| eSet {Biobase} | R Documentation |
Class to Contain High-Throughput Assays and Experimental Metadata
Description
Container for high-throughput assays and experimental
metadata. Classes derived from eSet contain one or more
identical-sized matrices as assayData elements. Derived
classes (e.g., ExpressionSet-class, SnpSet-class)
specify which elements must be present in the assayData slot.
eSet object cannot be instantiated directly; see the examples
for usage.
Creating Objects
eSet is a virtual class, so instances cannot be created.
Objects created under previous definitions of eSet-class can be
coerced to the current classes derived from eSet using
updateOldESet.
Slots
Introduced in eSet:
assayData:Contains matrices with equal dimensions, and with column number equal to
nrow(phenoData). Class:AssayData-classphenoData:Contains experimenter-supplied variables describing sample (i.e., columns in
assayData) phenotypes. Class:AnnotatedDataFrame-classfeatureData:Contains variables describing features (i.e., rows in
assayData) unique to this experiment. Use theannotationslot to efficiently reference feature data common to the annotation package used in the experiment. Class:AnnotatedDataFrame-classexperimentData:Contains details of experimental methods. Class:
MIAME-classannotation:Label associated with the annotation package used in the experiment. Class:
characterprotocolData:Contains microarray equipment-generated variables describing sample (i.e., columns in
assayData) phenotypes. Class:AnnotatedDataFrame-class.__classVersion__:A
Versionsobject describing the R and Biobase version numbers used to created the instance. Intended for developer use.
Methods
Methods defined in derived classes (e.g., ExpressionSet-class,
SnpSet-class) may override the methods described here.
Class-specific methods:
sampleNames(object)andsampleNames(object)<-value:Coordinate accessing and setting sample names in
assayDataandphenoDatafeatureNames(object),featureNames(object) <- value:Coordinate accessing and setting of feature names (e.g, genes, probes) in
assayData.dimnames(object),dimnames(object) <- value:Also
rownamesandcolnames; access and set feature and sample names.dims(object):Access the common dimensions (
dim) or column numbers (ncol), or dimensions of all members (dims) ofassayData.phenoData(object),phenoData(object) <- value:Access and set
phenoData. Adding new columns tophenoDatais often more easily done witheSetObject[["columnName"]] <- value.pData(object),pData(object) <- value:Access and set sample data information. Adding new columns to
pDatais often more easily done witheSetObject[["columnName"]] <- value.varMetadata(object),varMetadata(eSet,value)Access and set metadata describing variables reported in
pDatavarLabels(object),varLabels(eSet, value)<-:Access and set variable labels in
phenoData.featureData(object),featureData(object) <- value:Access and set
featureData.fData(object),fData(object) <- value:Access and set feature data information.
fvarMetadata(object),fvarMetadata(eSet,value)Access and set metadata describing features reported in
fDatafvarLabels(object),fvarLabels(eSet, value)<-:Access and set variable labels in
featureData.assayData(object), assayData(object) <- value:-
signature(object = "eSet", value = "AssayData"): Access and replace theAssayDataslot of aneSetinstance.assayDatareturns a list or environment; elements inassayDatanot accessible in other ways (e.g., viaexprsapplied directly to theeSet) can most reliably be accessed with, e.g.,assayData(obj)[["se.exprs"]]. experimentData(object),experimentData(object) <- value:Access and set details of experimental methods
description(object),description(object) <- value:Synonymous with experimentData.
notes(object),notes(object) <- value:-
signature(object="eSet", value="list")Retrieve and set unstructured notes associated witheSet.signature(object="eSet", value="character")As with value="list", but append value to current list of notes. pubMedIds(object),pubMedIds(eSet,value)Access and set PMIDs in
experimentData.abstract(object):Access abstract in
experimentData.annotation(object),annotation(object) <- valueAccess and set annotation label indicating package used in the experiment.
protocolData(object),protocolData(object) <- valueAccess and set the protocol data.
preproc(object),preproc(object) <- value:signature(object="eSet", value="list")Access and setpreprocessinginformation in theMIAME-classobject associated with thiseSet.combine(eSet,eSet):Combine two
eSetobjects. To be combined, eSets must have identical numbers offeatureNames, distinctsampleNames, and identicalannotation.storageMode(object),storageMode(eSet,character)<-:Change storage mode of
assayData. Can be used to 'unlock' environments, or to change betweenlistandenvironmentmodes of storingassayData.
Standard generic methods:
initialize(object):Object instantiation, can be called by derived classes but not usually by the user.
validObject(object):Validity-checking method, ensuring (1) all assayData components have the same number of features and samples; (2) the number and names of
phenoDatarows match the number and names ofassayDatacolumnsas(eSet, "ExpressionSet")Convert instance of class
"eSet"to instance ofExpressionSet-class, if possible.as(eSet, "MultiSet")Convert instance of class
"eSet"to instance ofMultiSet-class, if possible.updateObject(object, ..., verbose=FALSE)Update instance to current version, if necessary. Usually called through class inheritance rather than directly by the user. See
updateObjectupdateObjectTo(object, template, ..., verbose=FALSE)Update instance to current version by updating slots in
template, if necessary. Usually call by class inheritance, rather than directly by the user. SeeupdateObjectToisCurrent(object)Determine whether version of object is current. See
isCurrentisVersioned(object)Determine whether object contains a 'version' string describing its structure . See
isVersionedshow(object)Informatively display object contents.
dim(object),ncolAccess the common dimensions (
dim) or column numbers (ncol), of all memebers (dims) ofassayData.object[(index):Conducts subsetting of matrices and phenoData components
object$name,object$name<-valueAccess and set
namecolumn inphenoDataobject[[i, ...]],object[[i, ...]]<-valueAccess and set column
i(character or numeric index) inphenoData. The ... argument can include named variables (especiallylabelDescription) to be added to varMetadata.
Additional functions:
- assayDataElement(object, element)
Return matrix
elementfromassayDataslot ofobject.- assayDataElement(object, element, validate=TRUE) <- value)
Set element
elementinassayDataslot ofobjectto matrixvalue. Ifvalidate=TRUE, check that value row and column names of conform to object.- assayDataElementReplace(object, element, value, validate=TRUE)
Set element
elementinassayDataslot ofobjectto matrixvalue. Ifvalidate=TRUE, check that row and column names of value conform to object.- assayDataElementNames(object)
Return element names in
assayDataslot ofobjectupdateOldESetUpdate versions of
eSetconstructued usinglistOrEnvasassayDataslot (before May, 2006).
Author(s)
Biocore team
See Also
Method use in ExpressionSet-class.
Related classes
AssayData-class, AnnotatedDataFrame-class, MIAME-class.
Derived classes
ExpressionSet-class, SnpSet-class.
To update objects from previous class versions, see updateOldESet.
Examples
# update previous eSet-like class oldESet to existing derived class
## Not run: updateOldESet(oldESet, "ExpressionSet")
# create a new, ad hoc, class, for personal use
# all methods outlined above are available automatically
.MySet <- setClass("MySet", contains="eSet")
.MySet()
# Create a more robust class, with constructor and validation methods
# to ensure assayData contains specific matricies
.TwoColorSet <- setClass("TwoColorSet", contains="eSet")
TwoColorSet <-
function(phenoData=AnnotatedDataFrame(), experimentData=MIAME(),
annotation=character(), R=new("matrix"), G=new("matrix"),
Rb=new("matrix"), Gb=new("matrix"), ...)
{
.TwoColorSet(phenoData=phenoData, experimentData=experimentData,
annotation=annotation, R=R, G=G, Rb=Rb, Gb=Gb, ...)
}
setValidity("TwoColorSet", function(object) {
assayDataValidMembers(assayData(object), c("R", "G", "Rb", "Gb"))
})
TwoColorSet()
# eSet objects cannot be instantiated directly, only derived objects
try(new("eSet"))
removeClass("MySet")
removeClass("TwoColorSet")