Macaulay2 » Documentation
Packages » RandomComplexes :: testTimeForLLLonSyzygies
next | previous | forward | backward | up | index | toc

testTimeForLLLonSyzygies -- test timing for LLL on syzygies

Description

We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.

i1 : setRandomSeed "nice example 2";
 -- setting random seed to 12638458417381289481402307077
i2 : r=10,n=20

o2 = (10, 20)

o2 : Sequence
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)

o3 = ({5, 2.91596e52, 9}, .000989417, .000991547)

o3 : Sequence
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)

o4 = ({50, 2.30853e454, 98}, .00298031, .0297738)

o4 : Sequence
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})

o5 = {{.00396453, .00991417}, {.00396359, .00396649}, {.00396412, .00595763},
     ------------------------------------------------------------------------
     {.00395845, .00792707}, {.00395998, .01091}, {.00502684, .00993205},
     ------------------------------------------------------------------------
     {.00397147, .00683637}, {.00397245, .00595256}, {.00396999, .00496476},
     ------------------------------------------------------------------------
     {.00496295, .00694636}}

o5 : List
i6 : 1/10*sum(L,t->t_0)

o6 = .004171437200000039

o6 : RR (of precision 53)
i7 : 1/10*sum(L,t->t_1)

o7 = .007330742800000012

o7 : RR (of precision 53)

Ways to use testTimeForLLLonSyzygies:

  • testTimeForLLLonSyzygies(ZZ,ZZ)

For the programmer

The object testTimeForLLLonSyzygies is a method function with options.


The source of this document is in RandomComplexes.m2:492:0.