figure.prototype._key_event_extra = function(event, name) {n”, “ var manager = IPython.notebook.keyboard_manager;n”, “ if (!manager)n”, “ manager = IPython.keyboard_manager;n”, “n”, “ // Check for shift+entern”, “ if (event.shiftKey && event.which == 13) {n”, “ this.canvas_div.blur();n”, “ event.shiftKey = false;n”, “ // Send a "J" for go to next celln”, “ event.which = 74;n”, “ event.keyCode = 74;n”, “ manager.command_mode();n”, “ manager.handle_keydown(event);n”, “ }n”, “}n”, “n”, “mpl.figure.prototype.handle_save = function(fig, msg) {n”, “ fig.ondownload(fig, null);n”, “}n”, “n”, “n”, “mpl.find_output_cell = function(html_output) {n”, “ // Return the cell and output element which can be found *uniquely in the notebook.n”, “ // Note - this is a bit hacky, but it is done because the "notebook_saving.Notebook"n”, “ // IPython event is triggered only after the cells have been serialised, which forn”, “ // our purposes (turning an active figure into a static one), is too late.n”, “ var cells = IPython.notebook.get_cells();n”, “ var ncells = cells.length;n”, “ for (var i=0; i<ncells; i++) {n”, “ var cell = cells[i];n”, “ if (cell.cell_type === ‘code’){n”, “ for (var j=0; j<cell.output_area.outputs.length; j++) {n”, “ var data = cell.output_area.outputs[j];n”, “ if (data.data) {n”, “ // IPython >= 3 moved mimebundle to data attribute of outputn”, “ data = data.data;n”, “ }n”, “ if (data[‘text/html’] == html_output) {n”, “ return [cell, data, j];n”, “ }n”, “ }n”, “ }n”, “ }n”, “}n”, “n”, “// Register the function which deals with the matplotlib target/channel.n”, “// The kernel may be null if the page has been refreshed.n”, “if (IPython.notebook.kernel != null) {n”, “ IPython.notebook.kernel.comm_manager.register_target(‘matplotlib’, mpl.mpl_figure_comm);n”, “}n”

], “text/plain”: [

“<IPython.core.display.Javascript object>”

]

}, “metadata”: {}, “output_type”: “display_data”

}, {

“data”: {
“text/html”: [

“<img src="" width="640">”

], “text/plain”: [

“<IPython.core.display.HTML object>”

]

}, “metadata”: {}, “output_type”: “display_data”

}

], “source”: [

“# standard matplotlib stuffn”, “# create the different plotting axesn”, “fig, (ax1, ax2) = plt.subplots(1, 2)n”, “n”, “for ax in [ax1, ax2]:n”, “ ax.set_aspect("equal")n”, “ ax.set_xlabel("x")n”, “n”, “ax2.set_ylabel("y", labelpad=-5)n”, “ax1.set_ylabel("z")n”, “ax1.set_ylim([-1.1, 1.1])n”, “n”, “fig.suptitle("Multiple blocks")n”, “ax1.set_title("Cross Section: $y=0$")n”, “ax2.set_title(r"$z=\sin(x^2+y^2-t)$")n”, “n”, “# animatplot stuffn”, “# now we make our blocksn”, “line_block = amp.blocks.Line(X[0, :, :], line_data, ax=ax1, t_axis=1)n”, “pcolormesh_block = amp.blocks.Pcolormesh(n”, “ X[:, :, 0], Y[:, :, 0], pcolormesh_data, ax=ax2, t_axis=2, vmin=-1, vmax=1n”, “)n”, “plt.colorbar(pcolormesh_block.quad)n”, “timeline = amp.Timeline(t, fps=10)n”, “n”, “# now to contruct the animationn”, “anim = amp.Animation([pcolormesh_block, line_block], timeline)n”, “anim.controls()n”, “n”, “anim.save_gif("images/multiblock")n”, “plt.show()”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“There is a lot going on here so lets break it down.n”, “n”, “Firstly, the `standard matplotlib stuff` is creating, and labeling all of our axes for our subplot. This is exactly how one might do a static, non-animated plot.n”, “n”, “When we make the Line block, we pass in the data for our lines as 2D arrays (`X[0,:,:]` and `line_data`). We attached that line to the first matplotlib axes `ax=ax1`. We also specifify that the time axis is the last axis of the data `t_axis=1`.n”, “n”, “When we make the Pcolormesh block, we pass in the x, y data as 2D arrays (`X[:,:,0]` and `Y[:,:,0]`), and the z data as a 3D array. We attached the pcolormesh to the second matplotlib axes `ax=ax2`. We also specifify that the time axis is the last axis of the data `t_axis=2`.n”, “n”, “Additional, we told the Pcolormesh blocks what the minimum and maximum values will be (`vmin=-1` and `vmax=1`), so that the colorscale will be proper. The keywords `vmin`, and `vmax` get passed to the underlaying called to matplotlib’s pcolormesh.n”, “n”, “`plt.colorbar` does not recognize the Pcolormesh block as a mappable, so we pass in a mappable from the block to get the colorbar to work. In the future, animatplot may have a wrapper around this.n”, “n”, “The rest simply brings all of the blocks, and the timeline together into an animation.”

]

}, {

“cell_type”: “raw”, “metadata”: {

“raw_mimetype”: “text/restructuredtext”

}, “source”: [

“.. image:: images/multiblock.gif”

]

}

], “metadata”: {

“celltoolbar”: “Raw Cell Format”, “kernelspec”: {

“display_name”: “Python 3”, “language”: “python”, “name”: “python3”

}, “language_info”: {

“codemirror_mode”: {

“name”: “ipython”, “version”: 3

}, “file_extension”: “.py”, “mimetype”: “text/x-python”, “name”: “python”, “nbconvert_exporter”: “python”, “pygments_lexer”: “ipython3”, “version”: “3.6.5”

}

}, “nbformat”: 4, “nbformat_minor”: 2

}