User Documentation for CVODES v7.3.0
SUNDIALS v7.3.0

Alan C. Hindmarsh!, Radu Serban®, Cody J. Balos!,
David J. Gardner', Daniel R. Reynolds?, and Carol S. Woodward*

LCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

April 07, 2025

aials

Q
<

w

UCRL-SM-208111

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The current SUNDIALS
team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R. Reynolds, and Carol S. Woodward.
We thank Radu Serban for significant and critical past contributions.

Other contributors to SUNDIALS include: Mustafa Aggul, James Almgren-Bell, Lawrence E. Banks, Peter N. Brown,
George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee, Shelby L. Lockhart,
John Loffeld, Daniel McGreer, Yu Pan, Slaven Peles, Cosmin Petra, Steven B. Roberts, H. Hunter Schwartz, Jean M.
Sexton, Dan Shumaker, Steve G. Smith, Shahbaj Sohal, Allan G. Taylor, Hilari C. Tiedeman, Chris White, Ting Yan,
and Ulrike M. Yang.

Contents

1 Introduction
1.1 Historical Background e
1.2 Changes to SUNDIALS inrelease 7.3.0 it
1.3 Reading this User Guide 0 i e e e e e e e
1.4 SUNDIALS License and Notices 0 i i i i it it e e e e e e e e

2 Mathematical Considerations
2.1 IVPsolution e e e
22 IVPswithconstraints e e e e
2.3 Preconditioning L e e
2.4 BDF stability limitdetection L e e e
2.5 Rootfinding L.
2.6 Pure Quadrature Integration e e e e e e e e e
2.7 Forward Sensitivity Analysis L e e e e e
2.8 Adjoint Sensitivity Analysis oL e
2.9 Checkpointing scheme L e
2.10 Second-order sensitivity analysis Lo e

3 Code Organization

4 Getting Started
4.1 DataTypes . . . v o v v e e e e e e e e e e e e e e e
4.2 The SUNContext Type o i i e e e e e e
43 ErrorChecking e e e e e e e
4.4 Statusand Error Logging L
4.5 Performance Profiling e e e e
4.6 Getting Version Information L. L e e
477 Fortran Interface L e e e e e e
4.8 Features for GPU Accelerated Computing o e

5 Using CVODES
5.1 Using CVODES for IVP Solution
5.2 Integration of pure quadrature equations e
5.3 Using CVODES for Forward Sensitivity Analysis
5.4 Using CVODES for Adjoint Sensitivity Analysis

6 Vector Data Structures
6.1 Description of the NVECTOR Modules i ittt e e
6.2 Description of the NVECTOR operations o v i v v v it ettt e e
6.3 NVECTOR functionsused by CVODES e
6.4 The NVECTOR_SERIALModule. o ..
6.5 The NVECTOR_PARALLEL Module
6.6 The NVECTOR_OPENMPModule e

~N NN =

14
14
15
16
17
17
21
22
23

25

27
28
30
36
38
43
46
47
56

59
59
123
137
167

207
207
215
228
229
232
236

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

The NVECTOR_PTHREADS Module ittt
The NVECTOR_PARHYP Module e
The NVECTOR_PETSC Module et
The NVECTOR_CUDA Module et
The NVECTOR_HIP Module e it
The NVECTOR_SYCL Module e s
The NVECTOR_RAJAModule
The NVECTOR_KOKKOS Module e e e e e e e e e e
The NVECTOR_OPENMPDEV Module
The NVECTOR_TRILINOS Module it
The NVECTOR_MANYVECTOR Module o it
The NVECTOR_MPIMANYVECTOR Module
The NVECTOR_MPIPLUSX Module i
NVECTOR Examples oo e e e e e e e e e e e e e e

Matrix Data Structures

7.1
7.2
7.3
7.4
1.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Description of the SUNMATRIX Modules
Description of the SUNMATRIX operations
The SUNMATRIX_DENSE Module it
The SUNMATRIX_MAGMADENSEModule
The SUNMATRIX_ONEMKLDENSEModule
The SUNMATRIX_BAND Module e
The SUNMATRIX_CUSPARSEModule
The SUNMATRIX_SPARSE Module i
The SUNMATRIX_SLUNRLOC Module i
The SUNMATRIX_GINKGO Module i

Linear Algebraic Solvers

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20

The SUNLinearSolver APL e e e e
CVODES SUNLinearSolverinterface i it
The SUNLinSol Band Module e
The SUNLinSol_Dense Module e e
The SUNLinSol_KLU Module e e e e e e e e e
The SUNLinSol_LapackBand Module i
The SUNLinSol_LapackDense Module
The SUNLinSol_MagmaDense Module
The SUNLinSol_OneMklDense Module o e i e
The SUNLinSol_PCG Module e e s e e e s e
The SUNLinSol_SPBCGS Module e e e e e e
The SUNLinSol_SPFGMR Module et et et et
The SUNLinSol_SPGMR Module ittt
The SUNLinSol_SPTFQMR Module ittt e et
The SUNLinSol_SuperLUDIST Module
The SUNLinSol_SuperLUMT Module ettt e e e e
The SUNLinSol_cuSolverSp_batchQR Module
The SUNLINEARSOLVER_GINKGO Module
The SUNLINEARSOLVER_KOKKOSDENSE Module
SUNLinearSolver Examples o e

Nonlinear Algebraic Solvers

9.1

The SUNNonlinearSolver API e

ii

10

11

12

13

14

9.2 CVODES SUNNonlinearSolver interface 0 i i i i e 396

9.3 The SUNNonlinSol_Newton implementation, 400
9.4 The SUNNonlinSol_FixedPoint implementation 402
9.5 The SUNNonlinSol_PetscSNES implementation 406
Tools for Memory Management 409
10.1 The SUNMemoryHelper API e 409
10.2 The SUNMemoryHelper_Sys Implementation 415
10.3 The SUNMemoryHelper_Cuda Implementation 416
10.4 The SUNMemoryHelper_Hip Implementation 418
10.5 The SUNMemoryHelper_Sycl Implementation 421
Installing SUNDIALS 425
11.1 Installing with Spack 425
11.2 InstallingwithCMake e e e 425
11.3 Configuration options L e e e e 428
11.4 Testing the Build and Installation 455
11.5 Building and Running Examples 455
11.6 Using SUNDIALS In Your Project ettt 455
11.7 Libraries and Header Files e 457
CVODES Constants 477
12.1 CVODES input CONStants v v v v vt e ettt e e e e e e e 477
12.2 CVODES output ConStants v v v v v v v e i e e e e e e e e e e e e e e e e e e 478
Release History 481
Changelog 483
14.1 Changes to SUNDIALS inrelease 7.3.0 o 483
14.2 Changes to SUNDIALS inrelease 7.2.1 o o o ittt e e 486
14.3 Changes to SUNDIALS inrelease 7.2.0 0 i i i e e e e e 486
14.4 Changes to SUNDIALS inrelease 7.1.1 o i e 489
14.5 Changes to SUNDIALS inrelease 7.1.0 L 489
14.6 Changes to SUNDIALS inrelease 7.0.0 o 491
14.7 Changes to SUNDIALS inrelease 6.7.0 i 494
14.8 Changes to SUNDIALS inrelease 6.6.2 o ittt e 495
14.9 Changes to SUNDIALS inrelease 6.6.1 i ittt 495
14.10 Changes to SUNDIALS inrelease 6.6.0 495
14.11 Changes to SUNDIALS inrelease 6.5.1 496
14.12 Changes to SUNDIALS inrelease 6.5.0 496
14.13 Changes to SUNDIALS inrelease 6.4.1 497
14.14 Changes to SUNDIALS inrelease 6.4.0 i i i ittt e et 497
14.15 Changes to SUNDIALS inrelease 6.3.0 ittt 498
14.16 Changes to SUNDIALS inrelease 6.2.0 499
14.17 Changes to SUNDIALS inrelease 6.1.1 502
14.18 Changes to SUNDIALS inrelease 6.1.0 o 502
14.19 Changes to SUNDIALS inrelease 6.0.0 i it et 502
14.20 Changes to SUNDIALS inrelease 5.8.0 i et 508
14.21 Changes to SUNDIALS inrelease 5.7.0 509
14.22 Changes to SUNDIALS inrelease 5.6.1 509
14.23 Changes to SUNDIALS inrelease 5.6.0 509
14.24 Changes to SUNDIALS inrelease 5.5.0 o i 510
14.25 Changes to SUNDIALS inrelease 5.4.0 o o i i i ittt e e e 510
14.26 Changes to SUNDIALS inrelease 5.3.0 512
14.27 Changes to SUNDIALS inrelease 5.2.0 513

iii

14.28 Changes to SUNDIALS inrelease 5.1.0 o o 514

14.29 Changes to SUNDIALS inrelease 5.0.0 i i it 515
14.30 Changes to SUNDIALS inrelease 4.1.0 o i e 518
14.31 Changes to SUNDIALS inrelease 4.0.2 519
14.32 Changes to SUNDIALS inrelease 4.0.1 519
14.33 Changes to SUNDIALS inrelease 4.0.0 519
14.34 Changes to SUNDIALS inrelease 3.2.1 0 i i e e e e e e e e 522
14.35 Changes to SUNDIALS inrelease 3.2.0 o i ittt e e 522
14.36 Changes to SUNDIALS inrelease 3.1.2 523
14.37 Changes to SUNDIALS inrelease 3.1.1 523
14.38 Changes to SUNDIALS inrelease 3.1.0 o i 524
14.39 Changes to SUNDIALS inrelease 3.0.0 o i 524
14.40 Changes to SUNDIALS inrelease 2.7.0 0 0 i i ittt e e e e e 526
14.41 Changes to SUNDIALS inrelease 2.6.2 o i 528
14.42 Changes to SUNDIALS inrelease 2.6.1 528
14.43 Changes to SUNDIALS inrelease 2.6.0 i 529
14.44 Changes to SUNDIALS inrelease 2.5.0 o o it 530
14.45 Changes to SUNDIALS inrelease 2.4.0 o i i i i ittt e e e e e 531
14.46 Changes to SUNDIALS inrelease 2.3.0 o i i i e e e 532
14.47 Changes to SUNDIALS inrelease 2.2.0 532
14.48 Changes to SUNDIALS inrelease 2.1.1 o o 533
14.49 Changes to SUNDIALS inrelease 2.1.0 o i e 533
14.50 Changes to SUNDIALS inrelease 2.0.2 0 0 i i et e e e e e e e 533
14.51 Changes to SUNDIALS inrelease 2.0.1 i e e e 533
14.52 Changes to SUNDIALS inrelease 2.0.0 534
Bibliography 535
Index 539

iv

Chapter 1

Introduction

CVODES [61] is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers [41]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these with sensitivity
analysis capabilities. CVODES is a solver for stiff and nonstiff initial value problems (IVPs) for systems of ordinary
differential equation (ODEs). In addition to solving stiff and nonstiff ODE systems, CVODES has sensitivity analysis
capabilities, using either the forward or the adjoint methods.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that have been written at
LLNL in the past are VODE [15] and VODPK [18]. VODE is a general purpose solver that includes methods for both
stiff and nonstiff systems, and in the stiff case uses direct methods (full or banded) for the solution of the linear systems
that arise at each implicit step. Externally, VODE is very similar to the well known solver LSODE [57]. VODPK is a
variant of VODE that uses a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear
systems. VODPK is a powerful tool for large stiff systems because it combines established methods for stiff integration,
nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness,
in the form of the user-supplied preconditioner matrix [16]. The capabilities of both VODE and VODPK have been
combined in the C-language package CVODE [23].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used in conjunc-
tion with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [59], FGMRES (Flexible
Generalized Minimum RESidual) [58], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [67], TFQMR (Transpose-Free
Quasi-Minimal Residual) [33], and PCG (Preconditioned Conjugate Gradient) [36] linear iterative methods. As Krylov
methods, these require almost no matrix storage for solving the Newton equations as compared to direct methods. How-
ever, the algorithms allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential
for an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct linear solver
methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend GMRES
as the best overall choice. However, users are encouraged to compare all options, especially if encountering conver-
gence failures with GMRES. Bi-CGStab and TFQMR have an advantage in storage requirements, in that the number
of workspace vectors they require is fixed, while that number for GMRES depends on the desired Krylov subspace
size. FGMRES has an advantage in that it is designed to support preconditioners that vary between iterations (e.g.,
iterative methods). PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric
linear systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organization has been
changed considerably. One key feature of the CVODE organization is that the linear system solvers comprise a layer
of code modules that is separated from the integration algorithm, allowing for easy modification and expansion of the
linear solver array. A second key feature is a separate module devoted to vector operations; this facilitated the extension

User Documentation for CVODES, v7.3.0

to multiprosessor environments with minimal impacts on the rest of the solver, resulting in PVODE [20], the parallel
variant of CVODE.

CVODES is written with a functionality that is a superset of that of the pair CVODE/PVODE. Sensitivity analysis ca-
pabilities, both forward and adjoint, have been added to the main integrator. Enabling forward sensitivity computations
in CVODES will result in the code integrating the so-called sensitivity equations simultaneously with the original IVP,
yielding both the solution and its sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most
useful when the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called adjoint equations
backward in time. CVODES provides the infrastructure needed to integrate any final-condition ODE dependent on the
solution of the original IVP (in particular the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations module across the SUNDIALS
suite. The key feature of the N_Vector module is that it is written in terms of abstract vector operations with the
actual vector functions attached by a particular implementation (such as serial or parallel) of N_Vector. This allows
writing the SUNDIALS solvers in a manner independent of the actual N_Vector implementation (which can be user-
supplied), as well as allowing more than one N_Vector module to be linked into an executable file. SUNDIALS
(and thus CVODES) is supplied with serial, MPI-parallel, and both OpenMP and Pthreads thread-parallel N_Vector
implementations.

There were several motivations for choosing the C language for CVODE, and later for CVODES. First, a general
movement away from Fortran and toward C in scientific computing was apparent. Second, the pointer, structure, and
dynamic memory allocation features in C are extremely useful in software of this complexity. Finally, we prefer C
over C++ for CVODES because of the wider availability of C compilers, the potentially greater efficiency of C, and the
greater ease of interfacing the solver to applications written in extended Fortran.

1.2 Changes to SUNDIALS in release 7.3.0

Major Features

A new discrete adjoint capability for explicit Runge—Kutta methods has been added to the ARKODE ERKStep
and ARKStep stepper modules. This is based on a new set of shared classes, SUNAdjointStepper and SUNAd-
jointCheckpointScheme. A new example demonstrating this capability can be found in examples/arkode/C_-
serial/ark_lotka_volterra_ASA.c. See the Adjoint Sensitivity Analysis section of the ARKODE user guide for
details.

New Features and Enhancements
ARKODE

The following changes have been made to the default ERK, DIRK, and ARK methods in ARKODE to utilize more
efficient methods:

2 Chapter 1. Introduction

https://sundials.readthedocs.io/en/v7.3.0/sunadjoint/SUNAdjoint_links.html#c.SUNAdjointStepper
https://sundials.readthedocs.io/en/v7.3.0/sunadjoint/SUNAdjoint_links.html#c.SUNAdjointCheckpointScheme
https://sundials.readthedocs.io/en/v7.3.0/sunadjoint/SUNAdjoint_links.html#c.SUNAdjointCheckpointScheme
https://sundials.readthedocs.io/en/v7.3.0/arkode/Mathematics_link.html#arkode-mathematics-asa

User Documentation for CVODES, v7.3.0

Type 0Old Default New Default

2nd Order ARKODE_HEUN_EULER_2_1_2 ARKODE_RALSTON_3_1_2

Explicit

4th Order ARKODE_ZONNEVELD_5_3_4 ARKODE_SOFRONIOU_SPALETTA_5_3_4
Explicit

5th Order ARKODE_CASH_KARP_6_4_5 ARKODE_TSITOURAS_7_4_5

Explicit

6th Order ARKODE_VERNER_8_5_6 ARKODE_VERNER_9_5_6

Explicit

8th Order ARKODE_FEHLBERG_13_7_8 ARKODE_VERNER_13_7_8

Explicit

2nd Order ARKODE_SDIRK_2_1_2 ARKODE_ARK2_DIRK_3_1_2

Implicit

3rd Order ARKODE_ARK324L2SA_DIRK_4_2_3 ARKODE_ESDIRK325L2SA_5_2_3
Implicit

4th Order ARKODE_SDIRK_5_3_4 ARKODE_ESDIRK436L2SA_6_3_4
Implicit

5th Order ARKODE_ARK548L2SA_DIRK_8_4_5 ARKODE_ESDIRK547L2SA2_7_4_5
Implicit

4th Order ARKODE_ARK436L2SA_ERK_6_3_4 and ARKODE_ARK437L2SA_ERK_7_3_4 and
ARK ARKODE_ARK436L2SA_DIRK_6_3_4 ARKODE_ARK437L2SA_DIRK_7_3_4
S5th Order ARKODE_ARK548L2SA_ERK_8_4_5 and ARKODE_ARK548L2SAb_ERK_8_4_5 and
ARK ARKODE_ARK548L2SA_DIRK_8_4_5 ARKODE_ARK548L2SAb_DIRK_8_4_5

The old default methods can be loaded using the functions ERKStepSetTableName () or ERKStepSetTableNum()
with ERKStep and ARKStepSetTableName () or ARKStepSetTableNum() with ARKStep and passing the desired
method name string or constant, respectively. For example, the following call can be used to load the old default fourth
order method with ERKStep:

/* Load the old 4th order ERK method using the table name */
ierr = ERKStepSetTableName(arkode_mem, "ARKODE_ZONNEVELD_5_3_4");

Similarly with ARKStep, the following calls can be used for ERK, DIRK, or ARK methods, respectively:

/* Load the old 4th order ERK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_DIRK_NONE",
"ARKODE_ZONNEVELD_5_3_4");

/* Load the old 4th order DIRK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_SDIRK_5_3 4",
"ARKODE_ERK_NONE") ;

/* Load the old 4th order ARK method by name */
ierr = ARKStepSetTableName(arkode_mem, "ARKODE_ARK436L.2SA_DIRK 6_3_ 4",
"ARKODE_ARK436L2SA_ERK_6_3_4");

Additionally, the following changes have been made to the default time step adaptivity parameters in ARKODE:

1.2. Changes to SUNDIALS in release 7.3.0 3

https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetTableName
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/ERKStep/User_callable.html#c.ERKStepSetTableNum
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetTableName
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/ARKStep/User_callable.html#c.ARKStepSetTableNum

User Documentation for CVODES, v7.3.0

Parameter Old Default New Default
Controller PID (PI for ERKStep) I

Safety Factor 0.96 0.9

Bias 1.5 (1.2 for ERKStep) 1.0

Fixed Step Bounds [1.0, 1.5] [1.0, 1.0]
Adaptivity Adjustment -1 0

The following calls can be used to restore the old defaults for ERKStep:

SUNAdaptController controller = SUNAdaptController_Soderlind(ctx);
SUNAdaptController_SetParams_PI(controller, 0.8, -0.31);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.2);
ARKodeSetSafetyFactor(arkode_mem, 0.96);
ARKodeSetFixedStepBounds(arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment (arkode_mem, -1);

The following calls can be used to restore the old defaults for other ARKODE integrators:

SUNAdaptController controller = SUNAdaptController_ PID(ctx);
ARKodeSetAdaptController(arkode_mem, controller);
SUNAdaptController_SetErrorBias(controller, 1.5);
ARKodeSetSafetyFactor (arkode_mem, 0.96);
ARKodeSetFixedStepBounds (arkode_mem, 1, 1.5);
ARKodeSetAdaptivityAdjustment (arkode_mem, -1);

In both cases above, destroy the controller at the end of the run with SUNAdaptController_Destroy(controller);

The Soderlind time step adaptivity controller now starts with an I controller until there is sufficient history of past time
steps and errors.

Added ARKodeSetAdaptControllerByName() to set a time step adaptivity controller with a string. There are
also four new controllers: SUNAdaptController_H0211(), SUNAdaptController_H0321(), SUNAdaptCon-
troller_H211(), and SUNAdaptController_H312().

Added the ARKODE_RALSTON_3_1_2 and ARKODE_TSITOURAS_7_4_5 explicit Runge-Kutta Butcher tables.
Improved the precision of the coefficients for ARKODE_ARK324L2SA_ERK_4_2_3, ARKODE_VERNER_9_5_6, ARKODE_-

VERNER_10_6_7, ARKODE_VERNER_13_7_8, ARKODE_ARK324L2SA_DIRK_4_2_3, and ARKODE_ESDIRK324L2SA_-
4_2_3.

CVODE/CVODES

Added support for resizing CVODE and CVODES when solving initial value problems where the number of equations
and unknowns changes over time. Resizing requires a user supplied history of solution and right-hand side values at
the new problem size, see CVodeResizeHistory () for more information.

KINSOL

Added support in KINSOL for setting user-supplied functions to compute the damping factor and, when using An-
derson acceleration, the depth in fixed-point or Picard iterations. See KINSetDampingFn() and KINSetDepthFn(),
respectively, for more information.

SUNDIALS Types

4 Chapter 1. Introduction

https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeSetAdaptControllerByName
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H0211
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H0321
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H211
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H211
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController_H312
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDampingFn
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDepthFn

User Documentation for CVODES, v7.3.0

A new type, suncountertype, was added for the integer type used for counter variables. It is currently an alias for
long int.

Bug Fixes
ARKODE
Fixed bug in ARKodeResize () which caused it return an error for MRI methods.

Removed error floors from the SUNAdaptController implementations which could unnecessarily limit the time size
growth, particularly after the first step.

Fixed bug in ARKodeSetFixedStep() where it could return ARK_SUCCESS despite an error occurring.

Fixed bug in the ARKODE SPRKStep SPRKStepReInit() function and ARKodeReset () function with SPRKStep
that could cause a segmentation fault when compensated summation is not used.

KINSOL

Fixed a bug in KINSOL where an incorrect damping parameter is applied on the initial iteration with Anderson ac-
celeration unless KINSetDamping() and KINSetDampingAA() are both called with the same value when enabling
damping.

Fixed a bug in KINSOL where errors that occurred when computing Anderson acceleration were not captured.
Added missing return values to KINGetReturnFlagName ().
CMake

Fixed the behavior of SUNDIALS_ENABLE_ERROR_CHECKS so additional runtime error checks are disabled by default
with all release build types. Previously, MinSizeRel builds enabled additional error checking by default.

Deprecation Notices

All work space functions, e.g., CVodeGetWorkSpace and ARKodeGetLinWorkSpace, have been deprecated and will
be removed in version 8.0.0.

For changes in prior versions of SUNDIALS see §14.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions. Specific example programs are provided as a separate
document. We expect that some readers will want to concentrate on the general instructions, while others will refer
mostly to the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of CVODES. The most casual user, with a small IVP problem only, can
get by with reading §2.1, then Chapter §5.1 up to §5.2 only, and looking at examples in [62]. In addition, to solve a
forward sensitivity problem the user should read §2.7, followed by Chapter §5.3 and look at examples in [62].

In a different direction, a more expert user with an IVP problem may want to (a) use a package preconditioner (§5.2.7),
(b) supply his/her own Jacobian or preconditioner routines (§5.1.4), (c) do multiple runs of problems of the same
size (CVodeReInit()), (d) supply a new N_Vector module (§6), or even (e) supply new SUNLinearSolver and/or
SUNMatrix modules (Chapters §7 and §8). An advanced user with a forward sensitivity problem may also want to
(a) provide his/her own sensitivity equations right-hand side routine §5.3.3, (b) perform multiple runs with the same
number of sensitivity parameters (§5.3.2.1, or (c) extract additional diagnostic information (§5.3.2.7). A user with
an adjoint sensitivity problem needs to understand the IVP solution approach at the desired level and also go through
§2.8 for a short mathematical description of the adjoint approach, Chapter §5.4 for the usage of the adjoint module in
CVODES, and the examples in [62].

The structure of this document is as follows:

1.3. Reading this User Guide 5

https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeResize
https://sundials.readthedocs.io/en/v7.3.0/sunadaptcontroller/SUNAdaptController_links.html#c.SUNAdaptController
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeSetFixedStep
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/SPRKStep/User_callable.html#c.SPRKStepReInit
https://sundials.readthedocs.io/en/v7.3.0/arkode/Usage/User_callable.html#c.ARKodeReset
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDamping
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINSetDampingAA
https://sundials.readthedocs.io/en/v7.3.0/kinsol/Usage/index.html#c.KINGetReturnFlagName

User Documentation for CVODES, v7.3.0

In Chapter §2, we give short descriptions of the numerical methods implemented by CVODES for the solution
of initial value problems for systems of ODEs, continue with short descriptions of preconditioning §2.3, stability
limit detection (§2.4), and rootfinding (§2.5), and conclude with an overview of the mathematical aspects of
sensitivity analysis, both forward (§2.7) and adjoint (§2.8).

The following chapter describes the software organization of the CVODES solver (§3).

Chapter §5.1 is the main usage document for CVODES for simulation applications. It includes a complete
description of the user interface for the integration of ODE initial value problems. Readers that are not interested
in using CVODES for sensitivity analysis can then skip the next two chapters.

Chapter §5.3 describes the usage of CVODES for forward sensitivity analysis as an extension of its [VP integra-
tion capabilities. We begin with a skeleton of the user main program, with emphasis on the steps that are required
in addition to those already described in Chapter §5.1. Following that we provide detailed descriptions of the
user-callable interface routines specific to forward sensitivity analysis and of the additional optional user-defined
routines.

Chapter §5.4 describes the usage of CVODES for adjoint sensitivity analysis. We begin by describing the
CVODES checkpointing implementation for interpolation of the original IVP solution during integration of the
adjoint system backward in time, and with an overview of a user’s main program. Following that we provide com-
plete descriptions of the user-callable interface routines for adjoint sensitivity analysis as well as descriptions of
the required additional user-defined routines.

Chapter §6 gives a brief overview of the generic N_Vector module shared among the various components of
SUNDIALS, and details on the N_Vector implementations provided with SUNDIALS.

Chapter §7 gives a brief overview of the generic SUNMatrix module shared among the various components of
SUNDIALS, and details on the SUNMatrix implementations provided with SUNDIALS: a dense implementation
(§7.3), a banded implementation (§7.6) and a sparse implementation (§7.8).

Chapter §8 gives a brief overview of the generic SUNLinearSolver module shared among the various compo-
nents of SUNDIALS. This chapter contains details on the SUNLinearSolver implementations provided with
SUNDIALS. The chapter also contains details on the SUNLinearSolver implementations provided with SUN-
DIALS that interface with external linear solver libraries.

Finally, in the appendices, we provide detailed instructions for the installation of CVODES, within the structure
of SUNDIALS (Appendix §11), as well as a list of all the constants used for input to and output from CVODES
functions (Appendix §12).

Finally, the reader should be aware of the following notational conventions in this user guide: program listings and
identifiers (such as CVodeInit) within textual explanations appear in typewriter type style; fields in C structures (such

as content) appear in italics; and packages or modules, such as CVDLS, are written in all capitals.

Warning

Usage and installation instructions that constitute important warnings are marked in yellow boxes like this one.

6 Chapter 1. Introduction

User Documentation for CVODES, v7.3.0

1.4 SUNDIALS License and Notices

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

Note

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, SuperLU_MT, PETSc,
or hypre), be sure to review the respective license of the package as that license may have more restrictive terms
than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked KLU, the build is
subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not the SUNDIALS
BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2025, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

¢ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

 Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

1.4. SUNDIALS License and Notices 7

User Documentation for CVODES, v7.3.0

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

8 Chapter 1. Introduction

Chapter 2

Mathematical Considerations

CVODES solves ODE initial value problems (IVPs) in real /V-space, which we write in the abstract form

y=f(t,y), ylto) =1yo (2.1

where y € R¥ and f : R x RY — R¥. Here we use ¢ to denote dy/dt. While we use ¢ to denote the independent
variable, and usually this is time, it certainly need not be. CVODES solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time constant is small
compared to the time scale of the solution itself.

For problems (2.1) where the analytical solution y(¢) satisfies an implicit constraint g(¢,y) = 0 (including the initial
condition, g(to, yo) = 0) for g(¢,y) : R x RN — RM with M < N, CVODES may be configured to explicitly enforce
these constraints via solving the modified problem

) = ta) tg) =)
y=fty), ylto) =0 2.2)
0=g(t,y).
Additionally, if (2.1) depends on some parameters p € RN ? ie.
! = t7)
y=f(ty, p) 23)

y(to) = vo(p),

CVODES can also compute first order derivative information, performing either forward sensitivity analysis or adjoint
sensitivity analysis. In the first case, CVODES computes the sensitivities of the solution with respect to the parameters
p, while in the second case, CVODES computes the gradient of a derived function with respect to the parameters p.

2.1 IVP solution

The methods used in CVODES are variable-order, variable-step multistep methods, based on formulas of the form
K Ko
> iy by Bui" T =0, 24)
i=0 i=0

Here the y™ are computed approximations to y(¢,,), and h,, = t,, — t,,_1 is the step size. The user of CVODES must
choose appropriately one of two multistep methods. For nonstiff problems, CVODES includes the Adams-Moulton
formulas, characterized by K; = 1 and K5 = g—1 above, where the order ¢ varies between 1 and 12. For stiff problems,
CVODES includes the Backward Differentiation Formulas (BDF) in so-called fixed-leading coefficient (FLC) form,
given by K1 = q and Ky = 0, with order ¢ varying between 1 and 5. The coefficients are uniquely determined by the
method type, its order, the recent history of the step sizes, and the normalization «,, o = —1. See [19] and [44].

User Documentation for CVODES, v7.3.0

For either choice of formula, a nonlinear system must be solved (approximately) at each integration step. This nonlinear
system can be formulated as either a rootfinding problem

Fy")=y" = hnBnof(tn,y") —an =0, (2.5)

or as a fixed-point problem
G(") = haBrof(tn, y") +an =y". (2.6)

where a, = >, (¥ " + B Bn " 0).

In the process of controlling errors at various levels, CVODES uses a weighted root-mean-square norm, denoted | -
|wrwms, for all error-like quantities. The multiplicative weights used are based on the current solution and on the relative
and absolute tolerances input by the user, namely

W; = 1/[rtol - |y;| + atol;] . 2.7

Because 1/, represents a tolerance in the component y;, a vector whose norm is 1 is regarded as “small.” For brevity,
we will usually drop the subscript WRMS on norms in what follows.

2.1.1 Nonlinear Solve

CVODES provides several nonlinear solver choices as well as the option of using a user-defined nonlinear solver (see
§9). By default CVODES solves (2.5) with a Newton iteration which requires the solution of linear systems

M[yn(m-&-l) _ yn(m)] — _F(yn('m)) (2.8)

in which
M~I—~J, J=0f/0y, and ~v=h,0ho- 2.9)

The exact variation of the Newton iteration depends on the choice of linear solver and is discussed below and in §9.3.
For nonstiff systems, a fixed-point iteration (previously referred to as a functional iteration in this guide) solving (2.6)
is also available. This involves evaluations of f only and can (optionally) use Anderson’s method [10, 31, 54, 68]
to accelerate convergence (see §9.4 for more details). For any nonlinear solver, the initial guess for the iteration is a
predicted value y™(°) computed explicitly from the available history data.

For nonlinear solvers that require the solution of the linear system (2.8) (e.g., the default Newton iteration), CVODES
provides several linear solver choices, including the option of a user-supplied linear solver module (see §8). The linear
solver modules distributed with SUNDIALS are organized in two families, a direct family comprising direct linear
solvers for dense, banded, or sparse matrices, and a spils family comprising scaled preconditioned iterative (Krylov)
linear solvers. The methods offered through these modules are as follows:

 dense direct solvers, including an internal implementation, an interface to BLAS/LAPACK, an interface to
MAGMA [64] and an interface to the oneMKL library [3],

* band direct solvers, including an internal implementation or an interface to BLAS/LAPACK,

* sparse direct solver interfaces to various libraries, including KLU [4, 24], SuperLU_MT [9, 26, 51], SuperLU_-
Dist [8, 35, 52, 53], and cuSPARSE [7],

* SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

* SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method) solver,

* SPBCQG, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

* SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method) solver, or

10 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.3.0

* PCQG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are often not feasible, the combination of a BDF integrator and a precon-
ditioned Krylov method yields a powerful tool because it combines established methods for stiff integration, nonlinear
iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness, in the form
of the user-supplied preconditioner matrix [16].

In addition, CVODES also provides a linear solver module which only uses a diagonal approximation of the Jacobian
matrix.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton iteration, in that the
iteration matrix M is fixed throughout the nonlinear iterations. However, in the case that a matrix-free iterative linear
solver is used, the default Newton iteration is an Inexact Newton iteration, in which M is applied in a matrix-free
manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied routine. With the
default Newton iteration, the matrix M and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,

* more than 20 steps have been taken since the last update,

* the value 7 of ~ at the last update satisfies |v/5 — 1| > 0.3,
 anon-fatal convergence failure just occurred, or

* an error test failure just occurred.

When an update of M or P occurs, it may or may not involve a reevaluation of J (in M) or of Jacobian data (in P),
depending on whether Jacobian error was the likely cause of the update. Reevaluating J (or instructing the user to
update Jacobian data in P) occurs when:

e starting the problem,
» more than 50 steps have been taken since the last evaluation,

* aconvergence failure occurred with an outdated matrix, and the value 7 of -y at the last update satisfies |y/7—1| <
0.2, or

* a convergence failure occurred that forced a step size reduction.

The default stopping test for nonlinear solver iterations is related to the subsequent local error test, with the goal of
keeping the nonlinear iteration errors from interfering with local error control. As described below, the final computed
value y"("™) will have to satisfy a local error test ||y™("™) —™(0)|| < €. Letting 4" denote the exact solution of (2.5), we
want to ensure that the iteration error y™ — y™(") is small relative to e, specifically that it is less than 0.1¢. (The safety
factor 0.1 can be changed by the user.) For this, we also estimate the linear convergence rate constant R as follows. We
initialize R to 1, and reset R = 1 when M or P is updated. After computing a correction d,,, = 3™("™) — 4*(m=1) e
update Rif m > 1 as

R = max{0.3R, [[0m]|/[|om—1]}-
Now we use the estimate
L R o e R e T (S 1 [
Therefore the convergence (stopping) test is
R|[6m|| < 0.1€.

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration diverged if any
10 I/ 10m—1]] > 2 with m > 1. If convergence fails with JJ or P current, we are forced to reduce the step size, and
we replace h,, by h, = n¢t * hy, where the default is 7. = 0.25. The integration is halted after a preset number of
convergence failures; the default value of this limit is 10, but this can be changed by the user.

2.1. IVP solution 11

User Documentation for CVODES, v7.3.0

When an iterative method is used to solve the linear system, its errors must also be controlled, and this also involves
the local error test constant. The linear iteration error in the solution vector §,, is approximated by the preconditioned
residual vector. Thus to ensure (or attempt to ensure) that the linear iteration errors do not interfere with the nonlinear
error and local integration error controls, we require that the norm of the preconditioned residual be less than 0.05 -
(0.1e).

When the Jacobian is stored using either the SUNMATRIX _DENSE or SUNMATRIX_BAND matrix objects, the Jaco-
bian may be supplied by a user routine, or approximated by difference quotients, at the user’s option. In the latter case,
we use the usual approximation

Jij = filt,y +oje5) — fi(t,y)]/oj .

The increments o; are given by
oj = max{ﬁ |yj|,00/Wj} ,

where U is the unit roundoff, o is a dimensionless value, and WV, is the error weight defined in (2.7). In the dense case,
this scheme requires /N evaluations of f, one for each column of .J. In the band case, the columns of .J are computed
in groups, by the Curtis-Powell-Reid algorithm, with the number of f evaluations equal to the bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both, with user-supplied
routines for the preconditioning setup and solve operations, and optionally also for the required matrix-vector products
Juv. If a routine for Jv is not supplied, these products are computed as

Jv=[f(t,y+ov)— f(t,y)]/o. (2.10)

The increment o is 1/||v]|, so that ov has norm 1.

2.1.2 Local Error Test

A critical part of CVODES — making it an ODE “solver” rather than just an ODE method, is its control of local
error. Atevery step, the local error is estimated and required to satisfy tolerance conditions, and the step is redone with
reduced step size whenever that error test fails. As with any linear multistep method, the local truncation error LTE, at
order g and step size h, satisfies an asymptotic relation

LTE = Ch9+1yatD) 4 O(h+2)

for some constant C', under mild assumptions on the step sizes. A similar relation holds for the error in the predictor
™), These are combined to get a relation

LTE = C'[y" — y" O] + O(h?*?).

The local error test is simply |[LTE| < 1. Using the above, it is performed on the predictor-corrector difference A,, =
y™m) — y(0) (with y™("™) the final iterate computed), and takes the form

1An]l < e=1/1C".

12 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.3.0

2.1.3 Step Size and Order Selection

If the local error test passes, the step is considered successful. If it fails, the step is rejected and a new step size h' is
computed based on the asymptotic behavior of the local error, namely by the equation

(BRI H[Al = €/6.

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails three times, the
order ¢ is reset to 1 (if ¢ > 1), or the step is restarted from scratch (if ¢ = 1). The ratio n = h’/h is limited above
t0 Nmax_ef (default 0.2) after two error test failures, and limited below to 7min o (default 0.1) after three. After seven
failures, CVODES returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODES periodically adjusts the order, with the goal
of maximizing the step size. The integration starts out at order 1 and varies the order dynamically after that. The basic
idea is to pick the order ¢ for which a polynomial of order g best fits the discrete data involved in the multistep method.
However, if either a convergence failure or an error test failure occurred on the step just completed, no change in step
size or order is done. At the current order g, selecting a new step size is done exactly as when the error test fails, giving
a tentative step size ratio

W [h = (e/6] A +D =,

We consider changing order only after taking ¢ + 1 steps at order ¢, and then we consider only orders ¢’ = ¢ — 1 (if
q > 1)orq = q+ 1 (if ¢ < 5). The local truncation error at order ¢’ is estimated using the history data. Then a
tentative step size ratio is computed on the basis that this error, LTE(q’), behaves asymptotically as he'*+1. With safety
factors of 1/6 and 1/10 respectively, these ratios are:

h'/h = [1/6||LTE(q — 1)|[]"/* = 1y
and
R /h = [1/10|LTE(g + D[]/ = gy .
The new order and step size are then set according to

n = max{nq—1, Mg, Ng+17 »

with ¢’ set to the index achieving the above maximum. However, if we find that < 7max g (default 1.5), we do not
bother with the change. Also, 7 is always limited to 9max_gs (default 10), except on the first step, when it is limited to
Thmax_fs = 104‘

The various algorithmic features of CVODES described above, as inherited from VODE and VODPK, are documented
in [15, 18, 40]. They are also summarized in [41].

Normally, CVODES takes steps until a user-defined output value ¢ = ¢, is overtaken, and then it computes y(tou) by
interpolation. However, a “one step”” mode option is available, where control returns to the calling program after each
step. There are also options to force CVODES not to integrate past a given stopping point ¢ = tyop.

2.1.4 Inequality Constraints

CVODES permits the user to impose optional inequality constraints on individual components of the solution vector
y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0, or y; < 0. The constraint satisfaction
is tested after a successful nonlinear system solution. If any constraint fails, we declare a convergence failure of the
Newton iteration and reduce the step size. Rather than cutting the step size by some arbitrary factor, CVODES estimates
anew step size k' using a linear approximation of the components in y that failed the constraint test (including a safety
factor of 0.9 to cover the strict inequality case). If a step fails to satisfy the constraints repeatedly within a step attempt
or fails with the minimum step size then the integration is halted and an error is returned. In this case the user may
need to employ other strategies as discussed in §5.1.3.2 to satisfy the inequality constraints.

2.1. IVP solution 13

User Documentation for CVODES, v7.3.0

2.2 IVPs with constraints

For IVPs whose analytical solutions implicitly satisfy constraints as in (2.2), CVODES ensures that the solution satisfies
the constraint equation by projecting a successfully computed time step onto the invariant manifold. As discussed in
[30] and [63], this approach reduces the error in the solution and retains the order of convergence of the numerical
method. Therefore, in an attempt to advance the solution to a new point in time (i.e., taking a new integration step),
CVODES performs the following operations:

1. predict solution
2. solve nonlinear system and correct solution
3. project solution

4. test error

5. select order and step size for next step

and includes several recovery attempts in case there are convergence failures (or difficulties) in the nonlinear solver or
in the projection step, or if the solution fails to satisfy the error test. Note that at this time projection is only supported
with BDF methods and the projection function must be user-defined. See §5.1.3.8 and CVodeSetProjFn() for more
information on providing a projection function to CVODE.

When using a coordinate projection method the solution y,, is obtained by projecting (orthogonally or otherwise) the
solution y,, from step 2 above onto the manifold given by the constraint. As such y,, is computed as the solution of the
nonlinear constrained least squares problem

minimize ||yn — Jn|

2.11
subjectto g(tn,yn) = 0. @11

The solution of (2.11) can be computed iteratively with a Newton method. Given an initial guess y7(,,0) the iterations are
computed as

it =yl + sy

n
where the increment 5y§f) is the solution of the least-norm problem
minimize ||dy{V|

subject to G, y%) 6y = —g(tn,y)

n

2.12)

where G(t,y) = 0g(t,y)/0y.

If the projected solution satisfies the error test then the step is accepted and the correction to the unprojected solution,
Ap = Yn — Un, is used to update the Nordsieck history array for the next step.

2.3 Preconditioning

When using a nonlinear solver that requires the solution of the linear system, e.g., the default Newton iteration (§9.3),
CVODES makes repeated use of a linear solver to solve linear systems of the form Mx = —r, where z is a correction
vector and 7 is a residual vector. If this linear system solve is done with one of the scaled preconditioned iterative linear
solvers supplied with SUNDIALS, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Az = b can be preconditioned
on the left, as (P~ ' A)z = P~'b; on the right, as (AP~') Pz = b; or on both sides, as (P; ' APy ') Prx = P; 'b.
The Krylov method is then applied to a system with the matrix P~' A, or AP~!, or P; ' APy, instead of A. In order
to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product P;, Pr, in the last case,
should in some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the matrix

14 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.3.0

P, or matrices Pr, and Pg, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff
between rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for example,
see [16] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for preconditioning either side, or on both sides,
although we know of no situation where preconditioning on both sides is clearly superior to preconditioning on one side
only (with the product P, Pr). Moreover, for a given preconditioner matrix, the merits of left vs. right preconditioning
are unclear in general, and the user should experiment with both choices. Performance will differ because the inverse
of the left preconditioner is included in the linear system residual whose norm is being tested in the Krylov algorithm.
As a rule, however, if the preconditioner is the product of two matrices, we recommend that preconditioning be done
either on the left only or the right only, rather than using one factor on each side.

Typical preconditioners used with CVODES are based on approximations to the system Jacobian, J = Jf/dy. Since
the matrix involved is M = I —~.J, any approximation .J to .J yields a matrix that is of potential use as a preconditioner,
namely P = I — ~.J. Because the Krylov iteration occurs within a nonlinear solver iteration and further also within
a time integration, and since each of these iterations has its own test for convergence, the preconditioner may use a
very crude approximation, as long as it captures the dominant numerical feature(s) of the system. We have found that
the combination of a preconditioner with the Newton-Krylov iteration, using even a fairly poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.4 BDF stability limit detection

CVODES includes an algorithm, STALD (STAbility Limit Detection), which provides protection against potentially
unstable behavior of the BDF multistep integration methods in certain situations, as described below.

When the BDF option is selected, CVODES uses Backward Differentiation Formula methods of orders 1 to 5. At order
1 or 2, the BDF method is A-stable, meaning that for any complex constant A in the open left half-plane, the method
is unconditionally stable (for any step size) for the standard scalar model problem §y = Ay. For an ODE system, this
means that, roughly speaking, as long as all modes in the system are stable, the method is also stable for any choice of
step size, at least in the sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case, in order for the
method to be stable at step size h on the scalar model problem, the product hA must lie within a region of absolute
stability. That region excludes a portion of the left half-plane that is concentrated near the imaginary axis. The size of
that region of instability grows as the order increases from 3 to 5. What this means is that, when running BDF at any
of these orders, if an eigenvalue A of the system lies close enough to the imaginary axis, the step sizes h for which the
method is stable are limited (at least according to the linear stability theory) to a set that prevents A\ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region is much narrower
than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly damped oscillations. A
pure undamped oscillation corresponds to an eigenvalue on the imaginary axis. Problems with modes of that kind call
for different considerations, since the oscillation generally must be followed by the solver, and this requires step sizes
(h ~ 1/v, where v is the frequency) that are stable for BDF anyway. But for a weakly damped oscillatory mode, the
oscillation in the solution is eventually damped to the noise level, and at that time it is important that the solver not be
restricted to step sizes on the order of 1/v. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection option is appropriate
are ODE systems resulting from semi-discretized PDE:s (i.e., PDEs discretized in space) with advection and diffusion,
but with advection dominating over diffusion. Diffusion alone produces pure decay modes, while advection tends to
produce undamped oscillatory modes. A mix of the two with advection dominant will have weakly damped oscillatory
modes.

The STALD algorithm attempts to detect, in a direct manner, the presence of a stability region boundary that is limiting
the step sizes in the presence of a weakly damped oscillation [38]. The algorithm supplements (but differs greatly from)

2.4. BDF stability limit detection 15

User Documentation for CVODES, v7.3.0

the existing algorithms in CVODES for choosing step size and order based on estimated local truncation errors. The
STALD algorithm works directly with history data that is readily available in CVODES. If it concludes that the step
size is in fact stability-limited, it dictates a reduction in the method order, regardless of the outcome of the error-based
algorithm. The STALD algorithm has been tested in combination with the VODE solver on linear advection-dominated
advection-diffusion problems [39], where it works well. The implementation in CVODES has been successfully tested
on linear and nonlinear advection-diffusion problems, among others.

This stability limit detection option adds some computational overhead to the CVODES solution. (In timing tests, these
overhead costs have ranged from 2% to 7% of the total, depending on the size and complexity of the problem, with
lower relative costs for larger problems.) Therefore, it should be activated only when there is reasonable expectation
of modes in the user’s system for which it is appropriate. In particular, if a CVODES solution with this option turned
off appears to take an inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution
time scale, then there is a good chance that step sizes are being limited by stability, and that turning on the option will
improve the efficiency of the solution.

2.5 Rootfinding

The CVODES solver has been augmented to include a rootfinding feature. This means that, while integrating the Initial
Value Problem (2.1), CVODES can also find the roots of a set of user-defined functions g; (¢, y) that depend both on ¢
and on the solution vector y = y(t). The number of these root functions is arbitrary, and if more than one g; is found
to have a root in any given interval, the various root locations are found and reported in the order that they occur on the
t axis, in the direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of g;(¢, y(t)),
denoted g;(t) for short. If a user root function has a root of even multiplicity (no sign change), it will probably be
missed by CVODES. If such a root is desired, the user should reformulate the root function so that it changes sign at
the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign change
is found) to hone in on the root(s) with a modified secant method [37]. In addition, each time g is computed, CVODES
checks to see if g;(t) = 0 exactly, and if so it reports this as a root. However, if an exact zero of any g; is found at a
point £, CVODES computes g at ¢ 4+ ¢ for a small increment J, slightly further in the direction of integration, and if
any g;(t + d) = 0 also, CVODES stops and reports an error. This way, each time CVODES takes a time step, it is
guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, CVODES
has an interval (¢;,, tn;] in which roots of the g;(¢) are to be sought, such that ¢; is further ahead in the direction of
integration, and all g;(¢;,) # 0. The endpoint 5 is either ¢,,, the end of the time step last taken, or the next requested
output time t,, if this comes sooner. The endpoint ¢;, is either ¢,,_1, the last output time ¢, (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward ¢,, if
an exact zero was found. The algorithm checks g; at tj; for zeros and for sign changes in (¢, t;). If no sign changes
were found, then either a root is reported (if some g;(¢5,;) = 0) or we proceed to the next time interval (starting at ¢5;).
If one or more sign changes were found, then a loop is entered to locate the root to within a rather tight tolerance, given
by

7 =100 U * (|t,| + |h]) (U = unit roundof) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur first
is the one with the largest value of |g; (¢tn:)|/|9: (tni) — g:(ti0)], corresponding to the closest to ¢;, of the secant method
values. At each pass through the loop, a new value t,,;4 is set, strictly within the search interval, and the values of
9i(tmia) are checked. Then either ¢;, or tp; is reset to ¢,,;4 according to which subinterval is found to include the sign
change. If there is none in (¢;,, t;niq) but some g;(tmiq) = 0, then that root is reported. The loop continues until
|thi — tio| < 7, and then the reported root location is tp;.

16 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.3.0

In the loop to locate the root of g;(t), the formula for ¢,,;4 is
tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢,,;4 the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs. high, i.e., toward ¢;, vs. toward ¢5;) in
which the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two
sides were the same, « is halved (if on the low side) or doubled (if on the high side). The value of t,,;4 is closer to
1, when o < 1 and closer to t;,; when o > 1. If the above value of ¢,,;4 is within 7/2 of ¢;, or ¢, it is adjusted
inward, such that its fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being
the midpoint), and the actual distance from the endpoint is at least /2.

2.6 Pure Quadrature Integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity analysis run
(see §2.8) it is of interest to compute integral quantities of the form

2(t) = / q(t,y(7),p)dr. (2.13)

to

The most effective approach to compute z(t) is to extend the original problem with the additional ODEs (obtained by
applying Leibnitz’s differentiation rule):

2:q(t7yap)7 Z(t()):O

Note that this is equivalent to using a quadrature method based on the underlying linear multistep polynomial repre-
sentation for y(t).

This can be done at the “user level” by simply exposing to CVODES the extended ODE system (2.3) + (2.13). However,
in the context of an implicit integration solver, this approach is not desirable since the nonlinear solver module will
require the Jacobian (or Jacobian-vector product) of this extended ODE. Moreover, since the additional states z do not
enter the right-hand side of the ODE (2.13) and therefore the right-hand side of the extended ODE system, it is much
more efficient to treat the ODE system (2.13) separately from the original system (2.3) by “taking out” the additional
states z from the nonlinear system (2.5) that must be solved in the correction step of the LMM. Instead, “corrected”
values 2" are computed explicitly as

Qn .0

)

K2 Kl
1 o By
Zn = - (hnﬁn,oq(t'ru ynap) + hn Zﬂn,izn ! + Z an,izn Z))
i=1 i=1

once the new approximation y" is available.

The quadrature variables z can be optionally included in the error test, in which case corresponding relative and absolute
tolerances must be provided.

2.7 Forward Sensitivity Analysis

Typically, the governing equations of complex, large-scale models depend on various parameters, through the right-
hand side vector and/or through the vector of initial conditions, as in (2.3). In addition to numerically solving the ODEs,
it may be desirable to determine the sensitivity of the results with respect to the model parameters. Such sensitivity
information can be used to estimate which parameters are most influential in affecting the behavior of the simulation
or to evaluate optimization gradients (in the setting of dynamic optimization, parameter estimation, optimal control,
etc.).

2.6. Pure Quadrature Integration 17

User Documentation for CVODES, v7.3.0

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) = dy(t)/Op; and satisfies
the following forward sensitivity equations (or sensitivity equations for short):

of | of oy 9y(p)
dy S opi’ silfo) = Op;

, (2.14)

5 =

obtained by applying the chain rule of differentiation to the original ODEs (2.3).

When performing forward sensitivity analysis, CVODES carries out the time integration of the combined system, (2.3)
and (2.14), by viewing it as an ODE system of size N (N, + 1), where N is the number of model parameters p;, with
respect to which sensitivities are desired (Vg < NN,). However, major improvements in efficiency can be made by
taking advantage of the special form of the sensitivity equations as linearizations of the original ODEs. In particular,
for stiff systems, for which CVODES employs a Newton iteration, the original ODE system and all sensitivity systems
share the same Jacobian matrix, and therefore the same iteration matrix M in (2.9).

The sensitivity equations are solved with the same linear multistep formula that was selected for the original ODEs and,
if Newton iteration was selected, the same linear solver is used in the correction phase for both state and sensitivity
variables. In addition, CVODES offers the option of including (full error control) or excluding (partial error control)
the sensitivity variables from the local error test.

2.7.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the combined ODE and
sensitivity system for the vector § = [y, $1, ..., Sn.]-

* Staggered Direct

In this approach [22], the nonlinear system (2.5) is first solved and, once an acceptable numerical solution is
obtained, the sensitivity variables at the new step are found by directly solving (2.14) after the (BDF or Adams)
discretization is used to eliminate s;. Although the system matrix of the above linear system is based on exactly
the same information as the matrix M in (2.9), it must be updated and factored at every step of the integration, in
contrast to an evaluation of M which is updated only occasionally. For problems with many parameters (relative
to the problem size), the staggered direct method can outperform the methods described below [50]. However,
the computational cost associated with matrix updates and factorizations makes this method unattractive for
problems with many more states than parameters (such as those arising from semidiscretization of PDEs) and is
therefore not implemented in CVODES.

e Simultaneous Corrector

In this method [55], the discretization is applied simultaneously to both the original equations (2.3) and the
sensitivity systems (2.14) resulting in the following nonlinear system

F(gn) = gn - hnﬁn,Of(tn; gn) - dn = 07

where f = [f(t,y,p)s ..., (Of JOy)(t,y,p)si + (Of /Opi)(t,y,p),...], and &, is comprised of the terms in the
discretization that depend on the solution at previous integration steps. This combined nonlinear system can be
solved using a modified Newton method as in (2.8) by solving the corrector equation

at each iteration, where
M
*")/Jl M
M — —’YJQ 0 M ,
*’YJNS 0 . 0 M

18 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.3.0

0 0 0
M is defined asin (2.9), and J; = a—y KJ;) S; + (81{)} . It can be shown that 2-step quadratic convergence

can be retained by using only the block-diagonal portion of M in the corrector equation (2.15). This results in a

0
decoupling that allows the reuse of M without additional matrix factorizations. However, the products (f> S5

dy
0
and the vectors —f must still be reevaluated at each step of the iterative process (2.15) to update the sensitivity
Pi
portions of the residual G.

 Staggered corrector

In this approach [32], as in the staggered direct method, the nonlinear system (2.5) is solved first using the Newton
iteration (2.8). Then a separate Newton iteration is used to solve the sensitivity system (2.14):

M[Sﬁ(m+1) _ sﬁ(m)] _

K2 ?

|:37; Y <8y (tﬂmy 7p)52 + 8pz (t"’y 7p) Qi | s

(2.16)

where a;n = 3o o(an,;js; " + hnfy,;8; 7). In other words, a modified Newton iteration is used to solve a

linear system. In this approach, the vectors (0f/0p;) need be updated only once per integration step, after the
state correction phase (2.8) has converged. Note also that Jacobian-related data can be reused at all iterations
(2.16) to evaluate the products (Of/0y)s;.

CVODES implements the simultaneous corrector method and two flavors of the staggered corrector method which
differ only if the sensitivity variables are included in the error control test. In the full error control case, the first variant
of the staggered corrector method requires the convergence of the iterations (2.16) for all IV, sensitivity systems and
then performs the error test on the sensitivity variables. The second variant of the method will perform the error test for
each sensitivity vector s;, (i = 1,2,. .., N,) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors s; fails a convergence or error
test.

An important observation is that the staggered corrector method, combined with a Krylov linear solver, effectively
results in a staggered direct method. Indeed, the Krylov solver requires only the action of the matrix M on a vector
and this can be provided with the current Jacobian information. Therefore, the modified Newton procedure (2.16) will
theoretically converge after one iteration.

2.7.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, CVODES provides an automated estimation of absolute tolerances for
the sensitivity variables based on the absolute tolerance for the corresponding state variable. The relative tolerance
for sensitivity variables is set to be the same as for the state variables. The selection of absolute tolerances for the
sensitivity variables is based on the observation that the sensitivity vector s; will have units of [y]/[p;]. With this, the
absolute tolerance for the j-th component of the sensitivity vector s; is set to atol;/|p;|, where atol; are the absolute
tolerances for the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute tolerances is
equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector s; with weights based on s;
be the same as the weighted root-mean-square norm of the vector of scaled sensitivities 5; = |p;|s; with weights based
on the state variables (the scaled sensitivities 5; being dimensionally consistent with the state variables). However, this
choice of tolerances for the s; may be a poor one, and the user of CVODES can provide different values as an option.

2.7. Forward Sensitivity Analysis 19

User Documentation for CVODES, v7.3.0

2.7.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (2.14): analytic evaluation,
automatic differentiation, complex-step approximation, and finite differences (or directional derivatives). CVODES
provides all the software hooks for implementing interfaces to automatic differentiation (AD) or complex-step approx-
imation; future versions will include a generic interface to AD-generated functions. At the present time, besides the
option for analytical sensitivity right-hand sides (user-provided), CVODES can evaluate these quantities using various
finite difference-based approximations to evaluate the terms (0 f /Qy)s; and (9 f /Op;), or using directional derivatives
to evaluate [(Of/0y)s; + (Of/Opi)]. As is typical for finite differences, the proper choice of perturbations is a deli-
cate matter. CVODES takes into account several problem-related features: the relative ODE error tolerance rtol, the
machine unit roundoff U, the scale factor p;, and the weighted root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (0 f/Jy)s; and Of/Op; in the right-hand side of (2.14)
can be evaluated either separately:

of [ty +oysi,p) — f(t,y — aysi,p)

s 3] : 2.17)
87‘](‘ ~ f(t7yap+0-iei) _f(tvyvp_o'iei) (2 18)
Op; 20 ’ '

1
0; = |pi|v/max(rtol,U), o, =

max(1/oi, ||sill/|pil)
or simultaneously:
gS' af ~ f(t7y+03iap+03i)_f(t73/_<75i7p_0€i)
oy~ ap; 20 ’

o =min(o;, 0y),

or by adaptively switching between (2.17) + (2.18) and (2.19), depending on the relative size of the finite difference
increments o; and o,,. In the adaptive scheme, if p = max(o;/0,0,/0;), we use separate evaluations if p > ppaq
(an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o5, oy, o) and switching between finite difference and directional
derivative formulas have also been implemented for one-sided difference formulas. Forward finite differences can be
applied to (0f/0y)s; and O f/Op; separately, or the single directional derivative formula

of | of _ flt,y+osi,ptoe)— f(t,y,p)
5+ —— =
dy Op; o

can be used. In CVODES, the default value of p,,,, = 0 indicates the use of the second-order centered directional
derivative formula (2.19) exclusively. Otherwise, the magnitude of p,,,, and its sign (positive or negative) indicates
whether this switching is done with regard to (centered or forward) finite differences, respectively.

2.7.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.6), CVODES does not carry their
sensitivities automatically. Instead, we provide a more general feature through which integrals depending on both the
states y of (2.3) and the state sensitivities s; of (2.14) can be evaluated. In other words, CVODES provides support for
computing integrals of the form:

z(¢) :/l(j(T,y(T),Sl(T),...,SNP(T),p)dT.

to

If the sensitivities of the quadrature variables z of (2.13) are desired, these can then be computed by using:

inQySi_FQpiv izlv"'7Np7

20 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.3.0

as integrands for Z, where ¢, and ¢, are the partial derivatives of the integrand function g of (2.13).

As with the quadrature variables z, the new variables z are also excluded from any nonlinear solver phase and “cor-
rected” values z" are obtained through explicit formulas.

2.8 Adjoint Sensitivity Analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with respect to Ng param-
eters is roughly equivalent to solving an ODE system of size (1 + Ng)N. This can become prohibitively expensive,
especially for large-scale problems, if sensitivities with respect to many parameters are desired. In this situation, the
adjoint sensitivity method is a very attractive alternative, provided that we do not need the solution sensitivities s;, but
rather the gradients with respect to model parameters of a relatively few derived functionals of the solution. In other
words, if y(¢) is the solution of (2.3), we wish to evaluate the gradient dG/dp of

T
G(p) = / g(t,y,p)dt, (2.19)
to

or, alternatively, the gradient dg/dp of the function g(¢, y, p) at the final time T". The function g must be smooth enough
that dg/0y and Og/Jp exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For details on the derivation
see [21]. Introducing a Lagrange multiplier A, we form the augmented objective function

T
umzaw—z'vw—fm%mmu

where * denotes the conjugate transpose. The gradient of G with respect to p is

dG dI /T T
=5 wrasd- [NG gs-pa,
dp dp o 14) to Yy 14
where subscripts on functions f or g are used to denote partial derivatives and s = [sq,...,sy,] is the matrix of
solution sensitivities. Applying integration by parts to the term A*$, and by requiring that \ satisfy
() ()
dy dy (2.20)
ANT)=0,

the gradient of G with respect to p is nothing but

e, g)

i A*(to)s(to) + (gp + X" fp)dt. (2.21)
to

The gradient of g(7T', y, p) with respect to p can be then obtained by using the Leibniz differentiation rule. Indeed, from

(2.19),

dg d dG

T)=——
dp() dT dp

and therefore, taking into account that dG/dp in (2.21) depends on T both through the upper integration limit and
through), and that A\(T") = 0,

dg

T
D) = (t0)a(to) + 9,(T) + /t gt (2.22)

2.8. Adjoint Sensitivity Analysis 21

User Documentation for CVODES, v7.3.0

where p is the sensitivity of A\ with respect to the final integration limit 7". Thus y satisfies the following equation,
obtained by taking the total derivative with respect to T" of (2.20):

()
- ().,

The final condition on (T follows from (9A/dt) + (OA/OT) = 0 at T, and therefore, 1u(T) = —A(T).

(2.23)

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification of the parameters p; this
implies that, once the solution A is found, the formula (2.21) can then be used to find the gradient of G with respect to
any of the parameters p. The same holds true for the system (2.23) and the formula (2.22) for gradients of g(7T',y, p).
The second important remark is that the adjoint systems (2.20) and (2.23) are terminal value problems which depend
on the solution y(¢) of the original IVP (2.3). Therefore, a procedure is needed for providing the states y obtained
during a forward integration phase of (2.3) to CVODES during the backward integration phase of (2.20) or (2.23). The
approach adopted in CVODES, based on checkpointing, is described below.

2.9 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires, at the current time,
the states y which were computed during the forward integration phase. Since CVODES implements variable-step
integration formulas, it is unlikely that the states will be available at the desired time and so some form of interpolation
is needed. The CVODES implementation being also variable-order, it is possible that during the forward integration
phase the order may be reduced as low as first order, which means that there may be points in time where only y and g are
available. These requirements therefore limit the choices for possible interpolation schemes. CVODES implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial interpolation
method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size of the vectors y and y
that would need to be stored make this approach computationally intractable. Thus, CVODES settles for a compromise
between storage space and execution time by implementing a so-called checkpointing scheme. At the cost of at most
one additional forward integration, this approach offers the best possible estimate of memory requirements for adjoint
sensitivity analysis. To begin with, based on the problem size N and the available memory, the user decides on the
number Ny of data pairs (y, ¢) if cubic Hermite interpolation is selected, or on the number Ny of y vectors in the
case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of interpolation. Then,
during the first forward integration stage, after every N, integration steps a checkpoint is formed by saving enough
information (either in memory or on disk) to allow for a hot restart, that is a restart which will exactly reproduce the
forward integration. In order to avoid storing Jacobian-related data at each checkpoint, a reevaluation of the iteration
matrix is forced before each checkpoint. At the end of this stage, we are left with IV, checkpoints, including one at ;.
During the backward integration stage, the adjoint variables are integrated from 7T to ¢y going from one checkpoint to
the previous one. The backward integration from checkpoint 7 4 1 to checkpoint ¢ is preceded by a forward integration
from ¢ to ¢ + 1 during which the N4 vectors y (and, if necessary ¥) are generated and stored in memory for interpolation
(see Fig. 2.1).

Note

The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation
at the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th
checkpoint, in which case it uses the BDF order at the right-most relevant point). However, because of the FLC
BDF implementation §2.1, the resulting interpolation polynomial is only an approximation to the underlying BDF
interpolant.

22 Chapter 2. Mathematical Considerations

User Documentation for CVODES, v7.3.0

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also
used by other adjoint solvers (e.g. DASPKADJOINT. The variable-degree polynomial is more memory-efficient (it
requires only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy
differences are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant
for the Adams method for which the order can reach 12.

\
Forward pass

Ko k, k, ky -

= ~—
\ Backward pass

Fig. 2.1: Tllustration of the checkpointing algorithm for generation of the forward solution during the integration of the
adjoint system.

This approach transfers the uncertainty in the number of integration steps in the forward integration phase to uncer-
tainty in the final number of checkpoints. However, N, is much smaller than the number of steps taken during the
forward integration, and there is no major penalty for writing/reading the checkpoint data to/from a temporary file.
Note that, at the end of the first forward integration stage, interpolation data are available from the last checkpoint to
the end of the interval of integration. If no checkpoints are necessary (/V; is larger than the number of integration steps
taken in the solution of (2.3)), the total cost of an adjoint sensitivity computation can be as low as one forward plus
one backward integration. In addition, CVODES provides the capability of reusing a set of checkpoints for multiple
backward integrations, thus allowing for efficient computation of gradients of several functionals (2.19).

Finally, we note that the adjoint sensitivity module in CVODES provides the necessary infrastructure to integrate
backwards in time any ODE terminal value problem dependent on the solution of the IVP (2.3), including adjoint
systems (2.20) or (2.23), as well as any other quadrature ODEs that may be needed in evaluating the integrals in (2.21)
or (2.22). In particular, for ODE systems arising from semi-discretization of time-dependent PDEs, this feature allows
for integration of either the discretized adjoint PDE system or the adjoint of the discretized PDE.

2.10 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute second-order deriva-
tive information. Considering the ODE problem (2.3) and some model output functional, g(y) then the Hessian
d?g/dp? can be obtained in a forward sensitivity analysis setting as

d2%g -
d7p2 = (gy ® INP) Ypp + yp GyyYp »

where ® is the Kronecker product. The second-order sensitivities are solution of the matrix ODE system:

Upp = (fy ®1Np) “Ypp T+ (IN ®y,?) 'fyyyp

82y0
Ypp(to) = op?

2.10. Second-order sensitivity analysis 23

User Documentation for CVODES, v7.3.0

where y,, is the first-order sensitivity matrix, the solution of N, systems (2.14), and y,,,, is a third-order tensor. It is easy
to see that, except for situations in which the number of parameters N, is very small, the computational cost of this
so-called forward-over-forward approach is exorbitant as it requires the solution of N,, 4 NI? additional ODE systems
of the same dimension [NV as (2.3).

Note

For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters p.
Moreover, we only consider the case in which the dependency of the original ODE (2.3) on the parameters p is
through its initial conditions only. For details on the derivation in the general case, see [56].

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-over-adjoint ap-
proach. This method is based on using the same “trick” as the one used in computing gradients of pointwise functionals
with the adjoint method, namely applying a formal directional forward derivation to one of the gradients of (2.21) or
(2.22). With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gradient with
forward sensitivity analysis. However, Hessian-vector products can be cheaply computed with one additional adjoint
solve. Consider for example, G(p) = |, ttof g(t,y) dt. It can be shown that the product between the Hessian of G (with
respect to the parameters p) and some vector u can be computed as

——u=[(AT"®In,) yppu + y, 1] —to
where A, u, and s are solutions of
*ﬂ:fgqu(/\T@In)fnyJrgny; ﬂ(tf):()
—A=fIA4gr5 Aty =0
s=fys; s(to) = Yopu

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,. The forward-
over-adjoint approach hinges crucially on the fact that s can be computed at the cost of a forward sensitivity analysis
with respect to a single parameter (the last ODE problem above) which is possible due to the linearity of the forward
sensitivity equations (2.14).

Therefore, the cost of computing the Hessian-vector product is roughly that of two forward and two backward integra-
tions of a system of ODEs of size /N. For more details, including the corresponding formulas for a pointwise model
functional output, see [56].

To allow the foward-over-adjoint approach described above, CVODES provides support for:
¢ the integration of multiple backward problems depending on the same underlying forward problem (2.3), and

* the integration of backward problems and computation of backward quadratures depending on both the states y
and forward sensitivities (for this particular application, s) of the original problem (2.3).

24 Chapter 2. Mathematical Considerations

Chapter 3

Code Organization

The CVODES package is written in ANSI C. The following summarizes the basic structure of the package, although
knowledge of this structure is not necessary for its use.

The overall organization of the CVODES package is shown in Fig. 3.1. The basic elements of the structure are a module
for the basic integration algorithm (including forward sensitivity analysis), a module for adjoint sensitivity analysis,
and support for the solution of nonlinear and linear systems that arise in the case of a stiff system.

SUNDIALS
[CVODES H CVADJOINT]

! l

CVLS CVNLS
Linear Solver Interface Nonlinear Solver Interface

Vector | | Matrix | | Linear Solver | | Nonlinear Solver

CVDIAG - Diagonal
Linear Solver
\4

Preconditioner Modules
(cvBBDPRE | CVBANDPRE |

Fig. 3.1: Overall structure diagram of the CVODES package. Modules specific to CVODES begin with “CV” (CVLS,
CVNLS, CVDIAG, CVBBDPRE, and CVBANDPRE), all other items correspond to generic SUNDIALS vector, ma-
trix, and solver modules.

The central integration module, implemented in the files CVODES.h, cvode_impl.h, and CVODES. c, deals with the
evaluation of integration coefficients, estimation of local error, selection of stepsize and order, and interpolation to user
output points, among other issues.

CVODES utilizes generic linear and nonlinear solver modules defined by the SUNLinearSolver API (see Chapter §8)
and SUNNonlinearSolver API (see Chapter §9), respectively. As such, CVODES has no knowledge of the method

25

User Documentation for CVODES, v7.3.0

being used to solve the linear and nonlinear systems that arise. For any given user problem, there exists a single nonlinear
solver interface and, if necessary, one of the linear system solver interfaces is specified, and invoked as needed during
the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward sensitivity equations
simultaneously with the original IVP. The sensitivity variables may be included in the local error control mechanism of
the main integrator. CVODES provides three different strategies for dealing with the correction stage for the sensitivity
variables: CV_SIMULTANEOUS, CV_STAGGERED and CV_STAGGERED1 (see §2.7 and §5.3.2.1). The CVODES package
includes an algorithm for the approximation of the sensitivity equations right-hand sides by difference quotients, but
the user has the option of supplying these right-hand sides directly.

The adjoint sensitivity module (file cvodea. c) provides the infrastructure needed for the backward integration of any
system of ODEs which depends on the solution of the original IVP, in particular the adjoint system and any quadratures
required in evaluating the gradient of the objective functional. This module deals with the setup of the checkpoints,
the interpolation of the forward solution during the backward integration, and the backward integration of the adjoint
equations.

At present, the package includes two linear solver interfaces. The primary linear solver interface, CVLS, supports
both direct and iterative linear solvers built using the generic SUNLinearSolver API (see Chapter §8). These solvers
may utilize a SUNMatrix object (see Chapter §7) for storing Jacobian information, or they may be matrix-free. Since
CVODES can operate on any valid SUNLinearSolver implementation, the set of linear solver modules available to
CVODES will expand as new SUNLinearSolver modules are developed.

Additionally, CVODES includes the diagonal linear solver interface, CVDIAG, that creates an internally generated
diagonal approximation to the Jacobian.

For users employing SUNMATRIX_DENSE or SUNMATRIX_BAND Jacobian matrices, CVODES includes algorithms
for their approximation through difference quotients, although the user also has the option of supplying a routine to
compute the Jacobian (or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, CVODES includes an algorithm for the approximation by
difference quotients of the product Mv. Again, the user has the option of providing routines for this operation, in two
phases: setup (preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again in two phases: setup and
solve. While there is no default choice of preconditioner analogous to the difference-quotient approximation in the
direct case, the references [16, 18], together with the example and demonstration programs included with CVODES,
offer considerable assistance in building preconditioners.

CVODES’ linear solver interface consists of four primary phases, devoted to (1) memory allocation and initialization,
(2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solu-
tion phases are separate because the evaluation of Jacobians and preconditioners is done only periodically during the
integration, and only as required to achieve convergence.

CVODES also provides two preconditioner modules, for use with any of the Krylov iterative linear solvers. The first
one, CVBANDPRE, is intended to be used with NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS and
provides a banded difference-quotient Jacobian-based preconditioner, with corresponding setup and solve routines.
The second preconditioner module, CVBBDPRE, works in conjunction with NVECTOR_PARALLEL and generates a
preconditioner that is a block-diagonal matrix with each block being a banded matrix.

All state information used by CVODES to solve a given problem is saved in a structure, and a pointer to that structure
is returned to the user. There is no global data in the CVODES package, and so, in this respect, it is reentrant. State
information specific to the linear solver is saved in a separate structure, a pointer to which resides in the CVODES
memory structure. The reentrancy of CVODES was motivated by the anticipated multicomputer extension, but is also
essential in a uniprocessor setting where two or more problems are solved by intermixed calls to the package from
within a single user program.

26 Chapter 3. Code Organization

Chapter 4

Getting Started

The packages that make up SUNDIALS are built upon shared classes for vectors, matrices, and algebraic solvers. In
addition, the packages all leverage some other common infrastructure, which we discuss in this section.

SUNDIALS

v

v v

v v

[CVODE]

[CVODES] [ARKODE] [

IDA

] [KINSOL]

!
1]

.

)

[
[
[
[
[
[
[
[

[]
[)

Trilinos

Matrix-fre

[

)

—

SPTFQMR SPBCG]

Fig. 4.1: High-level diagram of the SUNDIALS suite.

Vectors Matrices Linear Solvers Nonlinear Solvers
Serial] [Parallel (MPI)] [Dense] [Band] Matrix-based rton] [Fixed Point
ervesce) (_opanite | |(sweme) (S | |LLoeree J[[_we]
LAPACK LAPACK
OpenMP DEV] [CUDA] [cuSPARSE] [MAGMA Dense] [Dense][Band]
SuperLU
HIP] [RAJA] [Ginkgo Dense] [oneMKL Dense] KLY
Kokkos] [syYcL] [s“,;g‘f,'.'u][CuSOLVER]
ManyVector][MPI ManyVector] [MAGMA Dense][Ginkgo]
MPI + X] Rarkhyp [oneMKL Dense] [Kokkok Kernel]

27

User Documentation for CVODES, v7.3.0

4.1 Data Types

SUNDIALS defines several data types in the header file sundials_types.h. These types are used in the SUNDIALS
API and internally in SUNDIALS. It is not necessary to use these types in your application, but the type must be
compatible with the SUNDIALS types in the API when calling SUNDIALS functions. The types that are defined are:

* sunrealtype — the floating-point type used by the SUNDIALS packages
» sunindextype — the integer type used for vector and matrix indices

e suncountertype — the integer type used for counter variables

* sunbooleantype — the type used for logic operations within SUNDIALS
e SUNOutputFormat — an enumerated type for SUNDIALS output formats

e SUNComm — a simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with
MPL

4.1.1 Floating point types

type sunrealtype

The type sunrealtype can be float, double, or long double, with the default being double. The user can
change the precision of the arithmetic used in the SUNDIALS solvers at the configuration stage (see SUNDIALS_-
PRECISION).

Additionally, based on the current precision, sundials_types.h defines SUN_BIG_REAL to be the largest value rep-
resentable as a sunrealtype, SUN_SMALL_REAL to be the smallest value representable as a sunrealtype, and SUN_-
UNIT_ROUNDOFF to be the difference between 1.0 and the minimum sunrealtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called SUN_RCONST. It is this macro that needs the ability
to branch on the definition of sunrealtype. In ANSI C, a floating-point constant with no suffix is stored as a double.
Placing the suffix “F” at the end of a floating point constant makes it a float, whereas using the suffix “L” makes it a
long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call SUN_RCONST(1.0) automatically expands to 1.0 if sunrealtype is double,
to 1.0F if sunrealtype is float, orto 1.0L if sunrealtype is long double. SUNDIALS uses the SUN_RCONST
macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on the
sunrealtype. For example, the macro SUNRabs expands to the C function fabs when sunrealtype is double,
fabsf when sunrealtype is float, and fabsl when sunrealtype is long double.

A user program which uses the type sunrealtype, the SUN_RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs use
sunrealtype, SUN_RCONST, and the SUNR macros. Users can, however, use the type double, float, or long double
in their code (assuming that this usage is consistent with the typedef for sunrealtype) and call the appropriate math
library functions directly. Thus, a previously existing piece of C or C++ code can use SUNDIALS without modifying
the code to use sunrealtype, SUN_RCONST, or the SUNR macros so long as the SUNDIALS libraries are built to use
the corresponding precision (see §11.3).

28 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

4.1.2 Integer types used for indexing

type sunindextype

The type sunindextype is used for indexing array entries in SUNDIALS modules as well as for storing the total
problem size (e.g., vector lengths and matrix sizes). During configuration sunindextype may be selected to be
either a 32- or 64-bit signed integer with the default being 64-bit (see SUNDIALS_INDEX_SIZE).

When using a 32-bit integer the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1.
For users with problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype (see SUNDIALS_INDEX_TYPE).

A user program which uses sunindextype to handle indices will work with both index storage types except for any calls
to index storage-specific external libraries. Our C and C++ example programs use sunindextype. Users can, however,
use any compatible type (e.g., int, long int, int32_t, int64_t, or long long int) in their code, assuming that
this usage is consistent with the typedef for sunindextype on their architecture. Thus, a previously existing piece of
C or C++ code can use SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS
libraries use the appropriate index storage type (for details see §11.3).

4.1.3 Integer type used for counters

type suncountertype

The type suncountertype is used for counter variables in SUNDIALS (e.g., number of stpes) and is the same
as long int.

Added in version 7.3.0.

4.1.4 Boolean type

type sunbooleantype

As ANSI C89 (ISO C90) does not have a built-in boolean data type, SUNDIALS defines the type sunboolean-
type as an int.

The advantage of using the name sunbooleantype (instead of int) is an increase in code readability. It also allows the
programmer to make a distinction between int and boolean data. Variables of type sunbooleantype are intended to
have only the two values: SUNFALSE or SUNTRUE.

SUNFALSE
False (0)

SUNTRUE
True (1)

4.1.5 Output formatting type

enum SUNOutputFormat
The enumerated type SUNOutputFormat defines the enumeration constants for SUNDIALS output formats

enumerator SUN_OUTPUTFORMAT_TABLE

The output will be a table of values

4.1. Data Types 29

User Documentation for CVODES, v7.3.0

enumerator SUN_OUTPUTFORMAT_CSV
The output will be a comma-separated list of key and value pairs e.g., keyl,valuel,key2,value2,...

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

4.1.6 MPI types

type SUNComm

A simple typedef to an int when SUNDIALS is built without MPI, or a MPI_Comm when built with MPI. This
type exists solely to ensure SUNDIALS can support MPI and non-MPI builds.

SUN_COMM_NULL
A macro defined as ® when SUNDIALS is built without MPI, or as MPI_COMM_NULL when built with MPI.

4.2 The SUNContext Type

Added in version 6.0.0.

All of the SUNDIALS objects (vectors, linear and nonlinear solvers, matrices, etc.) that collectively form a SUNDIALS
simulation, hold a reference to a common simulation context object defined by the SUNContext class.

type SUNContext
An opaque pointer used by SUNDIALS objects for error handling, logging, profiling, etc.

Users should create a SUNContext object prior to any other calls to SUNDIALS library functions by calling:
SUNErrCode SUNContext_Create(SUNComm comm, SUNContext *sunctx)

Creates a SUNContext object associated with the thread of execution. The data of the SUNContext class is

private.
Parameters
* comm — the MPI communicator or SUN_COMM_NULL if not using MPL
* sunctx — [in,out] upon successful exit, a pointer to the newly created SUNContext object.
Returns

SUNErrCode indicating success or failure.

The created SUNContext object should be provided to the constructor routines for different SUNDIALS
classes/modules e.g.,

SUNContext sunctx;
void* package_mem;
N_Vector x;

SUNContext_Create(SUN_COMM_NULL, &sunctx);

package_mem CVodeCreate(..., sunctx);
package_mem = IDACreate(..., sunctx);
(continues on next page)

30 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

(continued from previous page)

package_mem = KINCreate(..., sunctx);
package_mem = ARKStepCreate(..., sunctx);
X = N_VNew_<SomeVector>(..., sunctx);

After all other SUNDIALS code, the SUNContext object should be freed with a call to:

SUNErrCode SUNContext_Free(SUNContext *sunctx)
Frees the SUNContext object.

Parameters
* sunctx — pointer to a valid SUNContext object, NULL upon successful return.

Returns
SUNErrCode indicating success or failure.

Warning

When MPI is being used, the SUNContext_Free () must be called prior to MPI_Finalize.

The SUNContext API further consists of the following functions:

SUNErrCode SUNContext_GetLastError (SUNContext sunctx)

Gets the last error code set by a SUNDIALS function call. The function then resets the last error code to SUN_-
SUCCESS.

Parameters
* sunctx — a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PeekLastError (SUNContext sunctx)

Gets the last error code set by a SUNDIALS function call. The function does not reset the last error code to
SUN_SUCCESS.

Parameters
* sunctx — a valid SUNContext object.

Returns
the last SUNErrCode recorded.

SUNErrCode SUNContext_PushErrHandler (SUNContext sunctx, SUNErrHandlerFn err_fn, void
*err_user_data)

Pushes a new SUNErrHandlerFn onto the error handler stack so that it is called when an error occurs inside of
SUNDIALS.

Parameters
* sunctx — a valid SUNContext object.

* err_fn - a callback function of type SUNErrHandlerFn to be pushed onto the error handler
stack.

» err_user_data — a pointer that will be passed back to the callback function when it is
called.

4.2. The SUNContext Type 31

User Documentation for CVODES, v7.3.0

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_PopErrHandler (SUNContext sunctx)
Pops the last SUNErrHandlerFn off of the error handler stack.

Parameters
* sunctx — a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_ClearErrHandlers (SUNContext sunctx)

Clears the entire error handler stack. After doing this it is important to push an error handler onto the stack with
SUNContext_PushErrHandler otherwise errors will be ignored.

Parameters
* sunctx — a valid SUNContext object.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_GetProfiler (SUNContext sunctx, SUNProfiler *profiler)
Gets the SUNProfiler object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

» profiler - [in,out] a pointer to the SUNProfiler object associated with this context; will
be NULL if profiling is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetProfiler (SUNContext sunctx, SUNProfiler profiler)
Sets the SUNProfiler object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

» profiler — a SUNProfiler object to associate with this context; this is ignored if profiling
is not enabled.

Returns
SUNErrCode indicating success or failure.

SUNErrCode SUNContext_SetLogger (SUNContext sunctx, SUNLogger logger)
Sets the SUNLogger object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

* logger — a SUNLogger object to associate with this context; this is ignored if logging is not
enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

32 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

SUNErrCode SUNContext_GetLogger (SUNContext sunctx, SUNLogger *logger)
Gets the SUNLogger object associated with the SUNContext object.

Parameters
* sunctx — a valid SUNContext object.

* logger - [in,out] a pointer to the SUNLogger object associated with this context; will be
NULL if logging is not enabled.

Returns
SUNErrCode indicating success or failure.

Added in version 6.2.0.

4.2.1 Implications for task-based programming and multi-threading

Applications that need to have concurrently initialized SUNDIALS simulations need to take care to understand the
following:

1. A SUNContext object must only be associated with one SUNDIALS simulation (a solver object and its associated
vectors etc.) at a time.

» Concurrently initialized is not the same as concurrently executing. Even if two SUNDIALS simulations
execute sequentially, if both are initialized at the same time with the same SUNContext, behavior is unde-
fined.

It is OK to reuse a SUNContext object with another SUNDIALS simulation after the first simulation has
completed and all of the simulation’s associated objects (vectors, matrices, algebraic solvers, etc.) have
been destroyed.

2. The creation and destruction of a SUNContext object is cheap, especially in comparison to the cost of creat-
ing/destroying a SUNDIALS solver object.

The following (incomplete) code examples demonstrate these points using CVODE as the example SUNDIALS pack-
age.

SUNContext sunctxs[num_threads];
int cvode_initialized[num_threads];
void* cvode_mem[num_threads];

// Create

for (int i = 0; 1 < num_threads; i++) {
sunctxs[i] = SUNContext_Create(...);
cvode_mem[i] = CVodeCreate(..., sunctxs[i]);
cvode_initialized[i] = 0; // not yet initialized
// set optional cvode inputs...

¥

// Solve
#pragma omp parallel for
for (int i = 0; i < num_problems; i++) {
int retval = 0;
int tid = omp_get_thread_num();
if (!cvode_initialized[tid]) {
retval = CVodeInit(cvode_mem[tid], ...);
cvode_initialized[tid] = 1;
(continues on next page)

4.2. The SUNContext Type 33

User Documentation for CVODES, v7.3.0

} else {
retval = CVodeReInit(cvode_mem[tid],
}
CVode(cvode_mem[i], ...);
}
// Destroy

for (int i = 0; i < num_threads; i++) {
// get optional cvode outputs...
CVodeFree (&cvode_mem[i]);
SUNContext_Free(&sunctxs[i]);

}

00))B

(continued from previous page)

Since each thread has its own unique CVODE and SUNContext object pair, there should be no thread-safety issues.
Users should be sure that you apply the same idea to the other SUNDIALS objects needed as well (e.g. an N_Vector).

The variation of the above code example demonstrates another possible approach:

// Create, Solve, Destroy

#pragma omp parallel for

for (int i = 0; i < num_problems; i++) {
int retval = 0;
void* cvode_mem;
SUNContext sunctx;

sunctx = SUNContext_Create(...);
cvode_mem = CVodeCreate(..., sunctx);
retval = CVodeInit(cvode_mem, ...);
// set optional cvode inputs...
CVode(cvode_mem, ...);

// get optional cvode outputs...
CVodeFree (&cvode_mem) ;

SUNContext_Free(&sunctx) ;
}

So long as the overhead of creating/destroying the CVODE object is small compared to the cost of solving the ODE,
this approach is a fine alternative to the first approach since SUNContext_Create() and SUNContext_Free() are

much cheaper than the CVODE create/free routines.

34

Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

4.2.2 Convenience class for C++ Users

For C++ users a RAII safe class, sundials: :Context, is provided:

namespace sundials {

class Context : public sundials::ConvertibleTo<SUNContext>
{
public:
explicit Context(SUNComm comm = SUN_COMM_NULL)
{
sunctx_ = std::make_unique<SUNContext>();
SUNContext_Create(comm, sunctx_.get());

}

/* disallow copy, but allow move construction */
Context(const Context&) = delete;
Context (Context&&) = default;

/% disallow copy, but allow move operators */
Context& operator=(const Context&) = delete;

Context& operator=(Context&&) = default;

SUNContext Convert() override

{
return “sunctx_.get();
}
SUNContext Convert() const override
{
return “sunctx_.get();
}
operator SUNContext() override
{
return “sunctx_.get();
}
operator SUNContext() const override
{
return “sunctx_.get();
3
~Context()
{
if (sunctx_) SUNContext_Free(sunctx_.get());
}
private:
std: :unique_ptr<SUNContext> sunctx_;
3

} // namespace sundials

4.2. The SUNContext Type

35

User Documentation for CVODES, v7.3.0

4.3 Error Checking

Added in version 7.0.0.

Until version 7.0.0, error reporting and handling was inconsistent throughout SUNDIALS. Starting with version 7.0.0
all of SUNDIALS (the core, implementations of core modules, and packages) reports error messages through the
SUNLogger API. Furthermore, functions in the SUNDIALS core API (i.e., SUN or N_V functions only) either return a
SUNErrCode, or (if they don’t return a SUNErrCode) they internally record an error code (if an error occurs) within
the SUNContext for the execution stream. This “last error” is accessible via the SUNContext_GetLastError() or

SUNContext_PeekLastError () functions.

typedef int SUNErrCode

Thus, in user code, SUNDIALS core API functions can be checked for errors in one of two ways:

SUNContext sunctx;
SUNErrCode sunerr;
N_Vector v;

int length;
sunrealtype dotprod;

// Every code that uses SUNDIALS must create a SUNContext.
sunctx = SUNContext_Create(...);

// Create a SUNDIALS serial vector.
// Some functions do not return an error code.

// We have to check for errors in these functions using SUNContext_

length = 2;

v = N_VNew_Serial(length, sunctx);

sunerr = SUNContext_GetLastError(sunctx);

if (sunerr) { /* an error occurred, do something */ }

// If the function returns a SUNErrCode, we can check it directly
sunerr = N_VLinearCombination(...);
if (sunerr) { /* an error occurred, do something */ }

// Another function that does not return a SUNErrCode.
dotprod = N_VDotProd(...);
SUNContext_GetLastError(sunctx) ;
if (sunerr) {
/* an error occurred, do something */
} else {
print("dotprod = %.2f\n", dotprod);
}

The function SUNGetErrMsg () can be used to get a message describing the error code.

const char *SUNGetErrMsg (SUNErrCode code)

Returns a message describing the error code.
Parameters
* code - the error code

Returns
a message describing the error code.

GetLastError.

36

Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

Note

It is recommended in most cases that users check for an error after calling SUNDIALS functions. However, users
concerned with getting the most performance might choose to exclude or limit these checks.

Warning

If a function returns a SUNErrCode then the return value is the only place the error is available i.e., these functions
do not store their error code as the “last error” so it is invalid to use SUNContext_GetLastError () to check these
functions for errors.

4.3.1 Error Handler Functions

When an error occurs in SUNDIALS, it calls error handler functions that have been pushed onto the error handler
stack in last-in first-out order. Specific error handlers can be enabled by pushing them onto the error handler stack with
the function SUNContext_PushErrHandler (). They may disabled by calling SUNContext_PopErrHandler() or
SUNContext_ClearErrHandlers (). A SUNDIALS error handler function has the type

typedef void (*SUNErrHandlerFn)(int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

SUNDIALS provides a few different error handlers that can be used, or a custom one defined by the user can be
provided (useful for linking SUNDIALS errors to your application’s error handling). The default error handler is
SUNLogErrHandlerFn() which logs an error to a specified file or stderr if no file is specified.

The error handlers provided in SUNDIALS are:

void SUNLogErrHandlerFn (int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error that occurred using the SUNLogger from sunctx. This is the default error handler.
Parameters
¢ line - the line number at which the error occurred
 func - the function in which the error occurred
o file - the file in which the error occurred

* msg — the message to log, if this is NULL then the default error message for the error code
will be used

* err_code - the error code for the error that occurred
* err_user_data - the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

void SUNAbortErrHandlerFn(int line, const char *func, const char *file, const char *msg, SUNErrCode err_code,
void *err_user_data, SUNContext sunctx)

Logs the error and aborts the program if an error occurred.
Parameters

¢ line — the line number at which the error occurred

4.3. Error Checking 37

User Documentation for CVODES, v7.3.0

¢ func — the function in which the error occurred

file — the file in which the error occurred

* msg — this parameter is ignored

* err_code - the error code for the error that occurred

* err_user_data - the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

void SUNMPIAbortErrHandlerFn (int line, const char *func, const char *file, const char *msg, SUNErrCode
err_code, void *err_user_data, SUNContext sunctx)

Logs the error and calls MPI_Abort if an error occurred.
Parameters

e line - the line number at which the error occurred
 func - the function in which the error occurred
o file - the file in which the error occurred
* msg — this parameter is ignored
e err_code - the error code for the error that occurred
» err_user_data — the user pointer provided to SUNContext_PushErrHandler ()
* sunctx — pointer to a valid SUNContext object

Returns
void

4.4 Status and Error Logging

Added in version 6.2.0.

SUNDIALS includes a built-in logging functionality which can be used to direct error messages, warning messages,
informational output, and debugging output to specified files. This capability requires enabling both build-time and
run-time options to ensure the best possible performance is achieved.

4.4.1 Enabling Logging

To enable logging, the CMake option SUNDIALS_LOGGING_LEVEL must be set to the maximum desired output level
when configuring SUNDIALS. See the SUNDIALS_LOGGING_LEVEL documentation for the numeric values corre-
sponding to errors, warnings, info output, and debug output where errors < warnings < info output < debug output
< extra debug output. By default only warning and error messages are logged.

Note

As of version 7.0.0, enabling MPI in SUNDIALS enables MPI-aware logging.

When SUNDIALS is built with logging enabled, then the default logger (stored in the SUNContext object) may be
configured through environment variables without any changes to user code. The available environment variables are:

38 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

These environment variables may be set to a filename string. There are two special filenames: stdout and stderr.
These two filenames will result in output going to the standard output file and standard error file. The different variables
may all be set to the same file, or to distinct files, or some combination there of. To disable output for one of the streams,
then do not set the environment variable, or set it to an empty string.

If SUNDIALS_LOGGING_LEVEL was set at build-time to a level lower than the corresponding environment variable, then
setting the environment variable will do nothing. For example, if the logging level is set to 2 (errors and warnings),
setting SUNLOGGER_INFO_FILENAME will do nothing.

Warning

A non-default logger should be created and attached to the context object prior to any other SUNDIALS calls in
order to capture all log events.

Error or warning logs are a single line output with an error or warning message

[level] [rank] [scope] [label] message describing the error or warning

Informational or debugging logs are either a single line output with a comma-separated list of key-value pairs of the
form

[level] [rank] [scope] [label] keyl = value, key2 = value

or multiline output with one value per line for keys corresponding to a vector or array e.g.,

[level] [rank] [scope] [label] y(:) =
y[0]
y[1]

In the example log outputs above, the values in brackets have the following meaning:
e level is the log level of the message and will be ERROR, WARNING, INFO, or DEBUG

e rank is the MPI rank the message was written from (® by default or if SUNDIALS was built without MPI
enabled)

* scope is the message scope i.e., the name of the function from which the message was written

e label provides additional context or information about the logging output e.g., begin-step,
end-linear-solve, etc.

Note

When extra debugging output is enabled, the output will include vector values (so long as the N_Vector used
supports printing). Depending on the problem size, this may result in very large logging files.

4.4. Status and Error Logging 39

User Documentation for CVODES, v7.3.0

4.4.2 Logger API

The central piece of the Logger API is the SUNLogger type:
type SUNLogger

An opaque pointer containing logging information.

When SUNDIALS is built with logging enabled, a default logging object is stored in the SUNContext object and can
be accessed with a call to SUNContext_GetLogger ().

The enumerated type SUNLogLevel is used by some of the logging functions to identify the output level or file.
enum SUNLogLevel
The SUNDIALS logging level
enumerator SUN_LOGLEVEL_ALL
Represents all output levels
enumerator SUN_LOGLEVEL_NONE
Represents none of the output levels
enumerator SUN_LOGLEVEL_ERROR
Represents error-level logging messages
enumerator SUN_LOGLEVEL_WARNING
Represents warning-level logging messages
enumerator SUN_LOGLEVEL_INFO
Represents info-level logging messages
enumerator SUN_LOGLEVEL_DEBUG
Represents deubg-level logging messages
The SUNLogger class provides the following methods.
int SUNLogger_Create (SUNComm comm, int output_rank, SUNLogger *logger)
Creates a new SUNLogger object.
Arguments:
e comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.
* output_rank — the MPI rank used for output (can be -1 to print to all ranks).

* logger —[in,out] On input this is a pointer to a SUNLogger, on output it will point to a new SUNLogger
instance.

Returns:
e Returns zero if successful, or non-zero if an error occurred.
int SUNLogger_CreateFromEnv (SUNComm comm, SUNLogger *logger)

Creates a new SUNLogger object and opens the output streams/files from the environment variables:

SUNLOGGER_ERROR_FILENAME
SUNLOGGER_WARNING_FILENAME
SUNLOGGER_INFO_FILENAME
SUNLOGGER_DEBUG_FILENAME

Arguments:

40 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

e comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.

* logger —[in,out] On input this is a pointer to a SUNLogger, on output it will point to anew SUNLogger

instance.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetErrorFilename (SUNLogger logger, const char *error_filename)

Sets the filename for error output.
Arguments:

* logger — a SUNLogger object.

e error_filename — the name of the file to use for error output.
Returns:

e Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetWarningFilename (SUNLogger logger, const char *warning_filename)

Sets the filename for warning output.
Arguments:

* logger —a SUNLogger object.

* warning_filename — the name of the file to use for warning output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetInfoFilename (SUNLogger logger, const char *info_filename)
Sets the filename for info output.

Arguments:

* logger —a SUNLogger object.

e info_filename — the name of the file to use for info output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_SetDebugFilename (SUNLogger logger, const char *debug_filename)
Sets the filename for debug output.

Arguments:

* logger — a SUNLogger object.

* debug_filename — the name of the file to use for debug output.
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_QueueMsg (SUNLogger logger, SUNLogLevel 1vl, const char *scope, const char *label, const char

*msg_txt, ...)
Queues a message to the output log level.

Arguments:

4.4. Status and Error Logging

41

User Documentation for CVODES, v7.3.0

* logger —a SUNLogger object.
e 1v1 - the message log level (i.e. error, warning, info, debug).
* scope — the message scope (e.g. the function name).
¢ label - the message label.
* msg_txt — the message text itself.
e ... —the format string arguments
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

Warning

When compiling for ANSI C / C89 / C90 (and without compiler extensions), it is dangerous to pass any user
input to this function because it falls back to using sprintf with a fixed buffer size.

It is highly recommended to compile with C99 or newer if your compiler does not support snprintf through
extensions.

int SUNLogger_Flush(SUNLogger logger, SUNLogLevel 1v1)

Flush the message queue(s).
Arguments:

* logger —a SUNLogger object.

* 1vl — the message log level (i.e. error, warning, info, debug or all).
Returns:

¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_GetOutputRank (SUNLogger logger, int *output_rank)
Get the output MPI rank for the logger.

Arguments:
* logger — a SUNLogger object.

e output_rank — [in,out] On input this is a pointer to an int, on output it points to the int holding the
output rank.

Returns:
¢ Returns zero if successful, or non-zero if an error occurred.

int SUNLogger_Destroy (SUNLogger *logger)
Free the memory for the SUNLogger object.

Arguments:
* logger — a pointer to the SUNLogger object.
Returns:

¢ Returns zero if successful, or non-zero if an error occur.

42 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

4.4.3 Example Usage

As noted above, enabling logging must be done when configuring SUNDIALS by setting the CMake option SUN-
DIALS_LOGGING_LEVEL to the desired logging level. When running a program with SUNDIALS logging enabled,
a default logger is created and attached to the SUNContext instance at creation. Environment variables or run-time
functions can be used to determine where the logging output is written. For example, consider the CVODE Roberts
example, where we can direct the informational output to the file sun.log as follows

SUNDIALS_INFO_FILENAME=sun.log ./examples/cvode/serial/cvRoberts_dns

Alternatively, the following examples demonstrate how to use the logging interface via the C API:

examples/arkode/CXX_serial/ark_analytic_sys.cpp
examples/cvode/serial/cvAdvDiff_bnd.c
examples/cvode/parallel/cvAdvDiff_diag_p.c
examples/kinsol/CXX_parallel/kin_em_p.cpp
examples/kinsol/CUDA_mpi/kin_em_mpicuda.cpp

To assist with extracting informational logging data from output files the tools directory contains a Python module,
suntools, that provides utilities for parsing log files. Some example scripts using the suntools module are included
in the tools directory. For example, we can plot the step size history from the CVODE Roberts problem with

./log_example.py sun.log

4.5 Performance Profiling

Added in version 6.0.0.

SUNDIALS includes a lightweight performance profiling layer that can be enabled at compile-time. Optionally, this
profiling layer can leverage Caliper [13] for more advanced instrumentation and profiling. By default, only SUNDIALS
library code is profiled. However, a public profiling API can be utilized to leverage the SUNDIALS profiler to time
user code regions as well (see §4.5.2).

4.5.1 Enabling Profiling

To enable profiling, SUNDIALS must be built with the CMake option SUNDIALS_BUILD_WITH_PROFILING set to
ON. To utilize Caliper support, the CMake option ENABLE_CALIPER must also be set to ON. More details in regards to
configuring SUNDIALS with CMake can be found in §11.

When SUNDIALS is built with profiling enabled and without Caliper, then the environment variable SUNPROFILER_-
PRINT can be utilized to enable/disable the printing of profiler information. Setting SUNPROFILER_PRINT=1 will cause
the profiling information to be printed to stdout when the SUNDIALS simulation context is freed. Setting SUNPRO-
FILER_PRINT=0 will result in no profiling information being printed unless the SUNProfiler_Print () function is
called explicitly. By default, SUNPROFILER_PRINT is assumed to be 8. SUNPROFILER_PRINT can also be set to a file
path where the output should be printed.

If Caliper is enabled, then users should refer to the Caliper documentation for information on getting profiler output.
In most cases, this involves setting the CALI_CONFIG environment variable.

Note

The SUNDIALS profiler requires POSIX timers or the Windows profileapi.h timers.

4.5. Performance Profiling 43

https://software.llnl.gov/Caliper/

User Documentation for CVODES, v7.3.0

Warning

While the SUNDIALS profiling scheme is relatively lightweight, enabling profiling can still negatively impact
performance. As such, it is recommended that profiling is enabled judiciously.

4.5.2 Profiler API

The primary way of interacting with the SUNDIALS profiler is through the following macros:

SUNDIALS_MARK_FUNCTION_BEGIN(profobj)
SUNDIALS_MARK_FUNCTION_END (profobj)
SUNDIALS_WRAP_STATEMENT (profobj, name, stmt)
SUNDIALS_MARK_BEGIN(profobj, name)
SUNDIALS_MARK_END (profobj, name)

Additionally, in C++ applications, the follow macro is available:

SUNDIALS_CXX_MARK_FUNCTION (profobj)

These macros can be used to time specific functions or code regions. When using the *_BEGIN macros, it is important
that a matching *_END macro is placed at all exit points for the scope/function. The SUNDIALS_CXX_MARK_FUNCTION
macro only needs to be placed at the beginning of a function, and leverages RAII to implicitly end the region.

The profobj argument to the macro should be a SUNProfiler object, i.e.

type SUNProfiler

An opaque pointer containing profiling information.

When SUNDIALS is built with profiling, a default profiling object is stored in the SUNContext object and can be
accessed with a call to SUNContext_GetProfiler().

The name argument should be a unique string indicating the name of the region/function. It is important that the name
given to the *_BEGIN macros matches the name given to the *_END macros.

In addition to the macros, the following methods of the SUNProfiler class are available.

int SUNProfiler_Create(SUNComm comm, const char *title, SUNProfiler *p)
Creates a new SUNProfiler object.

Arguments:
¢ comm — the MPI communicator to use, if MPI is enabled, otherwise can be SUN_COMM_NULL.
e title — atitle or description of the profiler

* p - [in,out] On input this is a pointer to a SUNProfiler, on output it will point to a new SUNProfiler
instance

Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Free (SUNProfiler *p)
Frees a SUNProfiler object.

Arguments:
* p — [in,out] On input this is a pointer to a SUNProfiler, on output it will be NULL

Returns:

44 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Begin(SUNProfiler p, const char *name)

Starts timing the region indicated by the name.
Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_End (SUNProfiler p, const char *name)
Ends the timing of a region indicated by the name.

Arguments:
* p—a SUNProfiler object
* name — a name for the profiling region
Returns:
¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetElapsedTime (SUNProfiler p, const char *name, double *time)

Get the elapsed time for the timer “name” in seconds.
Arguments:

* p—a SUNProfiler object

* name — the name for the profiling region of interest

* time — upon return, the elapsed time for the timer
Returns:

e Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_GetTimerResolution(SUNProfiler p, double *resolution)

Get the timer resolution in seconds.
Arguments:

* p—a SUNProfiler object

e resolution — upon return, the resolution for the timer
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Print (SUNProfiler p, FILE *fp)

Prints out a profiling summary. When constructed with an MPI comm the summary will include the average and
maximum time per rank (in seconds) spent in each marked up region.

Arguments:
* p—a SUNProfiler object
 fp — the file handler to print to

Returns:

4.5. Performance Profiling 45

User Documentation for CVODES, v7.3.0

¢ Returns zero if successful, or non-zero if an error occurred

int SUNProfiler_Reset (SUNProfiler p)

Resets the region timings and counters to zero.
Arguments:

* p—a SUNProfiler object
Returns:

¢ Returns zero if successful, or non-zero if an error occurred

4.5.3 Example Usage

The following is an excerpt from the CVODE example code examples/cvode/serial/cvAdvDiff bnd.c. It is
applicable to any of the SUNDIALS solver packages.

SUNContext ctx;
SUNProfiler profobj;

/* Create the SUNDIALS context */
retval = SUNContext_Create(SUN_COMM_NULL, &ctx);

/* Get a reference to the profiler */
retval = SUNContext_GetProfiler(ctx, &profobj);

JE Ly

SUNDIALS_MARK_BEGIN(profobj, "Integration loop");

umax = N_VMaxNorm(u);

PrintHeader(reltol, abstol, umax);

for(iout=1, tout=T1l; iout <= NOUT; iout++, tout += DTOUT) {
retval = CVode(cvode_mem, tout, u, &t, CV_NORMAL);
umax = N_VMaxNorm(u) ;
retval = CVodeGetNumSteps(cvode_mem, &nst);
PrintOutput(t, umax, nst);

}
SUNDIALS_MARK_END(profobj, "Integration loop");
PrintFinalStats(cvode_mem); /* Print some final statistics &

4.6 Getting Version Information

SUNDIALS provides additional utilities to all packages, that may be used to retrieve SUNDIALS version information
at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:
* version — character array to hold the SUNDIALS version information.
¢ len — allocated length of the version character array.

Return value:

46 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

* (if successful
* -1 if the input string is too short to store the SUNDIALS version

Notes:
An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber (int *major, int *minor, int *patch, char *label, int len)

This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:
* major — SUNDIALS release major version number.
» minor — SUNDIALS release minor version number.
e patch — SUNDIALS release patch version number.
e label — string to hold the SUNDIALS release label.
* len — allocated length of the label character array.
Return value:
* 0 if successful
* -1 if the input string is too short to store the SUNDIALS label

Notes:
An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.7 Fortran Interface

SUNDIALS provides modern, Fortran 2003 based, interfaces as Fortran modules to most of the C API including:
* The SUNDIALS core types, utilities, and data structures via the fsundials_core_mod module.
 All of the time-stepping modules in ARKODE:

— The farkode_arkstep_mod, farkode_erkstep_mod, farkode_mristep_mod, and farkode_sprk-
step_mod modules provide interfaces to the ARKStep, ERKStep, MRIStep, and SPRKStep integrators
respectively.

— The farkode_mod module interfaces to the components of ARKODE which are shared by the time-
stepping modules.

CVODE via the fcvode_mod module.
CVODES via the fcvodes_mod module.

¢ IDA via the fida_mod module.
¢ IDAS via the fidas_mod module.
¢ KINSOL via the fkinsol_mod module.

Additionally, all of the SUNDIALS base classes (N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinear-
Solver) include Fortran interface modules. A complete list of class implementations with Fortran 2003 interface
modules is given in Table 4.1.

An interface module can be accessed with the use statement, e.g.

4.7. Fortran Interface 47

User Documentation for CVODES, v7.3.0

! this is needed to access core SUNDIALS types, utilities, and data structures
! this is needed to access CVODE functions and types
! this is needed to access the OpenMP implementation of the N_Vector class

use fsundials_core_mod
use fcvode_mod
use fnvector_openmp_mod

and by linking to the Fortran 2003 library in addition to the C library, e.g. 1ibsundials_fcore_mod.<so|a>, lib-
sundials_core.<so|a>, libsundials_fnvecpenmp_mod.<so|a>, libsundials_nvecopenmp.<so|a>, lib-
sundials_fcvode_mod.<so|a> and libsundials_cvode.<so|a>. The use statements mirror the #include
statements needed when using the C APL

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to closely follow the
SUNDIALS C API (modulo language differences). The SUNDIALS classes, e.g. N_Vector, are interfaced as Fortran
derived types, and function signatures are matched but with an F prepending the name, e.g. FN_VConst instead of
N_VConst () or FCVodeCreate instead of CVodeCreate. Constants are named exactly as they are in the C APL
Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C. Some caveats stemming
from the language differences are discussed in §4.7.2. A discussion on the topic of equivalent data types in C and
Fortran 2003 is presented in §4.7.1.

Further information on the Fortran 2003 interfaces specific to the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver classes is given alongside the C documentation. For details on where the Fortran 2003 module
(.mod) files and libraries are installed see §11.

The Fortran 2003 interface modules were generated with SWIG Fortran [45], a fork of SWIG. Users who are interested
in the SWIG code used in the generation process should contact the SUNDIALS development team.

Table 4.1: List of SUNDIALS Fortran 2003 interface modules

Class/Module Fortran 2003 Module Name
SUNDIALS core fsundials_core_mode
ARKODE farkode_mod

ARKODE::ARKSTEP
ARKODE::ERKSTEP
ARKODE::MRISTEP
ARKODE::SPRKSTEP

farkode_arkstep_mod
farkode_erkstep_mod
farkode_mristep_mod
farkode_sprkstep_mod

CVODE fcvode_mod
CVODES fcvodes_mod
IDA fida_mod
IDAS fidas_mod
KINSOL fkinsol_mod

NVECTOR_SERIAL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARALLEL
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_SYCL
NVECTOR_MANVECTOR
NVECTOR_MPIMANVECTOR
NVECTOR_MPIPLUSX
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_MAGMADENSE
SUNMATRIX_ONEMKLDENSE

fnvector_serial_mod
fnvector_openmp_mod
fnvector_pthreads_mod
fnvector_parallel_mod
Not interfaced

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fnvector_manyvector_mod
fnvector_mpimanyvector_mod
fnvector_mpiplusx_mod
fsunmatrix_band_mod
fsunmatrix_dense_mod
Not interfaced

Not interfaced

continues on next page

48

Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

Table 4.1 — continued from previous page

Class/Module

Fortran 2003 Module Name

SUNMATRIX_SPARSE
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_MAGMADENSE
SUNLINSOL_ONEMKLDENSE
SUNLINSOL_KLU
SUNLINSOL_SLUMT
SUNLINSOL_SLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT
SUNNONLINSOL_PETSCSNES

fsunmatrix_sparse_mod
fsunlinsol_band_mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced
fsunlinsol_klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfgmr_mod
fsunlinsol_pcg_mof
fsunnonlinsol_newton_mod
fsunnonlinsol_fixedpoint_mod
Not interfaced

4.7.1 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive types map to
the iso_c_binding type equivalent. SUNDIALS classes map to a Fortran derived type. However, the handling of
pointer types is not always clear as they can depend on the parameter direction. Table 4.2 presents a summary of the

type equivalencies with the parameter direction in mind.

Warning

double-precision.

Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the sunrealtype is

Changed in version 7.1.0: The Fortran interfaces can now be built with 32-bit sunindextype in addition to 64-bit

sunindextype.
Table 4.2: C/Fortran-2003 Equivalent Types
C Type Parameter Direction Fortran 2003 type
SUNComm in, inout, out, return integer(c_int)
SUNErrCode in, inout, out, return integer(c_int)
in, inout, out, return real (c_double)

double
int in, inout, out, return

long in, inout, out, return
sunbooleantype in, inout, out, return
sunrealtype in, inout, out, return
sunindextype in, inout, out, return
double* in, inout, out
double* return

int* in, inout, out

integer(c_int)

integer(c_long)

integer(c_int)

real (c_double)

integer(c_long)

real (c_double), dimension(*)

real (c_double), pointer, dimension(:)
real(c_int), dimension(*)

continues on next page

4.7. Fortran Interface

49

User Documentation for CVODES, v7.3.0

Table 4.2 — continued from previous page

C Type Parameter Direction Fortran 2003 type

int* return real(c_int), pointer, dimension(:)
long* in, inout, out real(c_long), dimension(*)

long* return real(c_long), pointer, dimension(:)
sunrealtype® in, inout, out real (c_double), dimension(*)
sunrealtype® return real (c_double), pointer, dimension(:)
sunindextype® in, inout, out real(c_long), dimension(*)
sunindextype® return real(c_long), pointer, dimension(:)
sunrealtype[] in, inout, out real (c_double), dimension(*)
sunindextypel] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type(N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type(SUNMatrix)

SUNMatrix return type(SUNMatrix), pointer
SUNLinearSolver in, inout, out type(SUNLinearSolver)
SUNLinearSolver return type(SUNLinearSolver), pointer
SUNNonlinearSolver in, inout, out type (SUNNonlinearSolver)
SUNNonlinearSolver return type(SUNNonlinearSolver), pointer
FILE* in, inout, out, return type(c_ptr)

void* in, inout, out, return type(c_ptr)

IR in, inout, out, return type(c_ptr)

1S in, inout, out, return type(c_ptr)

TS in, inout, out, return type(c_ptr)

4.7.2 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable due to the
differences between Fortran and C. In this section, we note the most critical differences. Additionally, §4.7.1 discusses
equivalencies of data types in the two languages.

4.7.2.1 Creating generic SUNDIALS objects

In the C API a SUNDIALS class, such as an N_Vector, is actually a pointer to an underlying C struct. However,
in the Fortran 2003 interface, the derived type is bound to the C struct, not the pointer to the struct. For example,
type(N_Vector) is bound to the C struct _generic_N_Vector not the N_Vector type. The consequence of this is
that creating and declaring SUNDIALS objects in Fortran is nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
x = N_VNew_Serial(N, sunctx);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial (N, sunctx)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the pointer assignment
operator is then used.

50 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

4.7.2.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when they are return values
versus arguments to a function. Additionally, pointers which are meant to be out parameters, not arrays, in the C API
must still be declared as a rank-1 array in Fortran. The reason for this is partially due to the Fortran 2003 standard for
C bindings, and partially due to the tool used to generate the interfaces. Regardless, the code snippets below illustrate

the differences.

C code:

N_Vector x;
sunrealtype* xdata;
long int leniw, lenrw;

/% create a new serial vector */
X = N_VNew_Serial (N, sunctx);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/% passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)

real (c_double) 11 xdata(N)
integer(c_long) :: leniw(1l), lenrw(l)

! create a new serial vector
x => FN_VNew_Serial(x, sunctx)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer (x)

! passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

4.7. Fortran Interface

51

User Documentation for CVODES, v7.3.0

4.7.2.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran procedure must
have the attribute bind (C). Additionally, when providing them as arguments to a Fortran 2003 interface routine, it is
required to convert a procedure’s Fortran address to C with the Fortran intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom data structure as a
void*. When using the Fortran 2003 interfaces, the same thing can be achieved. Note, the custom data structure does
not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData *udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);

Fortran code:

type(MyUserData) :: udata
type(c_ptr) :: arkode_mem

ierr = FARKStepSetUserData(arkode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem parameters, within
modules, and thus do not need the SUNDIALS-provided user_data pointers to pass such data back to user-supplied
functions. These users should supply the c_null_ptr input for user_data arguments to the relevant SUNDIALS
functions.

4.7.2.4 Passing NULL to optional parameters

In the SUNDIALS C API some functions have optional parameters that a caller can pass as NULL. If the optional
parameter is of a type that is equivalent to a Fortran type(c_ptr) (see §4.7.1), then a Fortran user can pass the
intrinsic c_null_ptr. However, if the optional parameter is of a type that is not equivalent to type (c_ptr), then a
caller must provide a Fortran pointer that is dissociated. This is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

/* SUNLinSolSolve expects a SUNMatrix or NULL as the second parameter. */
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type(SUNLinearSolver), pointer :: LS
type(SUNMatrix), pointer 1 A
type(N_Vector), pointer it x, b

! Disassociate A
A => nullQ

! SUNLinSolSolve expects a type(SUNMatrix), pointer as the second parameter.

(continues on next page)

52 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

(continued from previous page)

! Therefore, we cannot pass a c_null ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

4.7.2.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as an opaque type(c_ptr). As such, it is not possible to
directly index an array of N_Vector objects returned by the N_Vector “VectorArray” operations, or packages with sen-
sitivity capabilities (CVODES and IDAS). Instead, SUNDIALS provides a utility function FN_VGetVecAtIndexVec-
torArray wrapping N_VGetVecAtIndexVectorArray (). The example below demonstrates accessing a vector in a
vector array.

C code:

N_Vector x;
N_Vector* vecs;

/* Create an array of N_Vectors */
vecs = N_VCloneVectorArray(count, Xx);

/* Fill each array with ones */
for (int i = 0; i < count; ++i)
N_VConst(vecs[i], 1.0);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) 11 vecs

! Create an array of N_Vectors
vecs = FN_VCloneVectorArray(count, X)

! Fill each array with ones

do index = 0,count-1
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst(xi, 1.d0)

enddo

SUNDIALS also provides the functions N_VSetVecAtIndexVectorArray () and N_VNewVectorArray () for work-
ing with N_Vector arrays, that have corresponding Fortran interfaces FN_VSetVecAtIndexVectorArray and FN_-
VNewVectorArray, respectively. These functions are particularly useful for users of the Fortran interface to the NVEC-
TOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector array. Both of these functions
along with N_VGetVecAtIndexVectorArray() (wrapped as FN_VGetVecAtIndexVectorArray) are further de-
scribed in §6.1.1.

4.7. Fortran Interface 53

User Documentation for CVODES, v7.3.0

4.7.2.6 Providing file pointers

There are a few functions in the SUNDIALS C API which take a FILE* argument. Since there is no portable way to
convert between a Fortran file descriptor and a C file pointer, SUNDIALS provides two utility functions for creating a
FILE* and destroying it. These functions are defined in the module fsundials_core_mod.
SUNErrCode SUNDIALSFileOpen(const char *filename, const char *mode, FILE **fp)

The function allocates a FILE* by calling the C function fopen with the provided filename and I/O mode.

Parameters

» filename - the path to the file, that should have Fortran type character (kind=C_CHAR,
len=*). There are two special filenames: stdout and stderr — these two filenames will
result in output going to the standard output file and standard error file, respectively.

* mode - the I/O mode to use for the file. This should have the Fortran type charac-
ter (kind=C_CHAR, len=*). The string begins with one of the following characters:

r to open a text file for reading

T+ to open a text file for reading/writing

w to truncate a text file to zero length or create it for writing

w+ to open a text file for reading/writing or create it if it does
not exist

a to open a text file for appending, see documentation of fopen for
your system/compiler

a+ to open a text file for reading/appending, see documentation for
fopen for your system/compiler

» fp — The FILE* that will be open when the function returns. This should be a type(c_ptr) in
the Fortran.

Returns
A SUNErrCode

Usage example:
type(c_ptr) :: fp

! Open up the file output.log for writing
ierr = FSUNDIALSFileOpen("output.log", "w+", £p)

! The C function ARKStepPrintMem takes void* arkode_mem and FILE* fp as arguments
call FARKStepPrintMem(arkode_mem, fp)

! Close the file
ierr = FSUNDIALSFileClose(fp)

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and take a FILE** as

the last input parameter rather then return a FILE*.

SUNErrCode SUNDIALSFileClose (FILE **fp)
The function deallocates a C FILE* by calling the C function fclose with the provided pointer.

Parameters

54 Chapter 4. Getting Started

20

21

22

23

24

25

User Documentation for CVODES, v7.3.0

» fp — the C FILE* that was previously obtained from fopen. This should have the Fortran
type type(c_ptr). Note that if either stdout or stderr were opened using SUNDIALS-
FileOpen()

Returns
A SUNErrCode

Changed in version 7.0.0: The function signature was updated to return a SUNErrCode and the fp parameter was
changed from FILE* to FILE**.

4.7.3 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran 2003 ISO
standard.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003 interface. These
files are highly compiler specific, and thus it is almost always necessary to compile a consuming application with the
same compiler that was used to generate the modules.

4.7.4 Common Issues

In this subsection, we list some common issues users run into when using the Fortran interfaces.
Strange Segmentation Fault in User-Supplied Functions

One common issue we have seen trip up users (and even ourselves) has the symptom of segmentation fault in a user-
supplied function (such as the RHS) when trying to use one of the callback arguments. For example, in the following
RHS function, we will get a segfault on line 21:

integer(c_int) function ff(t, yvec, ydotvec, user_data) &
result(ierr) bind(C)

use, intrinsic :: iso_c_binding
use fsundials_nvector_mod
implicit none

real(c_double) :: t ! <===== Missing value attribute
type(N_Vector) :: yvec
type(N_Vector) :: ydotvec

type(c_ptr) :: user_data
real(c_double) :: e

real(c_double) :: u, v
real(c_double) :: tmpl, tmp2

real (c_double), pointer :: yarr(:)

real (c_double), pointer :: ydotarr(:)

! get N_Vector data arrays
yarr => FN_VGetArrayPointer(yvec)
ydotarr => FN_VGetArrayPointer(ydotvec) ! <===== SEGFAULTS HERE

! extract variables
u = yarr(l)
v yarr(2)

(continues on next page)

4.7. Fortran Interface 55

User Documentation for CVODES, v7.3.0

(continued from previous page)

! fill in the RHS function:

P[0 0]*[(-1+ur2-r(t))/(2*w] + [0]
I [e -1] [(-2+vA2-5(t))/(2*Vv)] [sdot(t)/(2*vtrue(t))]
tmpl = (-ONE+u*u-r(t))/(TWO*u)

tmp2 = (-TWO+v*v-s(t))/(TWO*v)

ydotarr(1l) = ZERO

ydotarr(2) = e*tmpl - tmp2 + sdot(t)/(TWO*vtrue(t))

! return success
ierr = 0
return

end function

The subtle bug in the code causing the segfault is on line 8. It should read real (c_double), value :: t instead
of real(c_double) :: t (notice the value attribute). Fundamental types that are passed by value in C need the
value attribute.

4.8 Features for GPU Accelerated Computing

In this section, we introduce the SUNDIALS GPU programming model and highlight SUNDIALS GPU features. The
model leverages the fact that all of the SUNDIALS packages interact with simulation data either through the shared
vector, matrix, and solver APIs or through user-supplied callback functions. Thus, under the model, the overall structure
of the user’s calling program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS
in CPU-only environments.

4.8.1 SUNDIALS GPU Programming Model

As described in [12], within the SUNDIALS GPU programming model, all control logic executes on the CPU, and
all simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control of the
program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to another. Except in the most
advanced use cases, it is safe to assume that data is kept resident in the GPU-device memory space. The consequence
of this is that, when control is passed from the user’s calling program to SUNDIALS, simulation data in vector or
matrix objects must be up-to-date in the device memory space. Similarly, when control is passed from SUNDIALS to
the user’s calling program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program to manage data
coherency between the CPU and GPU-device memory spaces unless unified virtual memory (UVM), also known as
managed memory, is being utilized. Typically, the GPU-enabled SUNDIALS modules provide functions to copy data
from the host to the device and vice-versa as well as support for unmanaged memory or UVM. In practical terms, the
way SUNDIALS handles distinct host and device memory spaces means that users need to ensure that the user-supplied
functions, e.g. the right-hand side function, only operate on simulation data in the device memory space otherwise extra
memory transfers will be required and performance will suffer. The exception to this rule is if some form of hybrid
data partitioning (achievable with the NVECTOR_MANY VECTOR, see §6.17) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently, these include the
NVIDIA CUDA platform [5], AMD ROCm/HIP [2], and Intel oneAPI [3]. Table 4.3-Table 4.6 summarize the shared
SUNDIALS modules that are GPU-enabled, what GPU programming environments they support, and what class of
memory they support (unmanaged or UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix,
SUNLinearSolver, or SUNNonlinearSolver implementation, and the capabilities will be leveraged since SUNDI-
ALS operates on data through these APIs.

56 Chapter 4. Getting Started

User Documentation for CVODES, v7.3.0

In addition, SUNDIALS provides a memory management helper module (see §10) to support applications which im-

plement their own memory management or memory pooling.

Table 4.3: List of SUNDIALS GPU-enabled N_Vector Modules

oneAPI Unmanaged Memory UVM

Module CUDA ROCn/HIP
NVECTOR_CUDA X

NVECTOR_HIP X X
NVECTOR_SYCL X3 X3
NVECTOR_RAJA X X
NVECTOR_KOKKOS X X
NVECTOR_OPENMPDEV X X2

X XX

KR X R

KR X R

Table 4.4: List of SUNDIALS GPU-enabled SUNMatrix Modules

Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNMATRIX_CUSPARSE X X X
SUNMATRIX_ONEMKLDENSE X3 X3 X X X
SUNMATRIX_MAGMADENSE X X X X
SUNMATRIX_GINKGO X X X X
SUNMATRIX_KOKKOSDENSE X X X X

Table 4.5: List of SUNDIALS GPU-enabled SUNLinearSolver Mod-

ules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNLINSOL_CUSOLVERSP X X X
SUNLINSOL_ ONEMKLDENSE X3 X3 X X X
SUNLINSOL_MAGMADENSE X X X
SUNLINSOL_GINKGO X X X X
SUNLINSOL_KOKKOSDENSE X X X X
SUNLINSOL_SPGMR X! X! X! x! x!
SUNLINSOL_SPFGMR X! X! X! X! X!
SUNLINSOL_SPTFQOMR X! X! X! x! x!
SUNLINSOL_SPBCGS X! X! X! X! X!
SUNLINSOL_PCG X! X! X! X! X!

Table 4.6: List of SUNDIALS GPU-enabled SUNNonlinearSolver

Modules
Module CUDA ROCm/HIP oneAPI Unmanaged Memory UVM
SUNNONLINSOL_NEWTON x! X! x! X! X!
SUNNONLINSOL_FIXEDPOINT X! x! x! x! x!

Notes regarding the above tables:

1. This module inherits support from the NVECTOR module used

2. Support for ROCm/HIP and oneAPI are currently untested.

4.8. Features for GPU Accelerated Computing

57

User Documentation for CVODES, v7.3.0

3.

Support for CUDA and ROCm/HIP are currently untested.

In addition, note that implicit UVM (i.e. malloc returning UVM) is not accounted for.

4.8.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS are:

1.

A

Utilize a GPU-enabled N_Vector implementation. Initial data can be loaded on the host, but must be in the
device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLinearSolver linear solver (if applicable).
Utilize a GPU-enabled SUNMatrix implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNonlinearSolver nonlinear solver (if applicable).

Write user-supplied functions so that they use data only in the device memory space (again, unless an atypical
data partitioning is used). A few examples of these functions are the right-hand side evaluation function, the
Jacobian evaluation function, or the preconditioner evaluation function. In the context of CUDA and the right-
hand side function, one way a user might ensure data is accessed on the device is, for example, calling a CUDA
kernel, which does all of the computation, from a CPU function which simply extracts the underlying device data
array from the N_Vector object that is passed from SUNDIALS to the user-supplied function.

Users should refer to the above tables for a complete list of GPU-enabled native SUNDIALS modules.

58

Chapter 4. Getting Started

Chapter 5

Using CVODES

5.1 Using CVODES for IVP Solution

This chapter is concerned with the use of CVODES for the solution of initial value problems (IVPs). The following
sections treat the header files and the layout of the user’s main program, and provide descriptions of the CVODES
user-callable functions and user-supplied functions.

The sample programs described in the companion document [62] may also be helpful. Those codes may be used as
templates (with the removal of some lines used in testing) and are included in the CVODES package.

Users with applications written in Fortran should see §4.7, which describes interfacing with CVODES from Fortran.

The user should be aware that not all SUNLinearSolver and SUNMatrix modules are compatible with all N_Vec-
tor implementations. Details on compatibility are given in the documentation for each SUNMatrix module (§7) and
each SUNLinearSolver module (§8). For example, NVECTOR_PARALLEL is not compatible with the dense, banded,
or sparse SUNMatrix types, or with the corresponding dense, banded, or sparse SUNLinearSolver modules. Please
check §7 and §8 to verify compatibility between these modules. In addition to that documentation, we note that the
CVBANDPRE preconditioning module is only compatible with the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector implementations, and the preconditioner module CVBBDPRE can only be used with NVEC-
TOR_PARALLEL. It is not recommended to use a threaded vector module with SuperLU_MT unless it is the NVECTOR_-
OPENMP module, and SuperLU_MT is also compiled with OpenMP.

CVODES uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.

5.1.1 Access to library and header files

At this point, it is assumed that the installation of CVODES, following the procedure described in §11, has been com-
pleted successfully. In the proceeding text, the directories 1ibdir and incdir are the installation library and include
directories, respectively. For a default installation, these are instdir/lib and instdir/include, respectively, where
instdir is the directory where SUNDIALS was installed.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by CVODES. CVODES symbols are
found in libdir/libsundials_cvodes.1lib. Thus, in addition to linking to 1libdir/libsundials_core.lib,
CVODES users need to link to the CVODES library. Symbols for additional SUNDIALS modules, vectors and alge-
braic solvers, are found in

59

User Documentation for CVODES, v7.3.0

<libdir>/libsundials_nvec*.1lib
<libdir>/libsundials_sunmat*.1lib
<libdir>/libsundials_sunlinsol*.1lib
<libdir>/libsundials_sunnonlinsol*.1lib
<libdir>/libsundials_sunmem*.1ib

The file extension .1ib is typically .so for shared libraries and . a for static libraries.

The relevant header files for CVODES are located in the subdirectories incdir/include/cvodes. To use CVODES
the application needs to include the header file for CVODES in addition to the SUNDIALS core header file:

#include <sundials/sundials_core.h> // Provides core SUNDIALS types
#include <cvodes/cvodes.h> // CVODES provides linear multistep methods with sensitivity analys

The calling program must also include an :c:type’N_Vector' implementation header file, of the form nvector/
nvector_*.h. See §6 for the appropriate name.

If using a non-default nonlinear solver module, or when interacting with a SUNNonlinearSolver module directly, the
calling program must also include a SUNNonlinearSolver implementation header file, of the form sunnonlinsol/
sunnonlinsol_*.h where * is the name of the nonlinear solver module (see §9 for more information).

If using a nonlinear solver that requires the solution of a linear system of the form (2.8) (e.g., the default Newton
iteration), then a linear solver module header file will be required. In this case it will be necessary to include the
header file for a SUNLinearSolver solver, which is of the form sunlinsol/sunlinsol_***_.h (see §8 for more
information).

If the linear solver is matrix-based, the linear solver header will also include a header file of the from sunmatrix/

sunmatrix_*.h where * is the name of the matrix implementation compatible with the linear solver (see §7 for more
information).

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the example (see [62]),
preconditioning is done with a block-diagonal matrix. For this, even though the SUNLINSOL_SPGMR linear solver is
used, the header sundials_dense.h is included for access to the underlying generic dense matrix arithmetic routines.

Warning

Note that an application cannot link to both the CVODES and CVODE libraries because both contain user-callable
functions with the same names (to ensure that CVODES is backward compatible with CVODE). Therefore, appli-
cations that contain both ODE problems and ODEs with sensitivity analysis, should use CVODES.

5.1.2 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP. Most of
the steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and SUNNonlinearSolver implemen-
tations used. For the steps that are not, refer to §6, §7, §8, and §9 for the specific name of the function to be called or
macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate For example, call MPI_Init to initialize
MPI if used, or set the number of threads to use within the threaded vector functions if used.

2. Create the SUNDIALS context object Call SUNContext_Create() to allocate the SUNContext object.

3. Set problem dimensions etc. This generally includes the problem size N, and may include the local vector length
Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

60 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

4. Set vector of initial values To set the vector of initial values, use the appropriate functions defined by the par-
ticular N_Vector implementation.

For native SUNDIALS vector implementations, use a call of the form y® = N_VMake_***(..., ydata) if
the array containing the initial values of y already exists. Otherwise, create a new vector by making a call of
the form N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the form
ydata = N_VGetArrayPointer(y®).

For HYPRE and PETSC vector wrappers, first create and initialize the underlying vector, and then create an
N_Vector wrapper with a call of the form y® = N_VMake_***(yvec), where yvec is a HYPRE or PETSC
vector. Note that calls like N_VNew_***(...) and N_VGetArrayPointer(...) are not available for these
vector wrappers.

See §6 for details.

5. Create CVODES object Call CVodeCreate () to create the CVODES memory block and to specify the linear
multistep method. CVodeCreate () returns a pointer to the CVODES memory structure.

See §5.1.3.1 for details.

6. Initialize CVODES solver Call CVodeInit() to provide required problem specifications, allocate internal
memory for CVODES, and initialize CVODES. CVodeInit () returns a flag, the value of which indicates either
success or an illegal argument value.

See §5.1.3.1 for details.

7. Specify integration tolerances Call CVodeSStolerances() or CVodeSVtolerances() to specify either a
scalar relative tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodelWWFtolerances () to specify a function which sets directly the
weights used in evaluating WRMS vector norms.

See §5.1.3.2 for details.

8. Create matrix object If a nonlinear solver requiring a linear solve will be used (e.g., the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must be created by
calling the appropriate constructor function defined by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where **¥* is the name of the matrix (see §7 for details).

9. Create linear solver object If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton
iteration), then the desired linear solver object must be created by calling the appropriate constructor function
defined by the particular SUNLinearSolver implementation.

For any of the SUNDIALS-supplied SUNLinearSolver implementations, the linear solver object may be created
using a call of the form SUNLinearSolver LS = SUNLinSol_*(...); where * can be replaced with “Dense”,
“SPGMR”, or other options, as discussed in §5.1.3.5 and §8.

10. Set linear solver optional inputs Call functions from the selected linear solver module to change optional inputs
specific to that linear solver. See the documentation for each SUNLinearSolver module in §8 for details.

11. Attach linear solver module If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton
iteration), then initialize the CVLS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with a call ier = CVodeSetLinearSolver(cvode_mem, NLS) (for details see §5.1.3.5):

Alternately, if the CVODES-specific diagonal linear solver module, CVDIAG, is desired, initialize the linear
solver module and attach it to CVODES with the call to CVodeSetLinearSolver().

12. Set optional inputs Call CVodeSet*** functions to change any optional inputs that control the behavior of
CVODES from their default values. See §5.1.3.10 for details.

5.1. Using CVODES for IVP Solution 61

User Documentation for CVODES, v7.3.0

13.

14.

15.

16.

17.

18.
19.

Create nonlinear solver object (optional) If using a non-default nonlinear solver (see §5.1.3.6), then create the
desired nonlinear solver object by calling the appropriate constructor function defined by the particular SUN-
NonlinearSolver implementation (e.g., NLS = SUNNonlinSol_***(...); where *** is the name of the
nonlinear solver (see §9 for details).

Attach nonlinear solver module (optional) If using a non-default nonlinear solver, then initialize the nonlinear
solver interface by attaching the nonlinear solver object by calling ier = CVodeSetNonlinearSolver (see
§5.1.3.6 for details).

Set nonlinear solver optional inputs (optional) Call the appropriate set functions for the selected nonlinear
solver module to change optional inputs specific to that nonlinear solver. These must be called after CVodeInit ()
if using the default nonlinear solver or after attaching a new nonlinear solver to CVODES, otherwise the optional
inputs will be overridden by CVODES defaults. See §9 for more information on optional inputs.

Specify rootfinding problem (optional) Call CVodeRootInit () to initialize a rootfinding problem to be solved
during the integration of the ODE system. See §5.1.3.7, and see §5.1.3.10 for relevant optional input calls.

Advance solution in time For each point at which output is desired, call ier = CVode(cvode_mem, tout,
yout, tret itask). Here itask specifies the return mode. The vector yout (which can be the same as the
vector y® above) will contain y(t). See CVode () for details.

Get optional outputs Call CV*Get* functions to obtain optional output. See §5.1.3.12 for details.
Destroy objects

Upon completion of the integration call the following functions, as necessary, to destroy any objects created
above:

* Call N_VDestroy() to free vector objects.

e Call SUNMatDestroy () to free matrix objects.

Call SUNLinSolFree() to free linear solvers objects.

Call SUNNonlinSolFree() to free nonlinear solvers objects.

* Call CVodeFree () to free the memory allocated by CVODES.

L]

Call SUNContext_Free() to free the SUNDIALS context.

20. Finalize MPI, if used Call MPI_Finalize to terminate MPI.

5.1.3 User-callable functions

This section describes the CVODES functions that are called by the user to setup and then solve an IVP. Some of these
are required. However, starting with §5.1.3.10, the functions listed involve optional inputs/outputs or restarting, and
those paragraphs may be skipped for a casual use of CVODES. In any case, refer to §5.1.2 for the correct order of these

calls.

On an error, each user-callable function returns a negative value and sends an error message to the error handler routine,
which prints the message on stderr by default. However, the user can set a file as error output or can provide his own
error handler function (see §5.1.3.10).

62

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.1.3.1 CVODES initialization and deallocation functions
The following three functions must be called in the order listed. The last one is to be called only after the IVP solution
is complete, as it frees the CVODES memory block created and allocated by the first two calls.

void *CVodeCreate (int Imm, SUNContext sunctx)
The function CVodeCreate () instantiates a CVODES solver object and specifies the solution method.

Arguments:

e 1mm — specifies the linear multistep method and must be one of two possible values: CV_ADAMS or
CV_BDF.

* sunctx —the SUNContext object (see §4.2)
Return Value:

¢ If successful, CVodeCreate () returns a pointer to the newly created CVODES memory block. Oth-
erwise, it returns NULL.

Notes:
The recommended choices for 1mm are CV_ADAMS for nonstiff problems and CV_BDF for stiff problems.
The default Newton iteration is recommended for stiff problems, and the fixed-point solver (previously re-
ferred to as the functional iteration in this guide) is recommended for nonstiff problems. For details on how
to attach a different nonlinear solver module to CVODES see the description of CVodeSetNonlinear-
Solver().

int CVodeInit (void *cvode_mem, CVRAsFn f, sunrealtype t0, N_Vector y0)

The function CVodeInit provides required problem and solution specifications, allocates internal memory, and
initializes CVODES.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

e f —is the C function which computes the right-hand side function f in the ODE. This function has the
form £(t, y, ydot, user_data) (for full details see §5.1.4.1).

* t0 —is the initial value of t.
* y0 —is the initial value of y.
Return Value:
e CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — A memory allocation request has failed.
e CV_ILL_INPUT — An input argument to CVodeInit has an illegal value.

Notes:
If an error occurred, CVodeInit also sends an error message to the error handler function.

void CVodeFree (void **cvode_mem);

The function CVodeFree frees the memory allocated by a previous call to CVodeCreate ().
Arguments:
* Pointer to the CVODES memory block.

Return Value:

5.1. Using CVODES for IVP Solution 63

User Documentation for CVODES, v7.3.0

¢ The function CVodeFree has no return value.

5.1.3.2 CVODES tolerance specification functions
One of the following three functions must be called to specify the integration tolerances (or directly specify the weights
used in evaluating WRMS vector norms). Note that this call must be made after the call to CVodeInit().

int CVodeSStolerances (void *cvode_mem, sunrealtype reltol, sunrealtype abstol)
The function CVodeSStolerances specifies scalar relative and absolute tolerances.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
* reltol —is the scalar relative error tolerance.
* abstol —is the scalar absolute error tolerance.
Return value:
* CV_SUCCESS - The call was successful.
e CV_MEM_NULL — The CVODES memory block was not initialized.
e CV_NO_MALLOC — The allocation function returned NULL.
e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeSVtolerances (void *cvode_mem, sunrealtype reltol, N_Vector abstol)
The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute tolerances.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
* reltol —is the scalar relative error tolerance.
* abstol —is the vector of absolute error tolerances.
Return value:
* CV_SUCCESS — The call was successful.
e CV_MEM_NULL — The CVODES memory block was not initialized.
e CV_NO_MALLOC — The allocation function returned NULL.

e CV_ILL_INPUT - The relative error tolerance was negative or the absolute tolerance had a negative
component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the state vector y.

int CVodeWFtolerances (void *cvode_mem, CVEw:Fn efun)

The function CVodeWFtolerances specifies a user-supplied function efun that sets the multiplicative error
weights W_i for use in the weighted RMS norm, which are normally defined by (2.7).

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
¢ efun - is the C function which defines the ewt vector (see CVEwtFn).

Return value:

64 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CV_SUCCESS - The call was successful.
e CV_MEM_NULL — The CVODES memory block was not initialized.
e CV_NO_MALLOC — The allocation function returned NULL.

5.1.3.3 General advice on choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 10~ means that errors
are controlled to .01%. We do not recommend using reltol larger than 10~2. On the other hand, reltol should not
be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around 10~ 1?).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For example,
if y[i] starts at some nonzero value, but in time decays to zero, then pure relative error control on y[i] makes no
sense (and is overly costly) after y[i] is below some noise level. Then abstol (if scalar) or abstol[i] (if a vector)
needs to be set to that noise level. If the different components have different noise levels, then abstol should be a
vector. See the example cvsRoberts_dns in the CVODES package, and the discussion of it in the CVODES Examples
document [62]. In that problem, the three components vary between 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate noise levels are
completely problem-dependent. The user or modeler hopefully has some idea as to what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the error committed on
each individual time step. The final (global) errors are some sort of accumulation of those per-step errors. A good rule
of thumb is to reduce the tolerances by a factor of .01 from the actual desired limits on errors. So if you want .01%
accuracy (globally), a good choice is reltol = 1075, But in any case, it is a good idea to do a few experiments with
the tolerances to see how the computed solution values vary as tolerances are reduced.

5.1.3.4 Advice on controlling unphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (hence unphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again this
requires some knowledge of the noise level of these components, which may or may not be different for different
components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative numbers appear there (for
the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context of the
output medium. Then the internal values carried by the solver are unaffected. Remember that a small negative value in
y returned by CVODES, with magnitude comparable to abstol or less, is equivalent to zero as far as the computation
is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector y to a non-negative
value, as a “solution” to this problem. This can cause instability. If the f routine cannot tolerate a zero or negative
value (e.g. because there is a square root or log of it), then the offending value should be changed to zero or a tiny
positive number in a temporary variable (not in the input y vector) for the purposes of computing f (¢, y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side function. However, because this option involves some extra overhead cost,
it should only be exercised if the use of absolute tolerances to control the computed values is unsuccessful.

5.1. Using CVODES for IVP Solution 65

User Documentation for CVODES, v7.3.0

5.1.3.5 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.8) (e.g., the default
Newton iteration), there are two CVODES linear solver interfaces currently available for this task: CVLS and CVDIAG.

The first corresponds to the main linear solver interface in CVODES, that supports all valid SUNLinearSolver mod-
ules. Here, matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian
matrix J = df/dy, the Newton matrix M = I — ~J, and factorizations used throughout the solution process. Con-
versely, matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equa-
tions, and only require the action of the matrix on a vector, Mv. With most of these methods, preconditioning can be
done on the left only, the right only, on both the left and right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver sections in §5.1.3.10 and §5.1.4.

If preconditioning is done, user-supplied functions define linear operators corresponding to left and right preconditioner
matrices P; and P, (either of which could be the identity matrix), such that the product P; P, approximates the matrix
M =1T1—~Jof (2.9).

The CVDIAG linear solver interface supports a direct linear solver, that uses only a diagonal approximation to .J.

To specify a generic linear solver to CVODES, after the call to CVodeCreate () but before any calls to CVode (),
the user’s program must create the appropriate SUNLinearSolver object and call the function CVodeSetLinear-
Solver(), as documented below. To create the SUNLinearSolver object, the user may call one of the SUNDIALS-
packaged SUNLinearSolver module constructor routines via a call of the form SUNLinearSolver LS = SUNLin-
Sol_*(...);

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in §7 and §8.

Once this solver object has been constructed, the user should attach it to CVODES via a call to CVodeSetLinear-
Solver (). The first argument passed to this function is the CVODES memory pointer returned by CVodeCreate();
the second argument is the desired SUNLinearSolver object to use for solving linear systems. The third argument is
an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for matrix-free linear solvers,
the third argument should be NULL). A call to this function initializes the CVLS linear solver interface, linking it to the
main CVODES integrator, and allows the user to specify additional parameters and routines pertinent to their choice
of linear solver.

To instead specify the CVODES-specific diagonal linear solver interface, the user’s program must call CVDiag(), as
documented below. The first argument passed to this function is the CVODES memory pointer returned by CVode-
Create().

int CVodeSetLinearSolver (void *cvode_mem, SUNLinearSolver LS, SUNMatrix J)

The function CVodeSetLinearSolver attaches a generic SUNLinearSolver object LS and corresponding tem-
plate Jacobian SUNMatrix object J (if applicable) to CVODES, initializing the CVLS linear solver interface.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e LS — SUNLinearSolver object to use for solving linear systems of the form (2.8).

e J — SUNMatrix object for used as a template for the Jacobian (or NULL if not applicable).
Return value:

e CVLS_SUCCESS — The CVLS initialization was successful.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

66 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CVLS_ILL_INPUT — The CVLS interface is not compatible with the LS or J input objects or is incom-
patible with the current N_Vector module.

* CVLS_SUNLS_FAIL — A call to the LS object failed.
e CVLS_MEM_FAIL — A memory allocation request failed.

Notes:
If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix),
ensure that the input object is allocated with sufficient size (see §7 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices M = I —~.J, even if J itself has zeros in nonzero locations
of I. The reasoning for this is that M is constructed in-place, on top of the user-specified values of J, so if
the sparsity pattern in J is insufficient to store M then it will need to be resized internally by CVODES.

Added in version 4.0.0: Replaces the deprecated functions CVD1sSetLinearSolver and CVSpilsSetLinear-
Solver.

int CVDiag(void *cvode_mem)

The function CVDiag selects the CVDIAG linear solver. The user’s main program must include the cvode_-
diag.h header file.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
Return value:
* CVDIAG_SUCCESS — The CVDIAG initialization was successful.
* CVDIAG_MEM_NULL — The cvode_mem pointer is NULL.
e CVDIAG_ILL_INPUT — The CVDIAG solver is not compatible with the current N_Vector module.
e CVDIAG_MEM_FAIL — A memory allocation request failed.

Notes:
The CVDIAG solver is the simplest of all of the available CVODES linear solvers. The CVDIAG solver
uses an approximate diagonal Jacobian formed by way of a difference quotient. The user does not have the
option of supplying a function to compute an approximate diagonal Jacobian.

5.1.3.6 Nonlinear solver interface function

By default CVODES uses the SUNNonlinearSolver implementation of Newton’s method defined by the SUNNON-
LINSOL_NEWTON module. To specify a different nonlinear solver in CVODES, the user’s program must create a
SUNNonlinearSolver object by calling the appropriate constructor routine. The user must then attach the SUNNon-
linearSolver object by calling CVodeSetNonlinearSolver (), as documented below.

When changing the nonlinear solver in CVODES, CVodeSetNonlinearSolver () mustbe called after CVodeInit ().
If any calls to CVode () have been made, then CVODES will need to be reinitialized by calling CVodeReInit () to
ensure that the nonlinear solver is initialized correctly before any subsequent calls to CVode ().

The first argument passed to the routine CVodeSetNonlinearSolver () is the CVODES memory pointer returned by
CVodeCreate () and the second argument is the SUNNonlinearSolver object to use for solving the nonlinear system
(2.8) or (2.6). A call to this function attaches the nonlinear solver to the main CVODES integrator.

int CVodeSetNonlinearSolver (void *cvode _mem, SUNNonlinearSolver NLS)
The function CVodeSetNonlinearSolver attaches a SUNNonlinearSolver object (NLS) to CVODES.

Arguments:

5.1. Using CVODES for IVP Solution 67

User Documentation for CVODES, v7.3.0

* cvode_mem — pointer to the CVODES memory block.

e NLS — SUNNonlinearSolver object to use for solving nonlinear systems (2.5) or (2.6).
Return value:

e CV_SUCCESS — The nonlinear solver was successfully attached.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - The SUNNonlinearSolver object is NULL, does not implement the required non-
linear solver operations, is not of the correct type, or the residual function, convergence test function,
or maximum number of nonlinear iterations could not be set.

Notes:
When forward sensitivity analysis capabilities are enabled and the CV_STAGGERED or CV_STAGGERED1
corrector method is used this function sets the nonlinear solver method for correcting state variables (see
§5.3.2.3 for more details).

5.1.3.7 Rootfinding initialization function

While solving the IVP, CVODES has the capability to find the roots of a set of user-defined functions. To activate the
root finding algorithm, call the following function. This is normally called only once, prior to the first call to CVode (),
but if the rootfinding problem is to be changed during the solution, CVodeRootInit () can also be called prior to a
continuation call to CVode ().

int CVodeRootInit (void *cvode_mem, int nrtfn, CVRootFn g)

The function CVodeRootInit specifies that the roots of a set of functions g;(t, y) are to be found while the IVP
is being solved.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
e nrtfn - is the number of root functions g;.

g —is the C function which defines the nrtfn functions g; (¢, y) whose roots are sought. See §5.1.4.4
for details.

Return value:
* CV_SUCCESS — The call was successful.
e CV_MEM_NULL — The cvode_mem argument was NULL.
e CV_MEM_FAIL — A memory allocation failed.
e CV_ILL_INPUT - The function g is NULL, but nrtfn>0.

Notes:
If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no rootfinding problem
but the prior one did, then call CVodeRootInit with nrtfn=0.

68 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.1.3.8 Projection initialization function

When solving an IVP with a constraint equation, CVODES has the capability to project the solution onto the constraint
manifold after each time step. To activate the projection capability with a user-defined projection function, call the
following set function:

int CVodeSetProjFn(void *cvode_mem, CVProjFn proj)

The function CVodeSetProjFn enables or disables projection with a user-defined projection function.
Arguments:

* cvode_mem — is a pointer to the CVODES memory block returned by CVodeCreate ().

e proj — is the C function which defines the projection. See CVProjFn for details.
Return value:

» CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The cvode_mem argument was NULL.

e CV_MEM_FAIL — A memory allocation failed.

e CV_ILL_INPUT - The projection function is NULL or the method type is not CV_BDF.

Notes:
At this time projection is only supported with BDF methods. If a new IVP is to be solved with a call to
CVodeReInit, where the new IVP does not have a constraint equation but the prior one did, then call
CVodeSetProjFrequency with an input of 0 to disable projection.

Added in version 6.2.0.

5.1.3.9 CVODES solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where CVODES is to return a solution. But these modes are
modified if the user has set a stop time (with CVodeSetStopTime ()) or requested rootfinding.

int CVode (void *cvode_mem, sunrealtype tout, N_Vector yout, sunrealtype *tret, int itask)

The function CVode integrates the ODE over an interval in t.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* tout — the next time at which a computed solution is desired.
* yout — the computed solution vector.
* tret — the time reached by the solver (output).

* itask — a flag indicating the job of the solver for the next user step. The CV_NORMAL option causes
the solver to take internal steps until it has reached or just passed the user-specified tout parameter.
The solver then interpolates in order to return an approximate value of y(tout). The CV_ONE_STEP
option tells the solver to take just one internal step and then return the solution at the point reached by
that step.

Return value:
e CV_SUCCESS - CVode succeeded and no roots were found.

e CV_TSTOP_RETURN — CVode succeeded by reaching the stopping point specified through the optional
input function CVodeSetStopTime ().

5.1. Using CVODES for IVP Solution 69

User Documentation for CVODES, v7.3.0

Notes:

CV_ROOT_RETURN — CVode succeeded and found one or more roots. In this case, tret is the location
of the root. If nrtfn > 1, call CVodeGetRootInfo () to see which g; were found to have a root.

CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

CV_NO_MALLOC — The CVODES memory was not allocated by a call to CVodeInit().

CV_ILL_INPUT - One of the inputs to CVode was illegal, or some other input to the solver was illegal
or missing. The latter category includes the following situations:

(a) The tolerances have not been set.
(b) A component of the error weight vector became zero during internal time-stepping.

(c) The linear solver initialization function (called by the user after calling CVodeCreate()) failed
to set the linear solver-specific 1solve field in cvode_mem.

(d) A root of one of the root functions was found both at a point ¢ and also very near .

CV_TOO_CLOSE — The initial time ¢y and the output time ¢,,,; are too close to each other and the user
did not specify an initial step size.

CV_TOO_MUCH_WORK — The solver took mxstep internal steps but still could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

CV_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some internal
step.

CV_ERR_FAILURE — Either error test failures occurred too many times (MXNEF = 7) during one inter-
nal time step, or with |A| = hyin.

CV_CONV_FAILURE — Either convergence test failures occurred too many times (MXNCF = 10) during
one internal time step, or with |h| = Apip.

CV_LINIT_FAIL — The linear solver interface’s initialization function failed.

CV_LSETUP_FAIL — The linear solver interface’s setup function failed in an unrecoverable manner.
CV_LSOLVE_FAIL — The linear solver interface’s solve function failed in an unrecoverable manner.
CV_CONSTR_FAIL — The inequality constraints were violated and the solver was unable to recover.
CV_RHSFUNC_FAIL — The right-hand side function failed in an unrecoverable manner.
CV_FIRST_RHSFUNC_FAIL — The right-hand side function had a recoverable error at the first call.

CV_REPTD_RHSFUNC_ERR — Convergence test failures occurred too many times due to repeated re-
coverable errors in the right-hand side function. This flag will also be returned if the right-hand side
function had repeated recoverable errors during the estimation of an initial step size.

CV_UNREC_RHSFUNC_ERR — The right-hand function had a recoverable error, but no recovery was
possible. This failure mode is rare, as it can occur only if the right-hand side function fails recoverably
after an error test failed while at order one.

CV_RTFUNC_FAIL — The rootfinding function failed.

The vector yout can occupy the same space as the vector y0 of initial conditions that was passed to
CVodeInit.

In the CV_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough
scale of the independent variable.

70

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

If a stop time is enabled (through a call to CVodeSetStopTime), then CVode returns the solution at tstop.
Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to CVodeSetStopTime).

All failure return values are negative and so the test flag < 0 will trap all CVode failures.

On any error return in which one or more internal steps were taken by CVode, the returned values of tret
and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from the previous CVode return.

5.1.3.10 Optional input functions

There are numerous optional input parameters that control the behavior of the CVODES solver. CVODES provides
functions that can be used to change these optional input parameters from their default values. The main inputs are
divided into the following categories:

* Table 5.1 lists the main CVODES optional input functions,
» Table 5.2 lists the CVLS linear solver interface optional input functions,

 Table 5.3 lists the CVNLS nonlinear solver interface optional input functions,

Table 5.4 lists the CVODES step size adaptivity optional input functions, and

Table 5.5 lists the rootfinding optional input functions.

Table 5.6 lists the projection optional input functions.

These optional inputs are described in detail in the remainder of this section. Note that the diagonal linear solver module
has no optional inputs. For the most casual use of CVODES, the reader can skip to §5.1.4..

‘We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors.

The optional input calls can, unless otherwise noted, be executed in any order. A call to an CVodeSet*** function can,
unless otherwise noted, be made at any time from the user’s calling program and, if successful, takes effect immediately.

Main solver optional input functions

Table 5.1: Optional inputs for CVODES

Optional input Function name Default
User data CVodeSetUserData() NULL
Maximum order for BDF method CVodeSetMaxOrd() 5
Maximum order for Adams method CVodeSetMaxOrd () 12
Maximum no. of internal steps before ¢,,; CVodeSetMaxNumSteps () 500
Maximum no. of warnings for t, + h =t,, CVodeSetMaxHnilWarns () 10

Flag to activate stability limit detection CVodeSetStabLimDet () SUNFALSE
Initial step size CVodeSetInitStep() estimated
Minimum absolute step size CVodeSetMinStep() 0.0
Maximum absolute step size CVodeSetMaxStep() 00

Value of ¢, CVodeSetStopTime () undefined
Interpolate at ¢4, CVodeSetInterpolateStopTime() SUNFALSE
Disable the stop time CVodeClearStopTime () N/A
Maximum no. of error test failures CVodeSetMaxErrTestFails() 7
Inequality constraints on solution CVodeSetConstraints()

5.1. Using CVODES for IVP Solution 71

User Documentation for CVODES, v7.3.0

int CVodeSetUserData (void *cvode_mem, void *user_data)

The function CVodeSetUserData specifies the user data block user_data and attaches it to the main CVODES
memory block.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* user_data — pointer to the user data.
Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:

If specified, the pointer to user_data is passed to all user-supplied functions that have it as an
argument. Otherwise, a NULL pointer is passed.

Warning

If user_data is needed in user linear solver or preconditioner functions, the call to CVodeSetUser-
Data must be made before the call to specify the linear solver.

int CVodeSetMonitorFn(void *cvode_mem, CVMonitorFn monitorfn)

The function CVodeSetMonitorFn specifies a user function, monitorfn, to be called at some interval of suc-
cessfully completed CVODES time steps.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e monitorfn — user-supplied monitor function (NULL by default); a NULL input will turn off monitoring.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The frequency with which the monitor function is called can be set with the function CVodeSetMonitor-
Frequency.

Warning

Modifying the solution in this function will result in undefined behavior. This function is only intended
to be used for monitoring the integrator. SUNDIALS must be built with the CMake option SUNDIALS_-
BUILD_WITH_MONITORING, to utilize this function. See §11 for more information.

int CVodeSetMonitorFrequency (void *cvode_mem, long int nst)

The function CVodeSetMonitorFrequency specifies the interval, measured in successfully completed
CVODES time-steps, at which the monitor function should be called.

Arguments:

72 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* cvode_mem — pointer to the CVODES memory block.

* nst — number of successful steps in between calls to the monitor function 0 by default; a 0 input will
turn off monitoring.

Return value:
* CV_SUCCESS - The optional value has been successfully set.
e CV_MEM_NULL — The CVODES memory block was not initialized CVodeCreate ().

Notes:
The monitor function that will be called can be set with CVodeSetMonitorFn.

Warning

Modifying the solution in this function will result in undefined behavior. This function is only intended
to be used for monitoring the integrator. SUNDIALS must be built with the CMake option SUNDIALS_-
BUILD_WITH_MONITORING, to utilize this function. See §11 for more information.

int CVodeSetMaxOrd (void *cvode_mem, int maxord)

The function CVodeSetMaxOrd specifies the maximum order of the linear multistep method.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ maxord — value of the maximum method order. This must be positive.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — The specified value maxord is < 0, or larger than its previous value.

Notes:
The default value is ADAMS_Q_MAX = 12 for the Adams-Moulton method and BDF_Q_MAX = 5 for the
BDF method. Since maxord affects the memory requirements for the internal CVODES memory block, its
value cannot be increased past its previous value.

An input value greater than the default will result in the default value.

int CVodeSetMaxNumSteps (void *cvode_mem, long int mxsteps)

The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken by the solver in its
attempt to reach the next output time.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* mxsteps — maximum allowed number of steps.
Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

5.1. Using CVODES for IVP Solution 73

User Documentation for CVODES, v7.3.0

Notes:
Passing mxsteps = 0 results in CVODES using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int CVodeSetMaxHnilWarns (void *cvode_mem, int mxhnil)

The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued by the solver warning
that ¢ + h = ¢ on the next internal step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* mxhnil — maximum number of warning messages (> 0).
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value is 10. A negative value for mxhnil indicates that no warning messages should be issued.

int CVodeSetStabLimDet (void *cvode_mem, sunbooleantype stldet)

The function CVodeSetStabLimDet indicates if the BDF stability limit detection algorithm should be used. See
§2.4 for further details.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* stldet — flag controlling stability limit detection (SUNTRUE = on; SUNFALSE = off).
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — The linear multistep method is not set to CV_BDF.

Notes:
The default value is SUNFALSE. If stldet = SUNTRUE when BDF is used and the method order is greater
than or equal to 3, then an internal function, CVsldet, is called to detect a possible stability limit. If such
a limit is detected, then the order is reduced.

int CVodeSetInitStep (void *cvode_mem, sunrealtype hin)
The function CVodeSetInitStep specifies the initial step size.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* hin — value of the initial step size to be attempted. Pass 0.0 to use the default value.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

74 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Notes:
By default, CVODES estimates the initial step size to be the solution h of the equation 0.5h%jj = 1, where
¢ is an estimated second derivative of the solution at #g.

int CVodeSetMinStep (void *cvode_mem, sunrealtype hmin)
The function CVodeSetMinStep specifies a lower bound on the magnitude of the step size.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
 hmin — minimum absolute value of the step size (> 0.0).
Return value:
e CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes:
The default value is 0.0.

int CVodeSetMaxStep (void *cvode_mem, sunrealtype hmax)

The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step size.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* hmax — maximum absolute value of the step size (> 0.0).
Return value:

* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - Either hmax is nonpositive or it is smaller than the minimum allowable step size.

Notes:
Pass hmax = 0.0 to obtain the default value co.

int CVodeSetStopTime (void *cvode_mem, sunrealtype tstop)

The function CVodeSetStopTime specifies the value of the independent variable ¢ past which the solution is not
to proceed.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* tstop — value of the independent variable past which the solution should not proceed.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — The value of tstop is not beyond the current ¢ value, ¢,,.

5.1. Using CVODES for IVP Solution 75

User Documentation for CVODES, v7.3.0

Notes:
The default, if this routine is not called, is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and can be re-enabled
only though a new call to CVodeSetStopTime).

A stop time not reached before a call to CVodeReInit () will remain active but can be disabled by calling
CVodeClearStopTime ().

int CVodeSetInterpolateStopTime (void *cvode_mem, sunbooleantype interp)

The function CVodeSetInterpolateStopTime specifies that the output solution should be interpolated when
the current ¢ equals the specified tstop (instead of merely copying the internal solution y,,).

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* interp — flag indicating to use interpolation (1) or copy (0).
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Added in version 6.6.0.

int CVodeClearStopTime (void *cvode_mem)
Disables the stop time set with CVodeSetStopTime ().

Arguments:

* cvode_mem — pointer to the CVODES memory block.
Return value:

* CV_SUCCESS if successful

e CV_MEM_NULL if the CVODES memory is NULL

Notes:
The stop time can be re-enabled though a new call to CVodeSetStopTime ().

Added in version 6.5.1.

int CVodeSetMaxErrTestFails (void *cvode_mem, int maxnef)

The function CVodeSetMaxErrTestFails specifies the maximum number of error test failures permitted in
attempting one step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* maxnef — maximum number of error test failures allowed on one step (> 0).
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value is 7.

76 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

int CVodeSetConstraints (void *cvode_mem, N_Vector constraints)

The function CVodeSetConstraints specifies a vector defining inequality constraints for each component of
the solution vector y.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

e constraints — vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on y;.

1.0 then y; will be constrained to be y; > 0.0.

-1.0 then y; will be constrained to be y; < 0.0.

2.0 then y; will be constrained to be y; > 0.0.
— -2.0 then y; will be constrained to be y; < 0.0.
Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - The constraints vector contains illegal values or the simultaneous corrector option
has been selected when doing forward sensitivity analysis.

Notes:
The presence of a non-NULL constraints vector that is not 0.0 in all components will cause constraint check-
ing to be performed. However, a call with 0.0 in all components of constraints will result in an illegal
input return. A NULL constraints vector will disable constraint checking.

Constraint checking when doing forward sensitivity analysis with the simultaneous corrector option is cur-
rently disallowed and will result in an illegal input return.

5.1. Using CVODES for IVP Solution 77

User Documentation for CVODES, v7.3.0

Linear solver interface optional input functions

Table 5.2: Optional inputs for the CVLS linear solver interface

Optional input Function name Default

Max allowed -y change without a linear solver setup CVodeSetDel taGamma- 0.3
MaxLSetup()

Max allowed « change to update the Jacobian / preconditioner CVodeSetDeltaGamma- 0.2

after a NLS failure MaxBadJac()

Linear solver setup frequency CVodeSetLSetupFre- 20
quency ()

Jacobian / preconditioner update frequency CVodeSetJacEvalFre- 51
quency ()

Jacobian function CVodeSetJacFn() DQ

Linear System function CVodeSetLinSysFn() internal

Enable or disable linear solution scaling CVodeSetLinearSolution- on
Scaling()

Jacobian-times-vector functions CVodeSetJacTimes () NULL, DQ

Jacobian-times-vector DQ RHS function CVodeSetJacTimesRhsFn() NULL

Preconditioner functions CVodeSetPreconditioner() NULL,

NULL
Ratio between linear and nonlinear tolerances CVodeSetEpsLin() 0.05
Newton linear solve tolerance conversion factor CVodeSetLSNormFactor () vector
length

The mathematical explanation of the linear solver methods available to CVODES is provided in §2.1. We group the user-
callable routines into four categories: general routines concerning the overall CVLS linear solver interface, optional
inputs for matrix-based linear solvers, optional inputs for matrix-free linear solvers, and optional inputs for iterative
linear solvers. We note that the matrix-based and matrix-free groups are mutually exclusive, whereas the “iterative”
tag can apply to either case.

Asdiscussedin §2.1, CVODES strives to reuse matrix and preconditioner data for as many solves as possible to amortize
the high costs of matrix construction and factorization. To that end, CVODES provides user-callable routines to modify
this behavior. Recall that the Newton system matrices are M (¢,y) = I — vJ(¢,y), where the right-hand side function

of(t
has Jacobian matrix J(t,y) = M

dy

The matrix or preconditioner for M can only be updated within a call to the linear solver ‘setup’ routine. In general,
the frequency with which this setup routine is called may be controlled with the msbp argument to CVodeSetLSe-
tupFrequency (). When this occurs, the validity of M for successive time steps intimately depends on whether the
corresponding «y and J inputs remain valid.

At each call to the linear solver setup routine the decision to update M with a new value of v, and to reuse or reevaluate
Jacobian information, depends on several factors including:

* the success or failure of previous solve attempts,

* the success or failure of the previous time step attempts,

* the change in 7y from the value used when constructing M, and

* the number of steps since Jacobian information was last evaluated.

Jacobian information is considered out-of-date when msbj or more steps have been completed since the last update,
in which case it will be recomputed during the next linear solver setup call. The value of msbj is controlled with the
msbj argument to CVodeSetJacEvalFrequency().

78 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

For linear-solvers with user-supplied preconditioning the above factors are used to determine whether to recommend
updating the Jacobian information in the preconditioner (i.e., whether to set jok to SUNFALSE in calling the user-
supplied preconditioner setup function (see §5.1.4.11). For matrix-based linear solvers these factors determine whether

of (t,y)

the matrix J(t,y) = ———== should be updated (either with an internal finite difference approximation or a call to

dy
the user-supplied Jacobian function (see §5.1.4.6); if not then the previous value is reused and the system matrix
M(t,y) =~ I —~J(t,y) is recomputed using the current -y value.

int CVodeSetDeltaGammaMaxLSetup (void *cvode_mem, sunrealtype dgmax_lsetup)

The function CVodeSetDeltaGammaMaxLSetup specifies the maximum allowed ~ change that does not require
alinear solver setup call. If |gamma_current / gamma_previous - 1| > dgmax_lsetup, the linear solver
setup function is called.

If dgmax_lsetup is < 0, the default value (0.3) will be used.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* dgmax_lsetup — the vy change threshold.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Added in version 6.2.0.

int CVodeSetDeltaGammaMaxBadJac (void *cvode_mem, sunrealtype dgmax_jbad)

The function CVodeSetDeltaGammaMaxBadJac specifies the maximum allowed ~ change after a NLS failure
that requires updating the Jacobian / preconditioner. If gamma_current < dgmax_jbad, the Jacobian evalua-
tion and/or preconditioner setup functions will be called.

Positive values of dgmax_jbad specify the threshold, all other values will result in using the default value (0.2).
Arguments:

* cvode_mem — pointer to the CVODE memory block.

* dgmax_jbad — the v change threshold.
Return value:

* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODE memory block was not initialized through a previous call to CVodeCre-
ate().

Added in version 6.2.0.

int CVodeSetLSetupFrequency (void *cvode_mem, long int msbp)

The function CVodeSetLSetupFrequency specifies the frequency of calls to the linear solver setup function.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* msbp — the linear solver setup frequency.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

5.1. Using CVODES for IVP Solution 79

User Documentation for CVODES, v7.3.0

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT - The frequency msbp is negative.

Notes:
Positive values of msbp specify the linear solver setup frequency. For example, an input of 1 means the
setup function will be called every time step while an input of 2 means it will be called called every other
time step. If msbp = 0, the default value of 20 will be used. Otherwise an error is returned.

int CVodeSetJacEvalFrequency (void *cvode_mem, long int msbj)

The function CVodeSetJacEvalFrequency Specifies the number of steps after which the Jacobian information
is considered out-of-date, msbj from §2.1.1.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* msbj — the Jacobian re-computation or preconditioner update frequency.
Return value:

e CVLS_SUCCESS — The optional value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

e CVLS_ILL_INPUT - The frequency msbj is negative.

Notes:
If nstlj is the step number at which the Jacobian information was lasted updated and nst is the current
step number, nst - nstlj >= msbj indicates that the Jacobian information will be updated during the
next linear solver setup call.

As the Jacobian update frequency is only checked within calls to the linear solver setup routine, Jacobian
information may be more than msbj steps old when updated depending on when a linear solver setup call
occurs. See §2.1.1 for more information on when linear solver setups are performed.

If msbj = 0, the default value of 51 will be used. Otherwise an error is returned.

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

When using matrix-based linear solver modules, the CVLS solver interface needs a function to compute an approxima-
tion to the Jacobian matrix J(¢,y) or the linear system M = I — ~J. The function to evaluate J (¢, y) must be of type
CVLsJacFn. The user can supply a Jacobian function, or if using a SUNMATRIX_DENSE or SUNMATRIX_BAND
matrix J, can use the default internal difference quotient approximation that comes with the CVLS solver. To specify
a user-supplied Jacobian function jac, CVLS provides the function CVodeSetJacFn(). The CVLS interface passes
the pointer user_data to the Jacobian function. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied Jacobian function, without using global data in
the program. The pointer user_data may be specified through CVodeSetUserData().

int CVodeSetJacFn(void *cvode_mem, CVLsJacFn jac)

The function CVodeSetJacFn specifies the Jacobian approximation function to be used for a matrix-based solver
within the CVLS interface.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* jac — user-defined Jacobian approximation function.

Return value:

80

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

By default, CVLS uses an internal difference quotient function for the SUNMATRIX DENSE and SUN-
MATRIX_BAND modules. If NULL is passed to jac, this default function is used. An error will occur if no
jac is supplied when using other matrix types.

The function type CVLsJacFn is described in §5.1.4.6.
Added in version 4.0.0: Replaces the deprecated function CVD1sSetJacFn.

To specify a user-supplied linear system function 1insys, CVLS provides the function CVodeSetLinSysFn(). The
CVLS interface passes the pointer user_data to the linear system function. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied linear system function,
without using global data in the program. The pointer user_data may be specified through CVodeSetUserData().

int CVodeSetLinSysFn(void *cvode_mem, CVLsLinSysFn linsys)

The function CVodeSetLinSysFn specifies the linear system approximation function to be used for a matrix-
based solver within the CVLS interface.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* linsys — user-defined linear system approximation function.
Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
* CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

By default, CVLS uses an internal linear system function leveraging the SUNMatrix API to form the system
M = I — ~J using either an internal finite difference approximation or user-supplied function to compute
the Jacobian. If 1insys is NULL, this default function is used.

The function type CVLsLinSysFn is described in §5.1.4.6.

When using a matrix-based linear solver the matrix information will be updated infrequently to reduce matrix construc-
tion and, with direct solvers, factorization costs. As a result the value of v may not be current and, with BDF methods,
a scaling factor is applied to the solution of the linear system to account for the lagged value of . See §8.2.1 for more
details. The function CVodeSetLinearSolutionScaling() can be used to disable this scaling when necessary, e.g.,
when providing a custom linear solver that updates the matrix using the current y as part of the solve.

int CVodeSetLinearSolutionScaling(void *cvode_mem, sunbooleantype onoft)

The function CVodeSetLinearSolutionScaling() enables or disables scaling the linear system solution to
account for a change in v in the linear system. For more details see §8.2.1.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

5.1. Using CVODES for IVP Solution 81

User Documentation for CVODES, v7.3.0

* onoff — flag to enable (SUNTRUE) or disable (SUNFALSE) scaling.
Return value:
* CVLS_SUCCESS — The flag value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

e CVLS_ILL_INPUT - The attached linear solver is not matrix-based or the linear multistep method type
is not BDF.

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver.

By default scaling is enabled with matrix-based linear solvers when using BDF methods.

When using matrix-free linear solver modules, the CVLS solver interface requires a function to compute an approxi-
mation to the product between the Jacobian matrix J (¢, y) and a vector v. The user can supply a Jacobian-times-vector
approximation function or use the default internal difference quotient function that comes with the CVLS interface.

A user-defined Jacobian-vector product function must be of type CVLsJacTimesVecFn and can be specified through a
call to CVodeSetJacTimes () (see §5.1.4.8 for specification details). The evaluation and processing of any Jacobian-
related data needed by the user’s Jacobian-times-vector function may be done in the optional user-supplied function
jtsetup (see §5.1.4.9 for specification details). The pointer user_data received through CVodeSetUserData () (or
a pointer to NULL if user_data was not specified) is passed to the Jacobian-times-vector setup and product functions,
jtsetup and jtimes, each time they are called. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied functions without using global data in the program.

int CVodeSetJacTimes (void *cvode_mem, CVLsJacTimesSetupFn jtsetup, CVLsJacTimesVecFn jtimes)

The function CVodeSetJacTimes specifies the Jacobian-vector setup and product functions.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* jtsetup — user-defined Jacobian-vector setup function of type CVLsJacTimesSetupFn.

* jtimes —user-defined Jacobian-vector product function of type CVLsJacTimesVecFn.
Return value:

* CVLS_SUCCESS — The optional value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

* CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

e CVLS_SUNLS_FAIL — An error occurred when setting up the system matrix-times-vector routines in
the SUNLinearSolver object used by the CVLS interface.

Notes:
The default is to use an internal finite difference quotient for jtimes and to omit jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup
inputs.

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

Added in version 4.0.0: Replaces the deprecated function CVSpilsSetJacTimes.

82 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

When using the internal difference quotient the user may optionally supply an alternative right-hand side function for
use in the Jacobian-vector product approximation by calling CVodeSetJacTimesRhsFn (). The alternative right-hand
side function should compute a suitable (and differentiable) approximation to the right-hand side function provided
to CVodeInit (). For example, as done in [28], the alternative function may use lagged values when evaluating a
nonlinearity in the right-hand side to avoid differencing a potentially non-differentiable factor.

int CVodeSetJacTimesRhsFn(void *cvode_mem, CVRAsFn jtimesRhsFn)

The function CVodeSetJacTimesRhsFn specifies an alternative ODE right-hand side function for use in the
internal Jacobian-vector product difference quotient approximation.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

¢ jtimesRhsFn —is the C function which computes the alternative ODE right-hand side function to use
in Jacobian-vector product difference quotient approximations. This function has the form f(t, vy,
ydot, user_data) (for full details see §5.1.4.1).

Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_ILL_INPUT - The internal difference quotient approximation is disabled.

Notes:
The default is to use the right-hand side function provided to CVodeInit () in the internal difference quo-
tient. If the input right-hand side function is NULL, the default is used.

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution of the system.
This operator consists of two user-supplied functions, psetup and psolve, that are supplied to CVODES using the
function CVodeSetPreconditioner(). The psetup function supplied to this routine should handle evaluation and
preprocessing of any Jacobian data needed by the user’s preconditioner solve function, psolve. The user data pointer
received through CVodeSetUserData () (or a pointer to NULL if user data was not specified) is passed to the psetup
and psolve functions. This allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied preconditioner functions without using global data in the program.

Also, as described in §2.1, the CVLS interface requires that iterative linear solvers stop when the norm of the precon-
ditioned residual satisfies

Ir|| < £
10

where € is the nonlinear solver tolerance, and the default e;, = 0.05; this value may be modified by the user through
the CVodeSetEpsLin() function.

int CVodeSetPreconditioner (void *cvode_mem, CVLsPrecSetupFn psetup, CVLsPrecSolveFn psolve)

The function CVodeSetPreconditioner specifies the preconditioner setup and solve functions.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* psetup — user-defined preconditioner setup function. Pass NULL if no setup is necessary.
* psolve —user-defined preconditioner solve function.

Return value:

5.1. Using CVODES for IVP Solution 83

User Documentation for CVODES, v7.3.0

CVLS_SUCCESS — The optional values have been successfully set.

CVLS_MEM_NULL — The cvode_mem pointer is NULL.

CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

CVLS_SUNLS_FAIL — An error occurred when setting up preconditioning in the SUNLinearSolver
object used by the CVLS interface.

Notes:
The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

The function type CVLsPrecSolveFn is described in §5.1.4.10.
The function type CVLsPrecSetupFn is described in §5.1.4.11.
Added in version 4.0.0: Replaces the deprecated function CVSpilsSetPreconditioner.

int CVodeSetEpsLin(void *cvode_mem, sunrealtype eplifac)

The function CVodeSetEpsLin specifies the factor by which the Krylov linear solver’s convergence test constant
is reduced from the nonlinear solver test constant.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* eplifac - linear convergence safety factor (> 0).
Return value:
* CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_ILL_INPUT — The factor eplifac is negative.

Notes:
The default value is 0.05.

This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

If eplifac = 0.0 is passed, the default value is used.
Added in version 4.0.0: Replaces the deprecated function CVSpilsSetEpsLin.

int CVodeSetLSNormFactor (void *cvode_mem, sunrealtype nrmfac)

The function CVodeSetLSNormFactor specifies the factor to use when converting from the integrator tolerance
(WRMS norm) to the linear solver tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 = fac *
tol_WRMS.

Arguments:
e cvode_mem — pointer to the CVODES memory block.
* nrmfac — the norm conversion factor. If nrmfac is:
— > 0 then the provided value is used.

— = 0 then the conversion factor is computed using the vector length, i.e., nrmfac = N_-
VGetLength(y) (default).

84 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

— < 0 then the conversion factor is computed using the vector dot product, i.e., nrmfac = N_-
VDotProd(v,v) where all the entries of v are one.

Return value:
e CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call to
CVodeSetLinearSolver().

Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0 (CVODES v5.0.0) the value of nrmfac
was computed using the vector dot product i.e., the nrmfac < 0 case.

Nonlinear solver interface optional input functions

Table 5.3: Optional inputs for the CVNLS nonlinear solver interface

Optional input Function name Default
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters() 3
Maximum no. of convergence failures CVodeSetMaxConvFails() 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef() 0.1
ODE RHS function for nonlinear system evaluations CVodeSetNIsRhsFn() NULL

The following functions can be called to set optional inputs controlling the nonlinear solver.

int CVodeSetMaxNonlinIters (void *cvode_mem, int maxcor)

The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear solver iterations permit-
ted per step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* maxcor — maximum number of nonlinear solver iterations allowed per step (> 0).
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — The SUNNonlinearSolver module is NULL.

Notes:
The default value is 3.

int CVodeSetMaxConvFails (void *cvode_mem, int maxncf)

The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver convergence failures
permitted during one step.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* maxncf — maximum number of allowable nonlinear solver convergence failures per step (> 0).

5.1. Using CVODES for IVP Solution 85

User Documentation for CVODES, v7.3.0

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value is 10.

int CVodeSetNonlinConvCoef (void *cvode_mem, sunrealtype nlscoef)

The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear convergence test (see

§2.1).
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nlscoef — coefficient in nonlinear convergence test (> 0).
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default value is 0.1.

int CVodeSetN1sRhsFn (void *cvode_mem, CVRAsFn f)

The function CVodeSetN1sRhsFn specifies an alternative right-hand side function for use in nonlinear system
function evaluations.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

o f — is the alternative C function which computes the right-hand side function f in the ODE (for full
details see CVRhsFn).

Return value:
» CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The default is to use the implicit right-hand side function provided to CVodeInit () in nonlinear system
function evaluations. If the input right-hand side function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after CVodeSetNonlinear-
Solver().

86 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Time step adaptivity optional input functions

Table 5.4: Optional inputs for CVODES time step adaptivity

Optional input Function name De-
fault

Fixed step size factor bounds 7yin_gx and Mmax fx CVodeSetEtaFixedStep- 0 and
Bounds () 1.5

Largest allowed step size change factor in the first step 7max_fs CVodeSetEtaMaxFirstStep () 10%

Largest allowed step size change factor for early steps Nmax es CVodeSetEtaMaxEarlyStep() 10

Number of time steps to use the early step size change factor CVodeSetNumStepsEtaMax- 10
EarlyStep()

Largest allowed step size change factor after a successful step CVodeSetEtaMax() 10

nmax_gs

Smallest allowed step size change factor after a successful step CVodeSetEtalin() 1.0

TImin

Smallest allowed step size change factor after an error test fail CVodeSetEtaMinErrFail() 0.1

Tlmin_ef

Largest allowed step size change factor after multiple error test CVodeSetEtaMaxErrFail () 0.2

fails Tlmax_ef

Number of error failures necessary for 7y ax_of CVodeSetNumFailsEtaMaxEr- 2
rFail()

Step size change factor after a nonlinear solver convergence fail- CVodeSetEtaConvFail () 0.25

ure 7t

The following functions can be called to set optional inputs to control the step size adaptivity.

Note

The default values for the step size adaptivity tuning parameters have a long history of success and changing the
values is generally discouraged. However, users that wish to experiment with alternative values should be careful
to make changes gradually and with testing to determine their effectiveness.

int CVodeSetEtaFixedStepBounds (void *cvode_mem, sunrealtype eta_min_fx, sunrealtype eta_max_fx)

The function CVodeSetEtaFixedStepBounds specifies the interval lower (1yin_rx) and upper (Nmax_gx) bounds
in which the step size will remain unchanged i.e., if Nyin fx < 7 < Mmax_fx, then n = 1.

The default values are nyin_tx = 0 and Ppax i = 1.5

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e eta_min_fx — value of the lower bound of the fixed step interval. If eta_min_fx is < 0 or > 1, the

default value is used.

* eta_max_£x — value of the upper bound of the fixed step interval. If eta_max_£x is < 1, the default

value is used.

Return value:

* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-

Create().

5.1. Using CVODES for IVP Solution

87

User Documentation for CVODES, v7.3.0

Added in version 6.2.0.

int CVodeSetEtaMaxFirstStep (void *cvode_mem, sunrealtype eta_max_{s)
The function CVodeSetEtaMaxFirstStep specifies the maximum step size factor after the first time step,

Thmax_fs-
The default value is fyax s = 10%.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

* eta_max_fs — value of the maximum step size factor after the first time step. If eta_max_fsis <1,
the default value is used.

Return value:
* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Added in version 6.2.0.

int CVodeSetEtaMaxEarlyStep (void *cvode_mem, sunrealtype eta_max_es)

The function CVodeSetEtaMaxEarlyStepEtalax specifies the maximum step size factor for steps early in the
integration, Nmax_es-

The default value is Nyax es = 10.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e eta_max_es — value of the maximum step size factor for early in the integration. If eta_max_es is
< 1, the default value is used.

Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note

The factor for the first time step is set by CVodeSetEtaMaxFirstStep().

The number of time steps that use the early integration maximum step size factor 7max s can be set with
CVodeSetNumStepsEtaMaxEarlyStep().

Added in version 6.2.0.

int CVodeSetNumStepsEtaMaxEarlyStep (void *cvode_mem, long int small_nst)

The function CVodeSetNumStepsEtaMaxEarlyStep specifies the number of steps to use the early integration
maximum step size factor, Nmax_es-

The default value is 10.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

88 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* small_nst — value of the maximum step size factor for early in the integration. If small_nstis < 0,
the default value is used. If the small_nst is O, then the value set by CVodeSetEtaMax () is used.

Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note

The factor 7ax_es can be set with CVodeSetEtaMaxEarlyStep().

Added in version 6.2.0.

int CVodeSetEtaMax (void *cvode_mem, sunrealtype eta_max_gs)
The function CVodeSetEtaMax specifies the maximum step size factor, Nmax_gs-

The default value is 7max_gs = 10.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e eta_max_gs — value of the maximum step size factor. If eta_max_gs is < 1, the default value is
used.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note

The factor for the first time step is set by CVodeSetEtaMaxFirstStep().

The factor for steps early in the integration is set by CVodeSetEtaMaxEarlyStep().

Added in version 6.2.0.

int CVodeSetEtaMin(void *cvode_mem, sunrealtype eta_min)
The function CVodeSetEtalMin specifies the minimum step size factor, Myin -

The default value is Ny = 1.0.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

e eta_min — value of the minimum step size factor. If eta_minis < 0 or > 1, the default value is used.
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Added in version 6.2.0.

5.1. Using CVODES for IVP Solution 89

User Documentation for CVODES, v7.3.0

int CVodeSetEtaMinErrFail (void *cvode_mem, sunrealtype eta_min_ef)

The function CVodeSetEtaMinErrFail specifies the minimum step size factor after an error test failure, 7min_ef-
The default value is yin_of = 0.1.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

e eta_min_ef — value of the minimum step size factor after an error test failure. If eta_min_efis <0
or > 1, the default value is used.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Added in version 6.2.0.

int CVodeSetEtaMaxErrFail (void *cvode_mem, sunrealtype eta_max_ef)

The function CVodeSetEtalMaxErrFail specifies the maximum step size factor after multiple error test failures,

TImax_ef -
The default value is Nin of = 0.2.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e eta_max_ef — value of the maximum step size factor after an multiple error test failures. If eta_-
min_ef is < 0 or > 1, the default value is used.

Return value:
* CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note

The number of error test failures necessary to enforce the maximum step size factor ny,in_of can be set with
CVodeSetNumFailsEtaMaxErrFail ().

Added in version 6.2.0.

int CVodeSetNumFailsEtaMaxErrFail (void *cvode_mem, int small_nef)

The function CVodeSetNumFailsEtaMaxErrFail specifies the number of error test failures necessary to en-
force the maximum step size factor Nyax_ef-

The default value is 2.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e small_nst — value of the maximum step size factor for early in the integration. If small_nstis < 0,
the default value is used. If the small_nst is O, then the value set by CVodeSetEtalax () is used.

Return value:

* CV_SUCCESS — The optional value has been successfully set.

90 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Note

The factor nymax_ef can be set with CVodeSetEtaMaxErrFail ().

Added in version 6.2.0.

int CVodeSetEtaConvFail (void *cvode_mem, sunrealtype eta_cf)

The function CVodeSetEtaConvFail specifies the step size factor after a nonlinear solver failure 7).¢.
The default value is 1.t = 0.25.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

e eta_cf — value of the maximum step size factor after a nonlinear solver failure. If eta_cfis < 0 or
> 1, the default value is used.

Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Added in version 6.2.0.

Rootfinding optional input functions

Table 5.5: Optional inputs for CVODES step size adaptivity

Optional input Function name Default

Direction of zero-crossing CVodeSetRootDirection() both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn() none

The following functions can be called to set optional inputs to control the rootfinding algorithm.

int CVodeSetRootDirection(void *cvode_mem, int *rootdir)
The function CVodeSetRootDirection specifies the direction of zero-crossings to be located and returned.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

e rootdir — state array of length nrtfn, the number of root functions g;, as specified in the call to the
function CVodeRootInit (). A value of O for rootdir[i] indicates that crossing in either direction
for g; should be reported. A value of 4+1 or —1 indicates that the solver should report only zero-
crossings where g; is increasing or decreasing, respectively.

Return value:
e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

5.1. Using CVODES for IVP Solution 91

User Documentation for CVODES, v7.3.0

e CV_ILL_INPUT - rootfinding has not been activated through a call to CVodeRootInit ().

Notes:
The default behavior is to monitor for both zero-crossing directions.

int CVodeSetNoInactiveRootWarn (void *cvode_mem)

The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root function appears to be
identically zero at the beginning of the integration.

Arguments:

* cvode_mem — pointer to the CVODES memory block.
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
CVODES will not report the initial conditions as a possible zero-crossing (assuming that one or more
components g; are zero at the initial time). However, if it appears that some g; is identically zero at the
initial time (i.e., g; is zero at the initial time and after the first step), CVODES will issue a warning which
can be disabled with this optional input function.

Projection optional input functions

Table 5.6: Optional inputs for the CVODE projection interface

Optional input Function name Default
Enable or disable error estimate projection CVodeSetProjErrEst () SUNTRUE
Projection frequency CVodeSetProjFrequency() 1
Maximum number of projection failures CVodeSetMaxNumProjFails() 10
Projection solve tolerance CVodeSetEpsProj() 0.1

Step size reduction factor after a failed projection CVodeSetProjFailEta() 0.25

The following functions can be called to set optional inputs to control the projection when solving an IVP with con-
straints.

int CVodeSetProjErrEst (void *cvode_mem, sunbooleantype onoff)

The function CVodeSetProjErrEst enables or disables projection of the error estimate by the projection func-
tion.

Arguments:

* cvode_mem — is a pointer to the CVODES memory block.

* onoff —is a flag indicating if error projection should be enabled (SUNTRUE) or disabled (SUNFALSE).
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

92 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Added in version 6.2.0.

int CVodeSetProjFrequency (void *cvode_mem, long int freq)
The function CVodeSetProjFrequency specifies the frequency with which the projection is performed.

Arguments:
* cvode_mem — is a pointer to the CVODES memory block.

» freq - is the frequency with which to perform the projection. The default is 1 (project every step), a
value of 0 will disable projection, and a value < 0 will restore the default.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

Added in version 6.2.0.

int CVodeSetMaxNumProjFails (void *cvode_mem, int max_fails)

The function CVodeSetMaxNumProjFails specifies the maximum number of projection failures in a step at-
tempt before an unrecoverable error is returned.

Arguments:
* cvode_mem — is a pointer to the CVODES memory block.

» max_fails — is the maximum number of projection failures. The default is 10 and an input value < 1
will restore the default.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

Added in version 6.2.0.

int CVodeSetEpsProj (void *cvode_mem, sunrealtype eps)

The function CVodeSetEpsProj specifies the tolerance for the nonlinear constrained least squares problem
solved by the projection function.

Arguments:
* cvode_mem — is a pointer to the CVODES memory block.

* eps — is the tolerance (default 0.1) for the the nonlinear constrained least squares problem solved by
the projection function. A value < 0 will restore the default.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

5.1. Using CVODES for IVP Solution 93

User Documentation for CVODES, v7.3.0

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

Added in version 6.2.0.

int CVodeSetProjFailEta(void *cvode_mem, sunrealtype eta)

The function CVodeSetProjFailEta specifies the time step reduction factor to apply on a projection function
failure.

Arguments:
* cvode_mem — is a pointer to the CVODES memory block.

* eps — is the time step reduction factor to apply on a projection function failure (default 0.25). A value
< 0 or > 1 will restore the default.

Return value:
* CV_SUCCESS — The optional value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

Added in version 6.2.0.

5.1.3.11 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function should only be called
after a successful return from CVode as it provides interpolated values either of y or of its derivatives (up to the current
order of the integration method) interpolated to any value of ¢ in the last internal step taken by CVODES.

The call to the function has the following form:

int CVodeGetDky (void *cvode_mem, sunrealtype t, int k, N_Vector dky)

k

d
The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e. d—g (t), where t,, —h, <

t < t,, t, denotes the current internal time reached, and h,, is the last internal step size successfully used by the
solver. The user may request k =0,1,..., q,, where g, is the current order (optional output qlast).

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* t — the value of the independent variable at which the derivative is to be evaluated.

 k — the derivative order requested.

» dky — vector containing the derivative. This vector must be allocated by the user.
Return value:

e CV_SUCCESS — CVodeGetDky succeeded.

e CV_BAD_K — kisnotintherange 0,1,...,q,.

o CV_BAD_T - t is not in the interval [t,, — hy,, t,].

e CV_BAD_DKY — The dky argument was NULL.

CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

94

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Notes:
It is only legal to call the function CVodeGetDky after a successful return from CVode(). See
CVodeGetCurrentTime (), CVodeGetLastOrder(), and CVodeGetLastStep() in the next section for
access to t,, gy, and h,,, respectively.

5.1.3.12 Optional output functions

CVODES provides an extensive set of functions that can be used to obtain solver performance information. Table 5.7
lists all optional output functions in CVODES, which are then described in detail in the remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining how successful the
CVODES solver is in doing its job. For example, the counters nsteps and nfevals provide a rough measure of the
overall cost of a given run, and can be compared among runs with differing input options to suggest which set of options
is most efficient. The ratio nniters/nsteps measures the performance of the nonlinear solver in solving the nonlinear
systems at each time step; typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of
a matrix-based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian or preconditioner being
used. Thus, for example, njevals/nniters can indicate if a user-supplied Jacobian is inaccurate, if this ratio is larger
than for the case of the corresponding internal Jacobian. The ratio nliters/nniters measures the performance of
the Krylov iterative linear solver, and thus (indirectly) the quality of the preconditioner.

Table 5.7: Optional outputs from CVODES, CVLS, and CVDIAG

Optional output

Function name

CVODES main solver

Size of CVODES real and integer workspaces
Cumulative number of internal steps

No. of calls to r.h.s. function

No. of calls to linear solver setup function

No. of local error test failures that have occurred
No. of failed steps due to a nonlinear solver failure
Order used during the last step

Order to be attempted on the next step

No. of order reductions due to stability limit detection

Actual initial step size used

Step size used for the last step

Step size to be attempted on the next step
Current internal time reached by the solver
Suggested factor for tolerance scaling
Error weight vector for state variables
Estimated local error vector

No. of nonlinear solver iterations

No. of nonlinear convergence failures

All CVODES integrator statistics
CVODES nonlinear solver statistics

User data pointer

Array showing roots found

No. of calls to user root function

Print all statistics

Name of constant associated with a return flag
CVLS linear solver interface

Stored Jacobian of the ODE RHS function
Time at which the Jacobian was evaluated

CVodeGetliorkSpace ()
CVodeGetNumSteps ()
CVodeGetNumRhsEvals()
CVodeGetNumLinSolvSetups()
CVodeGetNumErrTestFails ()
CVodeGetNumStepSolveFails()
CVodeGetLastOrder ()
CVodeGetCurrentOrder ()
CVodeGetNumStabLimOrderReds ()
CVodeGetActualInitStep()
CVodeGetLastStep()
CVodeGetCurrentStep()
CVodeGetCurrentTime ()
CVodeGetTolScaleFactor()
CVodeGetErriieights ()
CVodeGetEstLocalErrors()
CVodeGetNumNonlinSolvIters()
CVodeGetNumNonlinSolvConvFails()
CVodeGetIntegratorStats()
CVodeGetNonlinSolvStats()
CVodeGetUserData()
CVodeGetRootInfo()
CVodeGetNumGEvals ()
CVodePrintAllStats()
CVodeGetReturnFlagName ()

CVodeGetJac()
CVodeGetJacTime ()

continues on next page

5.1. Using CVODES for IVP Solution

95

User Documentation for CVODES, v7.3.0

Table 5.7 — continued from previous page

Optional output

Function name

Step number at which the Jacobian was evaluated
Size of real and integer workspaces
No. of Jacobian evaluations

No. of r.h.s. calls for finite diff. Jacobian[-vector] evals.

No. of linear iterations

No. of linear convergence failures

No. of preconditioner evaluations

No. of preconditioner solves

No. of Jacobian-vector setup evaluations

No. of Jacobian-vector product evaluations
Get all linear solver statistics in one function call
Last return from a linear solver function

Name of constant associated with a return flag
CVDIAG linear solver interface

Size of CVDIAG real and integer workspaces
No. of r.h.s. calls for finite diff. Jacobian evals.
Last return from a CVDIAG function

Name of constant associated with a return flag

CVodeGetJacNumSteps ()
CVodeGetLinWorkSpace ()
CVodeGetNumJacEvals()
CVodeGetNumLinRhsEvals ()
CVodeGetNumLinIters()
CVodeGetNumLinConvFails()
CVodeGetNumPrecEvals()
CVodeGetNumPrecSolves ()
CVodeGetNumJTSetupEvals ()
CVodeGetNumJtimesEvals ()
CVodeGetLinSolveStats()
CVodeGetLastLinFlag()
CVodeGetLinReturnFlagName ()

CVDiagGetlWorkSpace ()
CVDiagGetNumRhsEvals ()
CVDiagGetLastFlag()
CVDiagGetReturnFlagName ()

Main solver optional output functions

CVODES provides several user-callable functions that can be used to obtain different quantities that may be of interest
to the user, such as solver workspace requirements, solver performance statistics, as well as additional data from the
CVODES memory block (a suggested tolerance scaling factor, the error weight vector, and the vector of estimated local
errors). Functions are also provided to extract statistics related to the performance of the CVODES nonlinear solver
used. As a convenience, additional information extraction functions provide the optional outputs in groups. These
optional output functions are described next.

int CVodeGetWorkSpace (void *cvode_mem, long int *lenrw, long int *leniw)

The function CVodeGetWorkSpace returns the CVODES real and integer workspace sizes.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ lenrw — the number of sunrealtype values in the CVODES workspace.

* leniw — the number of integer values in the CVODES workspace.

Return value:

e CV_SUCCESS - The optional output values have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-

Create().

Notes:

In terms of the problem size NV, the maximum method order maxord, and the number nrtfn of root func-
tions (see §5.1.3.7) the actual size of the real workspace, in sunrealtype words, is given by the following:

* base value: lenrw = 96 + (maxord + 5)N,. + 3nrtfn;

* using CVodeSVtolerances(): lenrw = lenrw 4+ N,;

» with constraint checking (see CVodeSetConstraints()): lenrw = lenrw + N,;

96

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

where N,. is the number of real words in one N_Vector (= N).

The size of the integer workspace (without distinction between int and long int words) is given by:
* base value: leniw = 40 + (maxord + 5)N; + nrtfn;
* using CVodeSVtolerances(): leniw = leniw + N;;
» with constraint checking: lenrw = lenrw + N;;

where [V, is the number of integer words in one N_Vector (= 1 for NVECTOR_SERIAL and 2*npes for
NVECTOR_PARALLEL and npes processors).

For the default value of maxord, no rootfinding, no constraints, and without using CVodeSVtolerances(),
these lengths are given roughly by:

¢ For the Adams method: lenrw = 96 + 17NV and leniw = 57
¢ For the BDF method: lenrw = 96 + 10N and leniw = 50

Note that additional memory is allocated if quadratures and/or forward sensitivity integration is enabled.
See §5.2.1 and §5.3.2.1 for more details.

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

int CVodeGetNumSteps (void *cvode_mem, long int *nsteps)

The function CVodeGetNumSteps returns the cumulative number of internal steps taken by the solver (total so
far).

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nsteps — number of steps taken by CVODES.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumRhsEvals (void *cvode_mem, long int *nfevals)

The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand side function.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nfevals — number of calls to the user’s f function.
Return value:

e CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made to £ by a linear
solver or preconditioner module.
int CVodeGetNumLinSolvSetups (void *cvode_mem, long int *nlinsetups)
The function CVodeGetNumLinSolvSetups returns the number of calls made to the linear solver’s setup func-
tion.

Arguments:

5.1. Using CVODES for IVP Solution 97

User Documentation for CVODES, v7.3.0

* cvode_mem — pointer to the CVODES memory block.

* nlinsetups — number of calls made to the linear solver setup function.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumErrTestFails (void *cvode_mem, long int *netfails)
The function CVodeGetNumErrTestFails returns the number of local error test failures that have occurred.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* netfails — number of error test failures.
Return value:
e CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumStepSolveFails (void *cvode_mem, long int *ncnf)
Returns the number of failed steps due to a nonlinear solver failure.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* ncnf — number of step failures.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetLastOrder (void *cvode_mem, int *qlast)
The function CVodeGetLastOrder returns the integration method order used during the last internal step.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* glast — method order used on the last internal step.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetCurrentOrder (void *cvode_mem, int *qcur)

The function CVodeGetCurrentOrder returns the integration method order to be used on the next internal step.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

¢ gcur — method order to be used on the next internal step.

98 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetLastStep(void *cvode_mem, sunrealtype *hlast)

The function CVodeGetLastStep returns the integration step size taken on the last internal step.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* hlast — step size taken on the last internal step.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetCurrentStep (void *cvode_mem, sunrealtype *hcur)

The function CVodeGetCurrentStep returns the integration step size to be attempted on the next internal step.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* hcur - step size to be attempted on the next internal step.
Return value:

e CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetActualInitStep(void *cvode_mem, sunrealtype *hinused)
The function CVodeGetActualInitStep returns the value of the integration step size used on the first step.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* hinused — actual value of initial step size.
Return value:
e CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
Even if the value of the initial integration step size was specified by the user through a call to CVodeSe-
tInitStep(), this value might have been changed by CVODES to ensure that the step size is within the
prescribed bounds (hin < hg < hmaz), OF to satisfy the local error test condition.

int CVodeGetCurrentTime (void *cvode_mem, sunrealtype *tcur)

The function CVodeGetCurrentTime returns the current internal time reached by the solver.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

5.1. Using CVODES for IVP Solution 99

User Documentation for CVODES, v7.3.0

* tcur — current internal time reached.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumStabLimOrderReds (void *cvode_mem, long int *nslred)

The function CVodeGetNumStabLimOrderReds returns the number of order reductions dictated by the BDF
stability limit sdetection algorithm (see §2.4).

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nslred — number of order reductions due to stability limit detection.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet () was not called), then
nslred =0.

int CVodeGetTolScaleFactor (void *cvode_mem, sunrealtype *tolsfac)

The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s tolerances should be
scaled when too much accuracy has been requested for some internal step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* tolsfac — suggested scaling factor for user-supplied tolerances.
Return value:

* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetErrWeights (void *cvode_mem, N_Vector eweight)

The function CVodeGetErrieights returns the solution error weights at the current time. These are the recip-
rocals of the W, given by (2.7).

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* eweight — solution error weights at the current time.
Return value:
* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

100 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Warning

The user must allocate memory for eweight.

int CVodeGetEstLocalErrors(void *cvode_mem, N_Vector ele)

The function CVodeGetEstLocalErrors returns the vector of estimated local errors.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* ele — estimated local errors.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Warning

The user must allocate memory for ele.
The values returned in ele are valid only if CVode () returned a non-negative value.

The ele vector, together with the eweight vector from CVodeGetErrileights (), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that
error test uses the RMS norm of a vector whose components are the products of the components of these two
vectors. Thus, for example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].

int CVodeGetIntegratorStats(void *cvode_mem, long int *nsteps, long int *nfevals, long int *nlinsetups, long
int *netfails, int *qlast, int *qcur, sunrealtype *hinused, sunrealtype *hlast,
sunrealtype *heur, sunrealtype *tcur)

The function CVodeGetIntegratorStats returns the CVODES integrator statistics as a group.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nsteps — number of steps taken by CVODES.

* nfevals — number of calls to the user’s f function.

* nlinsetups — number of calls made to the linear solver setup function.

e netfails — number of error test failures.

* glast — method order used on the last internal step.

* gcur — method order to be used on the next internal step.

* hinused — actual value of initial step size.

* hlast - step size taken on the last internal step.

* hcur - step size to be attempted on the next internal step.

* tcur - current internal time reached.

Return value:

5.1. Using CVODES for IVP Solution 101

User Documentation for CVODES, v7.3.0

* CV_SUCCESS - The optional output values have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNumNonlinSolvIters(void *cvode_mem, long int *nniters)

The function CVodeGetNumNonlinSolvIters returns the number of nonlinear iterations performed.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nniters — number of nonlinear iterations performed.
Return value:

* CV_SUCCESS - The optional output values have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — The SUNNonlinearSolver module is NULL.

int CVodeGetNumNonlinSolvConvFails (void *cvode_mem, long int *nncfails)

The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear convergence failures that
have occurred.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e nncfails — number of nonlinear convergence failures.
Return value:
* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

int CVodeGetNonlinSolvStats (void *cvode_mem, long int *nniters, long int *nncfails)
The function CVodeGetNonlinSolvStats returns the CVODES nonlinear solver statistics as a group.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nniters — number of nonlinear iterations performed.
e nncfails — number of nonlinear convergence failures.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — The SUNNonlinearSolver module is NULL.

int CVodeGetUserData(void *cvode_mem, void **user_data)
The function CVodeGetUserData returns the user data pointer provided to CVodeSetUserData().

Arguments:

* cvode_mem — pointer to the CVODES memory block.

102 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* user_data — memory reference to a user data pointer.
Return value:
* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Added in version 6.3.0.

int CVodePrintAllStats(void *cvode_mem, FILE *outfile, SUNOutputFormat fmt)

The function CVodePrintAllStats outputs all of the integrator, nonlinear solver, linear solver, and other statis-
tics.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* outfile — pointer to output file.
e fmt — the output format:
— SUN_OUTPUTFORMAT_TABLE — prints a table of values

— SUN_OUTPUTFORMAT_CSV — prints a comma-separated list of key and value pairs e.g., keyl,
valuel,key2,value2,...

Return value:
e CV_SUCCESS — The output was successfully.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_ILL_INPUT — An invalid formatting option was provided.

Note

The Python module tools/suntools provides utilities to read and output the data from a SUNDIALS CSV
output file using the key and value pair format.

Added in version 6.2.0.

char *CVodeGetReturnFlagName (int flag)
The function CVodeGetReturnFlagName returns the name of the CVODES constant corresponding to f1ag.

Arguments:
e flag - return flag from a CVODES function.
Return value:

* A string containing the name of the corresponding constant

5.1. Using CVODES for IVP Solution 103

User Documentation for CVODES, v7.3.0

Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

int CVodeGetRootInfo (void *cvode_mem, int *rootsfound)

The function CVodeGetRootInfo returns an array showing which functions were found to have a root.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e rootsfound — array of length nrtfn with the indices of the user functions g; found to have a root.
Fori=0,...,nrtfn — 1, rootsfound[i] # 0 if g; has a root, and rootsfound[i] = 0 if not.

Return value:
* CV_SUCCESS - The optional output values have been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Notes:
Note that, for the components g; for which a root was found, the sign of rootsfound[i] indicates the
direction of zero-crossing. A value of +1 indicates that g; is increasing, while a value of -1 indicates a
decreasing g;.

Warning

The user must allocate memory for the vector rootsfound.

int CVodeGetNumGEvals (void *cvode_mem, long int *ngevals)

The function CVodeGetNumGEvals returns the cumulative number of calls made to the user-supplied root func-
tion g.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ ngevals — number of calls made to the user’s function g thus far.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

Projection optional output functions

The following optional output functions are available for retrieving information and statistics related the projection
when solving an IVP with constraints.

int CVodeGetNumProjEvals (void *cvode_mem, long int *nproj)

The function CVodeGetNumProjEvals returns the current total number of projection evaluations.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

e nproj — the number of calls to the projection function.

104 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL i.e., the projection functionality has not been
enabled.

Added in version 6.2.0.

int CVodeGetNumProjFails (void *cvode_mem, long int *npfails)

The function CVodeGetNumProjFails returns the current total number of projection evaluation failures.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* npfails — the number of projection failures.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_PROJ_MEM_NULL — The projection memory is NULL, i.e., the projection functionality has not been
enabled.

Added in version 6.2.0.

CVLS linear solver interface optional output functions

The following optional outputs are available from the CVLS modules: workspace requirements, number of calls to the
Jacobian routine, number of calls to the right-hand side routine for finite-difference Jacobian or Jacobian-vector product
approximation, number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector setup and product routines, and last return value from
a linear solver function. Note that, where the name of an output would otherwise conflict with the name of an optional
output from the main solver, a suffix (for Linear Solver) has been added (e.g. lenrwLS).

int CVodeGetJac (void *cvode_mem, SUNMatrix *J)

Returns the internally stored copy of the Jacobian matrix of the ODE right-hand side function.
Parameters
» cvode_mem — the CVODES memory structure
* J — the Jacobian matrix
Return values
» CVLS_SUCCESS - the output value has been successfully set
» CVLS_MEM_NULL — cvode_mem was NULL

e CVLS_LMEM_NULL - the linear solver interface has not been initialized

Warning

This function is provided for debugging purposes and the values in the returned matrix should not be altered.

5.1. Using CVODES for IVP Solution 105

User Documentation for CVODES, v7.3.0

int CVodeGetJacTime (void *cvode_mem, sunrealtype *t_T)

Returns the time at which the internally stored copy of the Jacobian matrix of the ODE right-hand side function
was evaluated.

Parameters
» cvode_mem — the CVODES memory structure
* t_J — the time at which the Jacobian was evaluated
Return values
* CVLS_SUCCESS - the output value has been successfully set
e CVLS_MEM_NULL - cvode_mem was NULL
* CVLS_LMEM_NULL - the linear solver interface has not been initialized

int CVodeGetJacNumSteps (void *cvode_mem, long int *nst_J)

Returns the value of the internal step counter at which the internally stored copy of the Jacobian matrix of the
ODE right-hand side function was evaluated.

Parameters

» cvode_mem — the CVODES memory structure

» nst_J — the value of the internal step counter at which the Jacobian was evaluated
Return values

» CVLS_SUCCESS - the output value has been successfully set

* CVLS_MEM_NULL - cvode_mem was NULL

* CVLS_LMEM_NULL - the linear solver interface has not been initialized

int CVodeGetLinWorkSpace (void *cvode_mem, long int *lenrwLS, long int *leniwL.S)

The function CVodeGetLinWorkSpace returns the sizes of the real and integer workspaces used by the CVLS
linear solver interface.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ lenrwLS — the number of sunrealtype values in the CVLS workspace.
* leniwLS — the number of integer values in the CVLS workspace.
Return value:
e CVLS_SUCCESS — The optional output values have been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of CVLS is not included in this report.

Added in version 4.0.0: Replaces the deprecated functions CVD1sGetWorkspace and CVSpilsGetWorkspace.

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

106 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

int CVodeGetNumJacEvals (void *cvode_mem, long int *njevals)

The function CVodeGetNumJacEvals returns the number of calls made to the CVLS Jacobian approximation
function.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ njevals — the number of calls to the Jacobian function.
Return value:

* CVLS_SUCCESS — The optional output value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
Added in version 4.0.0: Replaces the deprecated function CVD1sGetNumJacEvals.

int CVodeGetNumLinRhsEvals (void *cvode_mem, long int *nfevalsLS)

The function CVodeGetNumLinRhsEvals returns the number of calls made to the user-supplied right-hand side
function due to the finite difference Jacobian approximation or finite difference Jacobian-vector product approx-
imation.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nfevalsLS — the number of calls made to the user-supplied right-hand side function.
Return value:

e CVLS_SUCCESS — The optional output value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Notes:

The value nfevalsLS is incremented only if one of the default internal difference quotient functions is
used.

Added in version 4.0.0: Replaces the deprecated functions CVD1sGetNumRhsEvals and CVSpilsGetNumRh-
sEvals.

int CVodeGetNumLinIters (void *cvode_mem, long int *nliters)

The function CVodeGetNumLinIters returns the cuamulative number of linear iterations.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nliters — the current number of linear iterations.
Return value:

e CVLS_SUCCESS — The optional output value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Added in version 4.0.0: Replaces the deprecated function CVSpilsGetNumLinIters.

5.1. Using CVODES for IVP Solution 107

User Documentation for CVODES, v7.3.0

int CVodeGetNumLinConvFails (void *cvode_mem, long int *nlcfails)

The function CVodeGetNumLinConvFails returns the cumulative number of linear convergence failures.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nlcfails — the current number of linear convergence failures.
Return value:
e CVLS_SUCCESS — The optional output value has been successfully set.
* CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
Added in version 4.0.0: Replaces the deprecated function CVSpilsGetNumConvFails.

int CVodeGetNumPrecEvals (void *cvode_mem, long int *npevals)

The function CVodeGetNumPrecEvals returns the number of preconditioner evaluations, i.e., the number of
calls made to psetup with jok = SUNFALSE.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e npevals — the current number of calls to psetup.
Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
Added in version 4.0.0: Replaces the deprecated function CVSpilsGetNumPrecEvals.

int CVodeGetNumPrecSolves (void *cvode_mem, long int *npsolves)

The function CVodeGetNumPrecSolves returns the cumulative number of calls made to the preconditioner solve
function, psolve.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* npsolves — the current number of calls to psolve.
Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

int CVodeGetNum]JTSetupEvals (void *cvode_mem, long int *njtsetup)

The function CVodeGetNumJTSetupEvals returns the cumulative number of calls made to the Jacobian-vector
setup function jtsetup.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e njtsetup — the current number of calls to jtsetup.

Return value:

108 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

int CVodeGetNumJtimesEvals(void *cvode_mem, long int *njvevals)

The function CVodeGetNumJtimesEvals returns the cumulative number of calls made to the Jacobian-vector
function jtimes.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e njvevals — the current number of calls to jtimes.
Return value:
e CVLS_SUCCESS — The optional output value has been successfully set.
* CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

int CVodeGetLinSolveStats (void *cvode_mem, long int *njevals, long int *nfevalsLS, long int *nliters, long int
*nlcfails, long int *npevals, long int *npsolves, long int *njtsetups, long int *njtimes)

The function CVodeGetLinSolveStats returns CVODES linear solver statistics.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ njevals — the current number of calls to the Jacobian function.

e nfevalsLS - the current number of calls made to the user-supplied right-hand side function by the
linear solver.

* nliters — the current number of linear iterations.
* nlcfails — the current number of linear convergence failures.
¢ npevals — the current number of calls to psetup.
¢ npsolves — the current number of calls to psolve.
e njtsetup — the current number of calls to jtsetup.
¢ njtimes — the current number of calls to jtimes.
Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

int CVodeGetLastLinFlag(void *cvode_mem, long int *1sflag)
The function CVodeGetLastLinFlag returns the last return value from a CVLS routine.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* 1sflag — the value of the last return flag from a CVLS function.
Return value:

* CVLS_SUCCESS — The optional output value has been successfully set.

5.1. Using CVODES for IVP Solution 109

User Documentation for CVODES, v7.3.0

e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

Notes:
If the CVLS setup function failed (i.e., CVode () returned CV_LSETUP_FAIL) when using the SUNLINSOL_-
DENSE or SUNLINSOL_BAND modules, then the value of 1sflag is equal to the column index (numbered
from one) at which a zero diagonal element was encountered during the LU factorization of the (dense or
banded) Jacobian matrix.

If the CVLS setup function failed when using another SUNLinearSolver module, then 1sflag will be
SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or SUN_ERR_EXT_FATL.

If the CVLS solve function failed (i.e., CVode () returned CV_LSOLVE_FAIL), then 1sflag contains the er-
ror return flag from the SUNLinearSolver object, which will be one of: SUN_ERR_ARG_CORRUPTRRUPT,
indicating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UNREC, indicating an unre-
coverable failure in the Jv function; SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve
function psolve failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt proce-
dure (SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix R was found to be
singular during the QR solve phase (SPGMR and SPFGMR only); or SUN_ERR_EXT_FAIL, indicating an
unrecoverable failure in an external iterative linear solver package.

Added in version 4.0.0: Replaces the deprecated functions CVD1sGetLastFlag and CVSpilsGetLastFlag.

int CVodeGetLinReturnFlagName (long int Isflag)
The function CVodeGetLinReturnFlagName returns the name of the CVLS constant corresponding to 1sflag.

Arguments:
* 1sflag— areturn flag from a CVLS function.
Return value:

 The return value is a string containing the name of the corresponding constant. If 1 < Isflag < N (LU
factorization failed), this routine returns “NONE”.

Added in version 4.0.0: Replaces the deprecated functions CVD1sGetReturnFlagName and CVSpilsGetRe-
turnFlagName.

Diagonal linear solver interface optional output functions

The following optional outputs are available from the CVDIAG module: workspace requirements, number of calls to
the right-hand side routine for finite-difference Jacobian approximation, and last return value from a CVDIAG function.
Note that, where the name of an output would otherwise conflict with the name of an optional output from the main
solver, a suffix (for Linear Solver) has been added here (e.g. 1enrwLS).

int CVDiagGetWorkSpace (void *cvode_mem, long int *lenrwLS, long int *leniwL.S)
The function CVDiagGetWorkSpace returns the CVDIAG real and integer workspace sizes.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ lenrwLS — the number of sunrealtype values in the CVDIAG workspace.
* leniwLS — the number of integer values in the CVDIAG workspace.
Return value:
¢ CVDIAG_SUCCESS — The optional output values have been successfully set.
e CVDIAG_MEM_NULL — The cvode_mem pointer is NULL.

110 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CVDIAG_LMEM_NULL — The CVDIAG linear solver has not been initialized.

Notes:
In terms of the problem size N, the actual size of the real workspace is roughly 3/V sunrealtype words.

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

int CVDiagGetNumRhsEvals (void *cvode_mem, long int *nfevalsLS)

The function CVDiagGetNumRhsEvals returns the number of calls made to the user-supplied right-hand side
function due to the finite difference Jacobian approximation.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nfevalsLS — the number of calls made to the user-supplied right-hand side function.
Return value:

* CVDIAG_SUCCESS - The optional output value has been successfully set.

e CVDIAG_MEM_NULL — The cvode_mem pointer is NULL.

* CVDIAG_LMEM_NULL — The CVDIAG linear solver has not been initialized.

Notes:
The number of diagonal approximate Jacobians formed is equal to the number of calls made to the linear
solver setup function (see CVodeGetNumLinSolvSetups()).

int CVDiagGetLastFlag(void *cvode_mem, long int *Isflag)
The function CVDiagGetLastFlag returns the last return value from a CVDIAG routine.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* 1sflag — the value of the last return flag from a CVDIAG function.
Return value:

* CVDIAG_SUCCESS — The optional output value has been successfully set.

e CVDIAG_MEM_NULL - The cvode_mem pointer is NULL.

e CVDIAG_LMEM_NULL — The CVDIAG linear solver has not been initialized.

Notes:
If the CVDIAG setup function failed (CVode () returned CV_LSETUP_FAIL), the value of 1sflag is equal
to CVDIAG_INV_FAIL, indicating that a diagonal element with value zero was encountered. The same value
is also returned if the CVDIAG solve function failed (CVode () returned CV_LSOLVE_FATIL).

char *CVDiagGetReturnFlagName (long int Isflag)
The function CVDiagGetReturnFlagName returns the name of the CVDIAG constant corresponding to 1sflag.

Arguments:
* 1sflag — areturn flag from a CVDIAG function.
Return value:

* A string containing the name of the corresponding constant.

5.1. Using CVODES for IVP Solution 111

User Documentation for CVODES, v7.3.0

5.1.3.13 CVODES reinitialization function

The function CVodeReInit () reinitializes the main CVODES solver for the solution of a new problem, where a prior
call to CVodeInit () has been made. The new problem must have the same size as the previous one. CVodeReInit ()
performs the same input checking and initializations that does, but does no memory allocation, as it assumes that the
existing internal memory is sufficient for the new problem. A call to CVodeReInit () deletes the solution history that
was stored internally during the previous integration. Following a successful call to CVodeReInit (), call CVode ()
again for the solution of the new problem.

The use of CVodeReInit () requires that the maximum method order, denoted by maxord, be no larger for the new
problem than for the previous problem. This condition is automatically fulfilled if the multistep method parameter 1mm
is unchanged (or changed from CV_ADAMS to CV_BDF) and the default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate calls to either the linear solver objects
themselves, or to the CVLS interface routines, as described in §5.1.3.5. Otherwise, all solver inputs set previously
remain in effect.

One important use of the CVodeReInit () function is in the treating of jump discontinuities in the RHS function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to CVodeReInit (). To stop when the location of the discontinuity
is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that can be
flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values (which
have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int CVodeReInit (void *cvode_mem, sunrealtype t0, N_Vector y0)
The function CVodeReInit provides required problem specifications and reinitializes CVODES.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* t0 —is the initial value of ¢.
* yO0 — is the initial value of y.
Return value:
* CV_SUCCESS — The call was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_MALLOC — Memory space for the CVODES memory block was not allocated through a previous
call to CVodeInit ().

e CV_ILL_INPUT - An input argument was an illegal value.

Notes:
All previously set options are retained but may be updated by calling the appropriate “Set” functions.

If an error occurred, CVodeReInit also sends an error message to the error handler function.

112 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.1.3.14 CVODES resize function

For simulations involving changes to the number of equations and unknowns in the ODE system, CVODES may be
“resized” between steps by calling CVodeResizeHistory (). The methods implemented in CVODES utilize solution
or right-hand side history information to achieve high order. At present, the user code is responsible for saving the
necessary data over the course of the integration in order to resize the integrator. As such, CVODES should typically
be run in one step mode or built with monitoring enabled and the monitoring function used to save the state at the end
of each time step. The amount and kind of history required for resizing the integrator depends on the method selected
and the maximum order allowed (see details below). If insufficient history is provided when resizing, CVodeResize-
History() will return an error.

int CVodeResizeHistory (void *cvode_mem, sunrealtype *t_hist, N_Vector *y_hist, N_Vector *f_hist, int

num_y_hist, int num_f_hist)

The function CVodeResizeHistory () resizes CVODES using the provided history data at the new problem

size.

For Adams methods the required history data is

* Solution vectors: y(t,,) and y(t,—1)

¢ nght_hand side vectors: f(tnu y(tn))7 f(t’nfh y<tn71))7 ey f(tnflm y(tnfk))
For BDF methods the required history data is:

* Solution vectors: y(tn), y(tn—1),- -, Y(tn—k)
* Right-hand side vectors: f (¢, y(tn)) and f(tn—1,y(tn-1)),

In both cases, K = min{q + 1, ¢gmax } Where g is the order of the last step (see CVodeGetLastOrder()) and
Qmax 1S the maximum allowed order (see CVodeSetMaxOrd()). The additional solution/right-hand side values
beyond what is strictly needed for the method are used to determine if an order increase should occur after the
next step. If insufficient history is provided, an error is returned.

Parameters

cvode_mem — pointer to the CVODES memory block.

t_hist — an array of time values for the solution and right-hand side history. These must
be ordered starting from the most recent value i.e., t,, > t,—1 > ... > t,_j for forward
integration or t,, < t,,—1 < ... < t,_ for backward integration.

y_hist — an array of solution vectors ordered to align with the corresponding times given
in t_hist.

f_hist — an array of right-hand side vectors ordered to align with the corresponding times
and solutions given in t_hist and y_hist, respectively.

n_y_hist —number of solution vectors provided in y_hist. For Adams methods this should
be 2 and for BDF methods this should be min{q + 1, gmax }-

n_f_hist — number of right-hand side vectors provided in f_hist. For Adams methods
this should be min{q + 1, gmax } and for BDF methods it should be 2.

Return values

CV_SUCCESS — The call was successful.
CV_MEM_NULL — The CVODES memory block was NULL.

CV_ILL_INPUT - An input argument had an illegal value or insufficient history was supplied,
see the output error message for additional details.

Added in version 7.3.0.

5.1. Using CVODES for IVP Solution

113

User Documentation for CVODES, v7.3.0

Note

At this time resizing is supported when using CVODES for the solution of initial value problems (IVPs) and
is not currently compatible with forward or adjoint sensitivity analysis.

Note

Any nonlinear or linear solvers attached to CVODE will also need to be resized. At present, for SUNDIALS-
provided algebraic solvers, this requires destroying, re-creating, and re-attaching the solvers following each
call to CVodeResizeHistory (). Similarly, any matrix objects provided when attaching the linear solver
will also need to be resized.

If using a vector of absolute tolerances, the absolute tolerance vector will be invalid after the call to CVodeRe-
sizeHistory (), so a new absolute tolerance vector should be created and set following each call to
CVodeResizeHistory() through a new call to CVodeSVtolerances().

If inequality constraint checking is enabled, a call to CVodeResizeHistory () will disable constraint check-
ing. A call to CVodeSetConstraints() is required to re-enable constraint checking.

5.1.4 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that handles error and
warning messages, (optionally) a function that provides the error weight vector, (optionally) one or two functions
that provide Jacobian-related information for the linear solver, and (optionally) one or two functions that define the
preconditioner for use in any of the Krylov iterative algorithms.

5.1.4.1 ODE right-hand side

The user must provide a function of type defined as follows:

typedef int (*CVRhSFn)(sunrealtype t, N_Vector 'y, N_Vector ydot, void *user_data);

This function computes the ODE right-hand side for a given value of the independent variable ¢ and state vector
Y.
Arguments:

* t —is the current value of the independent variable.

* y —is the current value of the dependent variable vector, y(t).

* ydot - is the output vector f(¢,y).

* user_data — is the user_data pointer passed to CVodeSetUserData().

Return value:
A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CV_RHSFUNC_FAIL is returned).

Notes:
Allocation of memory for ydot is handled within CVODES.

A recoverable failure error return from the CVRhsFn is typically used to flag a value of the dependent
variable y that is “illegal” in some way (e.g., negative where only a non-negative value is physically mean-

114

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

ingful). If such a return is made, CVODES will attempt to recover (possibly repeating the nonlinear solve,
or reducing the step size) in order to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged solution of the nonlin-
ear solver. Therefore, in general, a recoverable error in that converged value cannot be corrected. (It may
be detected when the right-hand side function is called the first time during the following integration step,
but a successful step cannot be undone.) However, if the user program also includes quadrature integration,
the state variables can be checked for legality in the call to CVQuadRhsFn, which is called at the converged
solution of the nonlinear system, and therefore CVODES can be flagged to attempt to recover from such a
situation. Also, if sensitivity analysis is performed with one of the staggered methods, the ODE right-hand
side function is called at the converged solution of the nonlinear system, and a recoverable error at that
point can be flagged, and CVODES will then try to correct it.

There are two other situations in which recovery is not possible even if the right-hand side function returns a
recoverable error flag. One is when this occurs at the very first call to the CVRhsFn (in which case CVODES
returns CV_FIRST_RHSFUNC_ERR). The other is when a recoverable error is reported by CVRhsFn after an
error test failure, while the linear multistep method order is equal to 1 (in which case CVODES returns
CV_UNREC_RHSFUNC_ERR).

5.1.4.2 Monitor function

A user may provide a function of type CVMonitorFn to monitor the integrator progress throughout a simulation. For
example, a user may want to check integrator statistics as a simulation progresses.

typedef void (*CVMonitorFn)(void *cvode_mem, void *user_data);

This function is used to monitor the CVODES integrator throughout a simulation.
Arguments:
* cvode_mem — the CVODES memory pointer.

* user_data —a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
Should return 0O if successful, or a negative value if unsuccessful.

Warning

This function should only be utilized for monitoring the integrator progress (i.e., for debugging).

5.1.4.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type CVEwtFn to
compute a vector containing the weights in the WRMS norm

| vlwrMS = (Wi - vi)2.

These weights will be used in place of those defined by Eq. (2.7). The function type is defined as follows:
typedef int (*CVEwWtFn)(N_Vector y, N_Vector ewt, void *user_data);

This function computes the WRMS error weights for the vector y.

Arguments:

5.1. Using CVODES for IVP Solution 115

User Documentation for CVODES, v7.3.0

 y — the value of the dependent variable vector at which the weight vector is to be computed.
* ewt — the output vector containing the error weights.

* user_data a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
Should return O if successful, or -1 if unsuccessful.

Notes:
Allocation of memory for ewt is handled within CVODES.

Warning

The error weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

5.1.4.4 Rootfinding function
If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a C function of
type CVRootFn, defined as follows:

typedef int (*CVRootFn)(sunrealtype t, N_Vector y, sunrealtype *gout, void *user_data);
This function implements a vector-valued function g(¢, y) such that the roots of the nrtfn components g; (¢, y)
are sought.

Arguments:
* t — the current value of the independent variable.
* y —the current value of the dependent variable vector, y(t).
* gout — the output array of length nrtfn with components g; (¢, y).

* user_data a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
A CVRootFn should return O if successful or a non-zero value if an error occurred (in which case the
integration is haled and CVode returns CV_RTFUNC_FAIL.

Notes:
Allocation of memory for gout is automatically handled within CVODES.

5.1.4.5 Projection function
When solving an IVP with a constraint equation and providing a user-defined projection operation the projection func-
tion must have type CVProjFn, defined as follows:

typedef int (*CVProjFn)(sunrealtype t, N_Vector ycur, N_Vector corr, sunrealtype epsProj, N_Vector err, void
*user_data);

This function computes the projection of the solution and, if enabled, the error on to the constraint manifold.
Arguments:
* t — the current value of the independent variable.

* ycur - the current value of the dependent variable vector y(t).

116 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* corr - the correction, ¢, to the dependent variable vector so that y(t) + c satisfies the constraint
equation.

* epsProj — the tolerance to use in the nonlinear solver stopping test when solving the nonlinear con-
strained least squares problem.

e err —is on input the current error estimate, if error projection is enabled (the default) then this should
be overwritten with the projected error on output. If error projection is disabled then err is NULL.

* user_data a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
Should return 0 if successful, a negative value if an unrecoverable error occurred (the integration is halted),
or a positive value if a recoverable error occurred (the integrator will, in most cases, try to correct and
reattempt the step).

Notes:
The tolerance passed to the projection function (epsProj) is the tolerance on the iteration update in the
WRMS norm, i.e., the solve should stop when the WRMS norm of the current iterate update is less than
epsProj.

If needed by the user’s projection routine, the error weight vector can be accessed by calling CVodeGetEr-
rifeights (), and the unit roundoff is available as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

Added in version 6.2.0.

5.1.4.6 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to CVodeSetLinear-
Solver()), the user may optionally provide a function of type CVLsJacFn for evaluating the Jacobian of the ODE
right-hand side function (or an approximation of it). CVLsJacFn is defined as follows:

typedef int (*CVLsJacFn)(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix Jac, void *user_data, N_Vector tmpl,
N_Vector tmp2, N_Vector tmp3);

0
This function computes the Jacobian matrix J = a—f (or an approximation to it).
Y

Arguments:
* t — the current value of the independent variable.
¢ y —the current value of the dependent variable vector, namely the predicted value of y(t).
 fy — the current value of the vector f(¢,y).
* Jac — the output Jacobian matrix.

e user_data a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

e tmpl, tmp2, tmp3 - are pointers to memory allocated for variables of type N_Vector which can be
used by a CVLsJacFn function as temporary storage or work space.

Return value:
Should return O if successful, a positive value if a recoverable error occurred (in which case CVODES will
attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR), or a negative value if it failed
unrecoverably (in which case the integration is halted, CVode () returns CV_LSETUP_FAIL and CVLS sets
last_flag to CVLS_JACFUNC_UNRECVR).

5.1. Using CVODES for IVP Solution 117

User Documentation for CVODES, v7.3.0

Notes:

Information regarding the structure of the specific SUNMatrix structure (e.g. number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix interface
functions (see §7 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix
J(t,y) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements need to
be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Newton method), each call to the user’s CVLs-
JacFn function is preceded by a call to the CVRhsFn user function with the same (t,y) arguments. Thus,
the Jacobian function can use any auxiliary data that is computed and saved during the evaluation of the
ODE right-hand side. In the case of a user-supplied or external nonlinear solver, this is also true if the
nonlinear system function is evaluated prior to calling the linear solver setup function.

If the user’s CVLsJacFn function uses difference quotient approximations, then it may need to access quan-
tities not in the argument list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to cv_mem in user_data and then use the CVodeGet* functions described
in §5.1.3.12. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

Dense: A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an ap-
proximation to the Jacobian matrix J(¢,y) at the point (¢,y). The accessor macros SM_ELEMENT_D and
SM_COLUMN_D allow the user to read and write dense matrix elements without making explicit references
to the underlying representation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) refer-
ences the (4, j-th) element of the dense matrix Jac (with 4,5 = 0...N — 1). This macro is meant for
small problems for which efficiency of access is not a major concern. Thus, in terms of the indices m
and n ranging from 1 to [V, the Jacobian element .J,, ,, can be set using the statement SM_ELEMENT_D(J,
m-1, n-1) =J,,,. Alternatively, SM_COLUMN_D(J, j) returns a pointer to the first element of the j-th
column of Jac (with j = 0... N — 1), and the elements of the j-th column can then be accessed using
ordinary array indexing. Consequently, J(m,n) can be loaded using the statements col_n = SM_COL-
UMN_D(J, n-1); col_n[m-1] = .J(m,n). For large problems, it is more efficient to use SM_COLUMN_D
than to use SM_ELEMENT_D. Note that both of these macros number rows and columns starting from 0. The
SUNMATRIX_DENSE type and accessor macros are documented in §7.3.

Banded: A user-supplied banded Jacobian function must load the N by N banded matrix Jac with the
elements of the Jacobian J(¢,y) at the point (¢,y). The accessor macros SM_ELEMENT_B, SM_COLUMN_B,
and SM_COLUMN_ELEMENT_B allow the user to read and write band matrix elements without making specific
references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B(J, i, j)
references the (i, 7), element of the band matrix Jac, counting from 0. This macro is meant for use in
small problems for which efficiency of access is not a major concern. Thus, in terms of the indices m and
n ranging from 1 to N with (m, n) within the band defined by mupper and mlower, the Jacobian element
J(m,n) can be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) = J(m,n). The elements
within the band are those with -mupper < m —n <mlower. Alternatively, SM_COLUMN_B(J, j) returns
a pointer to the diagonal element of the j-th column of Jac, and if we assign this address to sunrealtype
*col_j, then the ¢-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j, i, j),
counting from 0. Thus, for (m,n) within the band, J(m,n) can be loaded by setting col_n = SM_-
COLUMN_B(J, n-1); SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) = J(m,n). The elements of the
j-th column can also be accessed via ordinary array indexing, but this approach requires knowledge of
the underlying storage for a band matrix of type SUNMATRIX_BAND. The array col_n can be indexed
from -mupper to mlower. For large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_-
ELEMENT_B than to use the SM_ELEMENT_B macro. As in the dense case, these macros all number rows and
columns starting from 0. The SUNMATRIX_BAND type and accessor macros are documented in §7.6.

Sparse: A user-supplied sparse Jacobian function must load the V by N compressed-sparse-column or
compressed-sparse-row matrix Jac with an approximation to the Jacobian matrix J (¢, y) at the point (¢, y).
Storage for Jac already exists on entry to this function, although the user should ensure that sufficient
space is allocated in Jac to hold the nonzero values to be set; if the existing space is insufficient the user

118

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

may reallocate the data and index arrays as needed. The amount of allocated space in a SUNMATRIX_-
SPARSE object may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ. The
SUNMATRIX_SPARSE type and accessor macros are documented in §7.8.

Added in version 4.0.0: Replaces the deprecated type CVD1sJacFn.

5.1.4.7 Linear system construction (matrix-based linear solvers)

With matrix-based linear solver modules, as an alternative to optionally supplying a function for evaluating the Jacobian
of the ODE right-hand side function, the user may optionally supply a function of type CVLsLinSysFn for evaluating
the linear system, M = I — ~J (or an approximation of it). CVLsLinSysFn is defined as follows:

typedef int (*CVLsLinSysFn)(sunrealtype t, N_Vector y, N_Vector fy, SUNMatrix M, sunbooleantype jok,
sunbooleantype *jcur, sunrealtype gamma, void *user_data, N_Vector tmpl, N_Vector tmp2, N_Vector tmp3);

This function computes the linear system matrix M = I — ~J (or an approximation to it).

Arguments:

t — the current value of the independent variable.

y — the current value of the dependent variable vector, namely the predicted value of y(t).
fy — the current value of the vector f(¢,y).

M — the output linear system matrix.

jok — an input flag indicating whether the Jacobian-related data needs to be updated. The jok flag
enables reusing of Jacobian data across linear solves however, the user is responsible for storing Jaco-
bian data for reuse. jok = SUNFALSE means that the Jacobian-related data must be recomputed from
scratch. jok = SUNTRUE means that the Jacobian data, if saved from the previous call to this function,
can be reused (with the current value of). A call with jok = SUNTRUE can only occur after a call
with jok = SUNFALSE.

jcur — a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

gamma — the scalar v appearing in the matrix M = I — ~J.

user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

tmpl, tmp2, tmp3 - are pointers to memory allocated for variables of type N_Vector which can be
used by a CVLsLinSysFn function as temporary storage or work space.

Return value:
Should return O if successful, a positive value if a recoverable error occurred (in which case CVODES will
attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR), or a negative value if it failed
unrecoverably (in which case the integration is halted, CVode () returns CV_LSETUP_FAIL and CVLS sets
last_flag to CVLS_JACFUNC_UNRECVR).

5.1. Using CVODES for IVP Solution 119

User Documentation for CVODES, v7.3.0

5.1.4.8 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMATRIX was supplied to CVodeSetLinear-
Solver(), the user may provide a function of type CVLsJacTimesVecFn in the following form, to compute matrix-
vector products Jv. If such a function is not supplied, the default is a difference quotient approximation to these
products.

typedef int (*CVLsJacTimesVecFn)(N_Vector v, N_Vector Jv, sunrealtype t, N_Vector 'y, N_Vector fy, void
*user_data, N_Vector tmp);

This function computes the product Jv = v (or an approximation to it).

of(t,y)
dy

Arguments:
* v — the vector by which the Jacobian must be multiplied.
* Jv — the output vector computed.
* t —the current value of the independent variable.
* y — the current value of the dependent variable vector.
 fy — the current value of the vector f(¢,y).

* user_data —a pointer to user data, the same as the user_data parameter passed to CVode-
SetUserData().

* tmp — a pointer to memory allocated for a variable of type N_Vector which can be used for
work space.

Return value:
The value returned by the Jacobian-vector product function should be O if successful. Any other
return value will result in an unrecoverable error of the generic Krylov solver, in which case the
integration is halted.

Notes:
This function must return a value of Jv that uses the current value of J, i.e. as evaluated at the
current (¢, y).

If the user’s CVLsJacTimesVecFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights,
etc. To obtain these, the user will need to add a pointer to cvode_mem to user_data and then use
the CVodeGet* functions described in §5.1.3.12. The unit roundoff can be accessed as SUN_-
UNIT_ROUNDOFF defined in sundials_types.h.

Added in version 4.0.0: Replaces the deprecated type CVSpilsJacTimesVecFn.

5.1.4.9 Jacobian-vector product setup (matrix-free linear solvers)
If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type CVLsJacTimesSetupFn, defined as follows:

typedef int (*CVLsJacTimesSetupFn)(sunrealtype t, N_Vector 'y, N_Vector fy, void *user_data);

This function preprocesses and/or evaluates Jacobian-related data needed by the Jacobian-times-vector routine.
Arguments:
* t — the current value of the independent variable.

* y — the current value of the dependent variable vector.

120 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

fy — the current value of the vector f(¢,y).

user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
The value returned by the Jacobian-vector setup function should be 0 if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:

Each call to the Jacobian-vector setup function is preceded by a call to the CVRhsFn user function with
the same (¢, y) arguments. Thus, the setup function can use any auxiliary data that is computed and saved
during the evaluation of the ODE right-hand side.

If the user’s CVLsJacTimesSetupFn function uses difference quotient approximations, it may need to
access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to cvode_mem to user_data and then use the CVodeGet*
functions described in §5.1.3.12. The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in
sundials_types.h.

Added in version 4.0.0: Replaces the deprecated type CVSpilsJacTimesSetupFn.

5.1.4.10 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinearSolver module, then the user must provide a function
to solve the linear system Pz = r, where P may be either a left or right preconditioner matrix. Here P should

0
approximate (at least crudely) the matrix M = I — ~J, where J = —f If preconditioning is done on both sides, the

Jy

product of the two preconditioner matrices should approximate M. This function must be of type CVLsPrecSolveFn,
defined as follows:

typedef int (*CVLsPrecSolveFn)(sunrealtype t, N_Vector y, N_Vector fy, N_Vector r, N_Vector z, sunrealtype
gamma, sunrealtype delta, int Ir, void *user_data);

This function solves the preconditioned system Pz = r.

Arguments:

t — the current value of the independent variable.

y — the current value of the dependent variable vector.

fy — the current value of the vector f(¢,y).

r — the right-hand side vector of the linear system.

z — the computed output vector.

gamma — the scalar gammea in the matrix given by M = I — ~J.

delta—aninput tolerance to be used if an iterative method is employed in the solution. In that case, the
residual vector Res = r — Pz of the system should be made less than delta in the weighted /2 norm,
ie., /> ;(Res; - ewt;)> < delta. To obtain the N_Vector ewt, call CVodeGetErriieights().

1r — an input flag indicating whether the preconditioner solve function is to use the left preconditioner
(1r = 1) or the right preconditioner (1r = 2).

user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

5.1. Using CVODES for IVP Solution 121

User Documentation for CVODES, v7.3.0

Return value:

The value returned by the preconditioner solve function is a flag indicating whether it was successful. This
value should be 0 if successful, positive for a recoverable error (in which case the step will be retried), or
negative for an unrecoverable error (in which case the integration is halted).

Added in version 4.0.0: Replaces the deprecated type CVSpilsPrecSolveFn.

5.1.4.11 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then this needs to be
done in a user-supplied function of type , defined as follows:

typedef int (*CVLsPrecSetupFn)(sunrealtype t, N_Vector y, N_Vector fy, sunbooleantype jok, sunbooleantype
*jcurPtr, sunrealtype gamma, void *user_data);

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Arguments:

e t —the current value of the independent variable.
* y — the current value of the dependent variable vector, namely the predicted value of y(t).
 fy — the current value of the vector f(¢,y).

* jok—aninput flag indicating whether the Jacobian-related data needs to be updated. The jok argument
provides for the reuse of Jacobian data in the preconditioner solve function. jok = SUNFALSE means
that the Jacobian-related data must be recomputed from scratch. jok = SUNTRUE means that the
Jacobian data, if saved from the previous call to this function, can be reused (with the current value of
7). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

* jcur — a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or set to
SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

* gamma — the scalar y appearing in the matrix M = I — ~J.

e user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:

The value returned by the preconditioner setup function is a flag indicating whether it was successful. This
value should be 0 if successful, positive for a recoverable error (in which case the step will be retried), or
negative for an unrecoverable error (in which case the integration is halted).

Notes:

The operations performed by this function might include forming a crude approximate Jacobian and per-
forming an LU factorization of the resulting approximation to M = I — ~J.

With the default nonlinear solver (the native SUNDIALS Newton method), each call to the preconditioner
setup function is preceded by a call to the CVRhsFn user function with the same (¢, y) arguments. Thus, the
preconditioner setup function can use any auxiliary data that is computed and saved during the evaluation
of the ODE right-hand side. In the case of a user-supplied or external nonlinear solver, this is also true if
the nonlinear system function is evaluated prior to calling the linear solver setup function (see §9.1.4 for
more information).

This function is not called in advance of every call to the preconditioner solve function, but rather is called
only as often as needed to achieve convergence in the nonlinear solver.

If the user’s CVLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these,
the user will need to add a pointer to cvode_mem to user_data and then use the CVodeGet* functions

122

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.2

described in §5.1.3.12. The unit roundoft can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_-
types.h.

Added in version 4.0.0: Replaces the deprecated function type CVSpilsPrecSetupFn.

Integration of pure quadrature equations

CVODES allows the ODE system to include pure quadratures. In this case, it is more efficient to treat the quadratures
separately by excluding them from the nonlinear solution stage. To do this, begin by excluding the quadrature variables
from the vector y and excluding the quadrature equations from within res. Thus a separate vector yQ of quadrature
variables is to satisfy (d/dt)yQ = fo(t,y).

The following is an overview of the sequence of calls in a user’s main program in this situation. Steps that are unchanged
from the skeleton presented in §5.1.2 are grayed out and new or modified steps are in bold.

1.

Y ® 2Nk w N

e e e e e
o B LN = O

16.

17.

18.
19.
20.

21.

. Set vector yQO of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.
Initialize quadrature integration

Call CVodeQuadInit() to specify the quadrature equation right-hand side function and to allocate internal
memory related to quadrature integration. See §5.2.1 for details.

Set optional inputs for quadrature integration

Call CVodeSetQuadErrCon() to indicate whether or not quadrature variables should be used in the step size
control mechanism, and to specify the integration tolerances for quadrature variables. See §5.2.4 for details.

Extract quadrature variables

Call CVodeGetQuad () to obtain the values of the quadrature variables at the current time.

5.2. Integration of pure quadrature equations 123

User Documentation for CVODES, v7.3.0

22. Get quadrature optional outputs

Call CVodeGetQuad** functions to obtain optional output related to the integration of quadratures. See §5.2.5
for details.

23.
24.

CVodeQuadInit () canbe called and quadrature-related optional inputs can be set anywhere between the steps creating
the CVODES object and advancing the solution in time.

5.2.1 Quadrature initialization and deallocation functions
The function CVodeQuadInit () activates integration of quadrature equations and allocates internal memory related

to these calculations. The form of the call to this function is as follows:

int CVodeQuadInit (void *cvode_mem, CVQuadRhsFn fQ, N_Vector yQO0)

The function CVodeQuadInit provides required problem specifications, allocates internal memory, and initial-
izes quadrature integration.

Arguments:
¢ cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
» £Q—is the C function which computes f¢ , the right-hand side of the quadrature equations.
* yQO — is the initial value of yQ typically yQO has all zero components.
Return value:
e CV_SUCCESS — The call to CVodeQuadInit was successful.
e CV_MEM_NULL — The CVODES memory was not initialized by a prior call to CVodeCreate().
e CV_MEM_FAIL — A memory allocation request failed.

Notes:
If an error occurred, CVodeQuadInit also sends an error message to the error handler function.

In terms of the number of quadrature variables N, and maximum method order maxord, the size of the real workspace
is increased as follows:

* Base value: lenrw = lenrw + (maxord + 5)N,

* If using CVodeSVtolerances() (see CVodeSetQuadErrCon()): lenrw = lenrw + N,
the size of the integer workspace is increased as follows:

* Base value: leniw = leniw + (maxord + 5)N,

* If using CVodeSVtolerances(): leniw = leniw + IV,

The function CVodeQuadReInit (), useful during the solution of a sequence of problems of same size, reinitializes
the quadrature-related internal memory and must follow a call to CVodeQuadInit () (and maybe a call to CVodeRe-
Init()). The number Nq of quadratures is assumed to be unchanged from the prior call to CVodeQuadInit (). The
call to the CVodeQuadReInit () function has the following form:
int CVodeQuadReInit (void *cvode_mem, N_Vector yQO)
The function CVodeQuadReInit provides required problem specifications and reinitializes the quadrature inte-
gration.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

124 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

¢ yQO — is the initial value of yQ.
Return value:
* CV_SUCCESS — The call to CVodeReInit was successful.
e CV_MEM_NULL — The CVODES memory was not initialized by a prior call to CVodeCreate.

e CV_NO_QUAD — Memory space for the quadrature integration was not allocated by a prior call to CVod-
eQuadInit.

Notes:
If an error occurred, CVodeQuadReInit also sends an error message to the error handler function.

void CVodeQuadFree (void *cvode_mem)

The function CVodeQuadFree frees the memory allocated for quadrature integration.
Arguments:

* cvode_mem — pointer to the CVODES memory block

Return value:
¢ The function has no return value.

Notes:
In general, CVodeQuadFree need not be called by the user as it is invoked automatically by CVodeFree ().

5.2.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode () is exactly the same as in §5.1.
However, in this case the return value flag can also be one of the following:

* The quadrature right-hand side function failed in an unrecoverable manner.
¢ The quadrature right-hand side function failed at the first call.

» Convergence test failures occurred too many times due to repeated recoverable errors in the quadrature right-hand
side function. This value will also be returned if the quadrature right-hand side function had repeated recoverable
errors during the estimation of an initial step size (assuming the quadrature variables are included in the error
tests).

¢ The quadrature right-hand function had a recoverable error, but no recovery was possible. This failure mode
is rare, as it can occur only if the quadrature right-hand side function fails recoverably after an error test failed
while at order one.

5.2.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to CVodeQuadInit (), or reinitialized by a call to CVode-
QuadReInit(), then CVODES computes both a solution and quadratures at time t. However, CVode () will still
return only the solution y in yout. Solution quadratures can be obtained using the following function:

int CVodeGetQuad (void *cvode_mem, sunrealtype *tret, N_Vector yQ)
The function CVodeGetQuad returns the quadrature solution vector after a successful return from CVode.

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit.

e tret — the time reached by the solver output.

5.2. Integration of pure quadrature equations 125

User Documentation for CVODES, v7.3.0

* yQ — the computed quadrature vector. This vector must be allocated by the user.
Return value:

e CV_SUCCESS — CVodeGetQuad was successful.

e CV_MEM_NULL - cvode_mem was NULL.

e CV_NO_QUAD — Quadrature integration was not initialized.

e CV_BAD_DKY - yQ is NULL.

Notes:
In case of an error return, an error message is also sent to the error handler function.

The function CVodeGetQuadDky () computes the k-th derivatives of the interpolating polynomials for the quadrature
variables at time t. This function is called by CVodeGetQuad() with k = ® and with the current time at which
CVode () has returned, but may also be called directly by the user.

int CVodeGetQuadDky (void *cvode_mem, sunrealtype t, int k, N_Vector dkyQ)

The function CVodeGetQuadDky returns derivatives of the quadrature solution vector after a successful return
from CVode ().

Arguments:
e cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* t — the time at which quadrature information is requested. The time t must fall within the interval
defined by the last successful step taken by CVODES.

* k — order of the requested derivative. This must be < glast.

» dkyQ - the vector containing the derivative. This vector must be allocated by the user.
Return value:

e CV_SUCCESS — CVodeGetQuadDky succeeded.

e CV_MEM_NULL - The pointer to cvode_mem was NULL.

e CV_NO_QUAD — Quadrature integration was not initialized.

e CV_BAD_DKY - The vector dkyQ is NULL.

e CV_BAD_K -k is not in the range 0, 1, ..., gqlast.

e CV_BAD_T — The time t is not in the allowed range.

Notes:
In case of an error return, an error message is also sent to the error handler function.

5.2.4 Optional inputs for quadrature integration

CVODES provides the following optional input functions to control the integration of quadrature equations.

int CVodeSetQuadErrCon (void *cvode_mem, sunbooleantype errconQ)

The function CVodeSetQuadErrCon specifies whether or not the quadrature variables are to be used in the
step size control mechanism within CVODES. If they are, the user must call CVodeQuadSStolerances() or
CVodeQuadSVtolerances () to specify the integration tolerances for the quadrature variables.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

126 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* errconQ — specifies whether quadrature variables are included SUNTRUE or not SUNFALSE in the error
control mechanism.

Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_NO_QUAD - Quadrature integration has not been initialized.

Notes:
By default, errconQ is set to SUNFALSE.

Warning

It is illegal to call CVodeSetQuadErrCon before a call to CVodeQuadInit.

If the quadrature variables are part of the step size control mechanism, one of the following functions must be called
to specify the integration tolerances for quadrature variables.

int CVodeQuadSStolerances (void *cvode_mem, sunrealtype reltolQ, sunrealtype abstolQ)
The function CVodeQuadSStolerances specifies scalar relative and absolute tolerances.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e reltolQ — is the scalar relative error tolerance.
e abstolQ - is the scalar absolute error tolerance.
Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CV_NO_QUAD — Quadrature integration was not initialized.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeQuadSVtolerances (void *cvode_mem, sunrealtype reltolQ, N_Vector abstolQ)

The function CVodeQuadSVtolerances specifies scalar relative and vector absolute tolerances.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

e reltolQ - is the scalar relative error tolerance.

¢ abstolQ — the vector of absolute error tolerances.
Return value:

* CV_SUCCESS — The optional value has been successfully set.

e CV_NO_QUAD - Quadrature integration was not initialized.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_ILL_INPUT - One of the input tolerances was negative.

5.2. Integration of pure quadrature equations 127

User Documentation for CVODES, v7.3.0

5.2.5 Optional outputs for quadrature integration
CVODES provides the following functions that can be used to obtain solver performance information related to quadra-
ture integration.

int CVodeGetQuadNumRhsEvals (void *cvode_mem, long int nfQevals)

The function CVodeGetQuadNumRhsEvals returns the number of calls made to the user’s quadrature right-hand
side function.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ nfQevals — number of calls made to the user’s £Q function.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
¢ CV_NO_QUAD — Quadrature integration has not been initialized.
int CVodeGetQuadNumErrTestFails (void *cvode_mem, long int nQetfails)

The function CVodeGetQuadNumErrTestFails returns the number of local error test failures due to quadrature
variables.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nQetfails — number of error test failures due to quadrature variables.
Return value:

* CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_NO_QUAD — Quadrature integration has not been initialized.

int CVodeGetQuadErriWeights (void *cvode_mem, N_Vector eQweight)

The function CVodeGetQuadErrieights returns the quadrature error weights at the current time.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* eQweight — quadrature error weights at the current time.
Return value:

* CV_SUCCESS - The optional output value has been successfully set.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_NO_QUAD — Quadrature integration has not been initialized.

Notes:
The user must allocate memory for eQweight. If quadratures were not included in the error control mecha-
nism (through a call to CVodeSetQuadErrCon with errconQ = SUNTRUE), CVodeGetQuadErrWeights
does not set the eQweight vector.

128 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

int CVodeGetQuadStats (void *cvode_mem, long int nfQevals, long int nQetfails)
The function CVodeGetQuadStats returns the CVODES integrator statistics as a group.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nfQevals — number of calls to the user’s £Q function.

e nQetfails — number of error test failures due to quadrature variables.
Return value:

* CV_SUCCESS - the optional output values have been successfully set.

e CV_MEM_NULL - the cvode_mem pointer is NULL.

e CV_NO_QUAD — Quadrature integration has not been initialized.

5.2.6 User supplied functions for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand side of the quadra-
ture equations (in other words, the integrand function of the integral that must be evaluated). This function must be of
type CVQuadRhsFn defined as follows:

typedef int (*CVQuadRhsFn)(sunrealtype t, N_Vector 'y, N_Vector yQdot, void *user_data)

This function computes the quadrature equation right-hand side for a given value of the independent variable ¢
and state vector y.

Arguments:
* t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
* yQdot — is the output vector fq(t,y).
* user_data — is the user_data pointer passed to CVodeSetUserData().

Return value:
A CVQuadRhsFn should return O if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CV_QRHSFUNC_FATIL is returned).

Notes:
Allocation of memory for yQdot is automatically handled within CVODES.

Both y and yQdot are of type N_Vector, but they typically have different internal representations. It is the
user’s responsibility to access the vector data consistently (including the use of the correct accessor macros
from each N_Vector implementation). For the sake of computational efficiency, the vector functions in
the two N_Vector implementations provided with CVODES do not perform any consistency checks with
respect to their N_Vector arguments.

There are two situations in which recovery is not possible even if CVQuadRhsFn function returns a recover-
able error flag. One is when this occurs at the very first call to the CVQuadRhsFn (in which case CVODES
returns CV_FIRST_QRHSFUNC_ERR). The other is when a recoverable error is reported by CVQuadRhsFn
after an error test failure, while the linear multistep method order is equal to 1 (in which case CVODES
returns CV_UNREC_QRHSFUNC_ERR).

5.2. Integration of pure quadrature equations 129

User Documentation for CVODES, v7.3.0

5.2.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, CVODES
provides a banded preconditioner in the module CVBANDPRE and a band-block-diagonal preconditioner module
CVBBDPRE.

5.2.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLinearSolver modules through
the CVLS linear solver interface, in a serial setting. It uses difference quotients of the ODE right-hand side function f to
generate a band matrix of bandwidth m;+m,, +1, where the number of super-diagonals (m,,, the upper half-bandwidth)
and sub-diagonals (m;, the lower half-bandwidth) are specified by the user, and uses this to form a preconditioner for

0
use with the Krylov linear solver. Although this matrix is intended to approximate the Jacobian éTf’ it may be a very

crude approximation. The true Jacobian need not be banded, or its true bandwidth may be larger than m; + m,, + 1,
as long as the banded approximation generated here is sufficiently accurate to speed convergence as a preconditioner.

In order to use the CVBANDPRE module, the user need not define any additional functions. Aside from the header
files required for the integration of the ODE problem (see §5.1.1), to use the CVBANDPRE module, the main program
must include the header file cvode_bandpre.h which declares the needed function prototypes.

The following is a summary of the usage of this module. Steps that are unchanged from the skeleton presented in §5.1.2
are grayed out and new steps are in bold.

1.

A T o

Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

10. Initialize the CVBANDPRE preconditioner module

Specify the upper and lower half-bandwidths (mu and m1, respectively) and call

flag = CVBandPrecInit(cvode_mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

11.

Warning

The user should not overwrite the preconditioner setup function or solve function through calls to the CVode-
SetPreconditioner () optional input function.

130 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

12.
13.
14.
15.
16.
17. Get optional outputs

Additional optional outputs associated with CVBANDPRE are available by way of two routines described below,
CVBandPrecGetWorkSpace () and CVBandPrecGetNumRhsEvals().

18.
The CVBANDPRE preconditioner module is initialized and attached by calling the following function:

int CVBandPrecInit (void *cvode_mem, sunindextype N, sunindextype mu, sunindextype ml)

The function CVBandPrecInit initializes the CVBANDPRE preconditioner and allocates required (internal)
memory for it.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* N — problem dimension.
e mu — upper half-bandwidth of the Jacobian approximation.
e ml — lower half-bandwidth of the Jacobian approximation.
Return value:
* CVLS_SUCCESS — The call to CVBandPrecInit was successful.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_MEM_FAIL — A memory allocation request has failed.
e CVLS_LMEM_NULL — A CVLS linear solver memory was not attached.

e CVLS_ILL_INPUT - The supplied vector implementation was not compatible with block band precon-
ditioner.

Notes:
The banded approximate Jacobian will have nonzero elements only in locations (7,) withml < j—i < mu.

The following two optional output functions are available for use with the CVBANDPRE module:

int CVBandPrecGetWorkSpace (void *cvode_mem, long int *lenrwBP, long int *leniwBP)
The function CVBandPrecGetWorkSpace returns the sizes of the CVBANDPRE real and integer workspaces.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* lenrwBP — the number of sunrealtype values in the CVBANDPRE workspace.
* leniwBP — the number of integer values in the CVBANDPRE workspace.
Return value:
* CVLS_SUCCESS — The optional output values have been successfully set.
e CVLS_PMEM_NULL — The CVBANDPRE preconditioner has not been initialized.

5.2. Integration of pure quadrature equations 131

User Documentation for CVODES, v7.3.0

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the
CVBANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and tem-
porary vectors).

The workspaces referred to here exist in addition to those given by the corresponding function
CVodeGetLinliorkSpace().

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

int CVBandPrecGetNumRhsEvals (void *cvode_mem, long int *nfevalsBP)

The function CVBandPrecGetNumRhsEvals returns the number of calls made to the user-supplied right-hand
side function for the finite difference banded Jacobian approximation used within the preconditioner setup func-
tion.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nfevalsBP — the number of calls to the user right-hand side function.
Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
* CVLS_PMEM_NULL — The CVBANDPRE preconditioner has not been initialized.

Notes:
The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
CVodeGetNumLinRhsEvals () and nfevals returned by CVodeGetNumRhsEvals (). The total number of
right-hand side function evaluations is the sum of all three of these counters.

5.2.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as CVODES lies in the solution of partial differential equations
(PDEs). Moreover, the use of a Krylov iterative method for the solution of many such problems is motivated by the
nature of the underlying linear system of equations (2.8) that must be solved at each time step. The linear algebraic
system is large, sparse, and structured. However, if a Krylov iterative method is to be effective in this setting, then a
nontrivial preconditioner needs to be used. Otherwise, the rate of convergence of the Krylov iterative method is usually
unacceptably slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It
has been successfully used for several realistic, large-scale problems [42] and is included in a software module within
the CVODES package. This module works with the parallel vector module NVECTOR_PARALLEL and is usable
with any of the Krylov iterative linear solvers through the CVLS interface. It generates a preconditioner that is a
block-diagonal matrix with each block being a band matrix. The blocks need not have the same number of super- and
sub-diagonals and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is
called CVBBDPRE.

One way to envision these preconditioners is to think of the domain of the computational PDE problem as being
subdivided into M non-overlapping subdomains. Each of these subdomains is then assigned to one of the M processes
to be used to solve the ODE system. The basic idea is to isolate the preconditioning so that it is local to each process,
and also to use a (possibly cheaper) approximate right-hand side function. This requires the definition of a new function
g(t,y) which approximates the function f(¢,y) in the definition of the ODE system (2.1). However, the user may set
g = f. Corresponding to the domain decomposition, there is a decomposition of the solution vector y into M disjoint
blocks ¥,,, and a decomposition of g into blocks g,,. The block g,,, depends both on y,,, and on components of blocks
Ym associated with neighboring subdomains (so-called ghost-cell data). Let 3, denote y,,, augmented with those other

132 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

components on which g, depends. Then we have

_ _ 1T
9t.y) = (ot 71) 92(t,72) - gu(t,Gur)]
and each of the blocks gy, (t, ¥) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

Py
P,

where
Pm ~ T - 'YJm

and .J,,, is a difference quotient approximation to 9g,;, /Oy,. This matrix is taken to be banded, with upper and lower
half-bandwidths mudq and mldq defined as the number of non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudq + mldq + 2 evaluations of g,,, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of g, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

Px=0
reduces to solving each of the equations
Pz, = b,

and this is done by banded LU factorization of P, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks P,,. For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

The CVBBDPRE module calls two user-provided functions to construct P: a required function gloc (of type CVLo-
calFn) which approximates the right-hand side function g(¢,y) =~ f(¢,y) and which is computed locally, and an
optional function cfn (of type CVCommFn) which performs all interprocess communication necessary to evaluate the
approximate right-hand side g. These are in addition to the user-supplied right-hand side function f. Both functions
take as input the same pointer user_data that is passed by the user to CVodeSetUserData() and that was passed
to the user’s function f. The user is responsible for providing space (presumably within user_data) for components
of y that are communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

typedef int (*CVLocalFn)(sunindextype Nlocal, sunrealtype t, N_Vector y, N_Vector glocal, void *user_data);

This gloc function computes g(¢,y). It loads the vector glocal as a function of t and y.

Arguments:
* Nlocal — the local vector length.
¢ t — the value of the independent variable.
 y — the dependent variable.
* glocal — the output vector.

* user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

5.2. Integration of pure quadrature equations 133

User Documentation for CVODES, v7.3.0

Return value:
A CVLocalFn should return O if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CVode () returns CV_LSETUP_FAIL).

Notes:
This function must assume that all interprocess communication of data needed to calculate glocal has
already been done, and that this data is accessible within user_data.

The case where g is mathematically identical to f is allowed.

typedef int (*CVCommFn)(sunindextype Nlocal, sunrealtype t, N_Vector y, void *user_data);

This cfn function performs all interprocess communication necessary for the execution of the gloc function
above, using the input vector y.

Arguments:
* Nlocal — the local vector length.
* t — the value of the independent variable.
 y — the dependent variable.

* user_data — a pointer to user data, the same as the user_data parameter passed to CVodeSetUser-
Data().

Return value:
A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CVode () returns CV_LSETUP_FAIL).

Notes:
The cfn function is expected to save communicated data in space defined within the data structure user_-
data.

Each call to the cfn function is preceded by a call to the right-hand side function f with the same (¢, y)
arguments. Thus, cfn can omit any communication done by f if relevant to the evaluation of glocal. If all
necessary communication was done in f, then cfn = NULL can be passed in the call to CVBBDPrecInit ()
(see below).

Besides the header files required for the integration of the ODE problem (see §5.1.1), to use the CVBBDPRE module,
the main program must include the header file cvode_bbdpre.h which declares the needed function prototypes.

The following is a summary of the usage of this module. Steps that are unchanged from the skeleton presented in §5.1.2
are grayed out and new or modified steps are in bold.

1.
2
3
4.
5
6
7

. Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (SUN_PREC_LEFT or SUN_-
PREC_RIGHT) to use.

134 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

9.
10. Initialize the CYBBDPRE preconditioner module
Specity the upper and lower half-bandwidths mudq and mldg, and mukeep and mlkeep, and call

flag = CVBBDPrecInit(&cvode_mem, local_N, mudq, mldg,
&mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of CVBBDPrecInit ()
are the two user-supplied functions described above.

11.
Warning
The user should not overwrite the preconditioner setup function or solve function through calls to the CVode-
SetPreconditioner () optional input function.

12.

13.

14.

15.

16.

17. Get optional outputs

Additional optional outputs associated with CVBBDPRE are available by way of two routines described below,
CVBBDPrecGetWorkSpace () and CVBBDPrecGetNumGfnEvals().

18.
19.
The user-callable functions that initialize or re-initialize the CVBBDPRE preconditioner module are described next.

int CVBBDPrecInit (void *cvode_mem, sunindextype local_N, sunindextype mudq, sunindextype mldq, sunindextype
mukeep, sunindextype mlkeep, sunrealtype dqrely, CVLocalFn gloc, CVCommFn cfn)

The function CVBBDPrecInit initializes and allocates (internal) memory for the CVBBDPRE preconditioner.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* local_N —local vector length.

* mudq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.

* mldq — lower half-bandwidth to be used in the difference quotient Jacobian approximation.

» mukeep — upper half-bandwidth of the retained banded approximate Jacobian block.

* mlkeep — lower half-bandwidth of the retained banded approximate Jacobian block.

* dgrely — the relative increment in components of y used in the difference quotient approximations.
The default is dgrely = v/unit roundoff, which can be specified by passing dqrely = 0.0.

* gloc —the CVLocalFn function which computes the approximation g(t,y) =~ f(t,y).

5.2. Integration of pure quadrature equations 135

User Documentation for CVODES, v7.3.0

e cfn - the CVCommFn which performs all interprocess communication required for the computation of
9(t,y).
Return value:
e CVLS_SUCCESS — The function was successful
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_MEM_FAIL — A memory allocation request has failed.
e CVLS_LMEM_NULL — A CVLS linear solver memory was not attached.

e CVLS_ILL_INPUT — The supplied vector implementation was not compatible with block band precon-
ditioner.

Notes:
If one of the half-bandwidths mudq or mldq to be used in the difference quotient calculation of the ap-
proximate Jacobian is negative or exceeds the value local_N - 1, it is replaced by 0 or local_N - 1
accordingly.

The half-bandwidths mudg and m1dq need not be the true half-bandwidths of the Jacobian of the local block
of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be
even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The CVBBDPRE module also provides a reinitialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in local_N, mukeep, or mlkeep. After
solving one problem, and after calling CVodeReInit () to re-initialize CVODES for a subsequent problem, a call to
CVBBDPrecReInit () can be made to change any of the following: the half-bandwidths mudq and mldq used in the
difference-quotient Jacobian approximations, the relative increment dqrely, or one of the user-supplied functions gloc
and cfn. If there is a change in any of the linear solver inputs, an additional call to the “set” routines provided by the
SUNLinearSolver module, and/or one or more of the corresponding CVLS “set” functions, must also be made (in the
proper order).

int CVBBDPrecReInit (void *cvode_mem, sunindextype mudq, sunindextype mldq, sunrealtype dqrely)
The function CVBBDPrecReInit re-initializes the CVBBDPRE preconditioner.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
» mudq — upper half-bandwidth to be used in the difference quotient Jacobian approximation.
* mldq — lower half-bandwidth to be used in the difference quotient Jacobian approximation.
e dgrely — the relative increment in components of
Return value:
¢ CVLS_SUCCESS — The function was successful
e CVLS_MEM_NULL — The cvode_mem pointer is NULL. cvode_mem pointer was NULL.
e CVLS_LMEM_NULL — A CVLS linear solver memory was not attached.
e CVLS_PMEM_NULL — The function CVBBDPrecInit () was not previously called

Notes:
If one of the half-bandwidths mudq or m1dq is negative or exceeds the value local_N-1, it is replaced by
0 or local_N-1 accordingly.

The following two optional output functions are available for use with the CVBBDPRE module:

136 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

int CVBBDPrecGetWorkSpace (void *cvode_mem, long int *lenrwBBDP, long int *leniwBBDP)
The function CVBBDPrecGetWorkSpace returns the local CVBBDPRE real and integer workspace sizes.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* lenrwBBDP — local number of sunrealtype values in the CVBBDPRE workspace.

* 1eniwBBDP — local number of integer values in the CVBBDPRE workspace.
Return value:

* CVLS_SUCCESS — The optional output value has been successfully set.

e CVLS_MEM_NULL — The cvode_mem pointer was NULL.

e CVLS_PMEM_NULL — The CVBBDPRE preconditioner has not been initialized.

Notes:
The workspace requirements reported by this routine correspond only to memory allocated within the
CVBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process. The workspaces referred to here exist in addition to those
given by the corresponding function CVodeGetLinWorkSpace.

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

int CVBBDPrecGetNumGfnEvals (void *cvode_mem, long int *ngevalsBBDP)

The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-supplied gloc function
due to the finite difference approximation of the Jacobian blocks used within the preconditioner setup function.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* ngeval sBBDP —the number of calls made to the user-supplied gloc function due to the finite difference
approximation of the Jacobian blocks used within the preconditioner setup function.

Return value:
* CVLS_SUCCESS — The optional output value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer was NULL.
e CVLS_PMEM_NULL — The CVBBDPRE preconditioner has not been initialized.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with CVBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side func-
tion evaluations, where nlinsetups is an optional CVODES output and npsolves and nfevalsLS are linear solver
optional outputs (see §5.1.3.12).

5.3 Using CVODES for Forward Sensitivity Analysis

This chapter describes the use of CVODES to compute solution sensitivities using forward sensitivity analysis. One of
our main guiding principles was to design the CVODES user interface for forward sensitivity analysis as an extension
of that for IVP integration. Assuming a user main program and user-defined support routines for IVP integration have
already been defined, in order to perform forward sensitivity analysis the user only has to insert a few more calls into
the main program and (optionally) define an additional routine which computes the right-hand side of the sensitivity
systems (2.14). The only departure from this philosophy is due to the CVRhsFn type definition. Without changing the
definition of this type, the only way to pass values of the problem parameters to the ODE right-hand side function is to
require the user data structure £_data to contain a pointer to the array of real parameters p.

5.3. Using CVODES for Forward Sensitivity Analysis 137

User Documentation for CVODES, v7.3.0

CVODES uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed descriptions of the
interface to the various user-callable routines and of the user-supplied routines that were not already described in §5.1
or §5.2.

5.3.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of CVODES. The user
program is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer many of
the details to the later sections. As in §5.1.2, most steps are independent of the N_Vector, SUNMatrix, SUNLinear-
Solver, and SUNNonlinearSolver implementations used. For the steps that are not, refer to Chapters §6, §7, §8, §9
for the specific name of the function to be called or macro to be referenced.

Differences between the user main program in §5.1.2 and the one below start only at step 16. Steps that are unchanged
from the skeleton presented in §5.1.2 are grayed out and new or modified steps are in bold.

First, note that no additional header files need be included for forward sensitivity analysis beyond those for IVP solution
§5.1.2.

1.

o ® Nk w N

I T SOy
o B » N = 2

. Initialize the quadrature problem (optional)

If the quadrature is not sensitivity-dependent, initialize the quadrature integration as described in §5.2. For
integrating a problem where the quadrature depends on the forward sensitivities see §5.3.4.

16. Define the sensitivity problem
¢ Number of sensitivities (required)
Set Ns = N,, the number of parameters with respect to which sensitivities are to be computed.
* Problem parameters (optional)

If CVODES is to evaluate the right-hand sides of the sensitivity systems, set p, an array of Np real parameters
upon which the IVP depends. Only parameters with respect to which sensitivities are (potentially) desired
need to be included. Attach p to the user data structure user_data. For example, user_data->p = p;

138 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

If the user provides a function to evaluate the sensitivity right-hand side, p need not be specified.
* Parameter list (optional)

If CVODES is to evaluate the right-hand sides of the sensitivity systems, set plist, an array of Ns integers
to specify the parameters p with respect to which solution sensitivities are to be computed. If sensitivities
with respect to the j-th parameter p[j] are desired (0 < j < Np), setplist, = j, forsomei =0,..., Ns—1.

If plist is not specified, CVODES will compute sensitivities with respect to the first Ns parameters; i.e.,
plist, =i (i =0,...,Ns—1).

If the user provides a function to evaluate the sensitivity right-hand side, plist need not be specified.
* Parameter scaling factors (optional)

If CVODES is to estimate tolerances for the sensitivity solution vectors (based on tolerances for the state
solution vector) or if CVODES is to evaluate the right-hand sides of the sensitivity systems using the internal
difference-quotient function, the results will be more accurate if order of magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if p; # 0, the value p; = |ppui, | can be used.
If pbar is not specified, CVODES will use p; = 1.0.

If the user provides a function to evaluate the sensitivity right-hand side and specifies tolerances for the
sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user_data are arbitrary, but they must
agree with the arguments passed to CVodeSetSensParams () below.

17. Set sensitivity initial conditions

Set the N's vectors yS®[i] of initial values for sensitivities (for¢ = 0, ..., Ns —1), using the appropriate functions
defined by the particular N_Vector implementation chosen.

First, create an array of Ns vectors by calling yS® = N_VCloneVectorArray(Ns, y0);

Here the argument y0 serves only to provide the N_Vector type for cloning.

Then, for each i = 0, ... ,Ns —1, load initial values for the i-th sensitivity vector yS®[i].
18. Activate sensitivity calculations

Call CVodeSensInit () or CVodeSensInitl() to activate forward sensitivity computations and allocate inter-
nal memory for CVODES related to sensitivity calculations.

19. Set sensitivity tolerances
Call CVodeSensSStolerances(), CVodeSensSVtolerances() or CVodeSensEEtolerances().
20. Set sensitivity analysis optional inputs

Call CVodeSetSens* routines to change from their default values any optional inputs that control the behavior
of CVODES in computing forward sensitivities. See §5.3.2.6 for details.

21. Create sensitivity nonlinear solver object

If using a non-default nonlinear solver (see §5.3.2.3), then create the desired nonlinear solver object by calling
the appropriate constructor function defined by the particular SUNNonlinearSolver implementation e.g.,

NLSSens = SUNNonlinSol_***Sens(...);

for the CV_SIMULTANEOUS or CV_STAGGERED options or

NLSSens = SUNNonlinSol_***(...);

5.3. Using CVODES for Forward Sensitivity Analysis 139

User Documentation for CVODES, v7.3.0

22.

23.

24.
25.
26.

27.
28.

29.

for the CV_STAGGERED1 option where *** is the name of the nonlinear solver and . . . are constructor specific
arguments (see §9 for details).

Attach the sensitivity nonlinear solver module

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching the nonlin-
ear solver object by calling CVodeSetNonlinearSolverSensSim() when using the CV_SIMULTANEOUS cor-
rector method, CVodeSetNonlinearSolverSensStg() when using the CV_STAGGERED corrector method, or
CVodeSetNonlinearSolverSensStgl () when using the CV_STAGGERED1 corrector method (see §5.3.2.3 for
details).

Set sensitivity nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after CVodeSensInit () if using the default nonlinear solver or
after attaching a new nonlinear solver to CVODES, otherwise the optional inputs will be overridden by CVODE
defaults. See §9 for more information on optional inputs.

Extract sensitivity solution

After each successful return from CVode (), the solution of the original IVP is available in the y argument of
CVode (), while the sensitivity solution can be extracted into yS (which can be the same as yS®) by calling one
of the routines CVodeGetSens (), CVodeGetSens1(), CVodeGetSensDky (), or CVodeGetSensDky1().

Destroy objects

Upon completion of the integration, deallocate memory for the vectors ySO® wusing N_-
VDestroyVectorArray(yS®, Ns);

If yS was created from sunrealtype arrays yS_i, it is the user’s responsibility to also free the space for the
arrays ySO_i.

5.3.2 User-callable routines for forward sensitivity analysis

This section describes the CVODES functions, in addition to those presented in §5.1.3, that are called by the user to
setup and solve a forward sensitivity problem.

5.3.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling CVodeSensInit () or CVodeSensInit1(), depend-
ing on whether the sensitivity right-hand side function returns all sensitivities at once or one by one, respectively. The
form of the call to each of these routines is as follows:

int CVodeSensInit (void *cvode_mem, int Ns, int ism, CVSensRhsFn S, N_Vector *yS0)

The routine CVodeSensInit () activates forward sensitivity computations and allocates internal memory related
to sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

* Ns — the number of sensitivities to be computed.

140

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* ism — forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be CV_SIMULTANEOUS or CV_STAGGERED :

— In the CV_SIMULTANEOUS approach, the state and sensitivity variables are corrected at the same
time. If the default Newton nonlinear solver is used, this amounts to performing a modified Newton
iteration on the combined nonlinear system;

— In the CV_STAGGERED approach, the correction step for the sensitivity variables takes place at
the same time for all sensitivity equations, but only after the correction of the state variables has
converged and the state variables have passed the local error test;

e S —is the C function which computes all sensitivity ODE right-hand sides at the same time. For full
details see CVSensRhsFn.

* ySO — a pointer to an array of Ns vectors containing the initial values of the sensitivities.
Return value:
e CV_SUCCESS — The call to CVodeSensInit () was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_MEM_FAIL — A memory allocation request has failed.
e CV_ILL_INPUT — An input argument to CVodeSensInit () has an illegal value.

Notes:
Passing fs == NULL indicates using the default internal difference quotient sensitivity right-hand side
routine. If an error occurred, CVodeSensInit () also sends an error message to the error handler function.

Warning

It is illegal here to use ism = CV_STAGGERED1. This option requires a different type for £S and can
therefore only be used with CVodeSensInit1() (see below).

int CVodeSensInitl (void *cvode_mem, int Ns, int ism, CVSensRhsFn fS1, N_Vector *yS0)

The routine CVodeSensInitl() activates forward sensitivity computations and allocates internal memory re-
lated to sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
¢ Ns — the number of sensitivities to be computed.

* ism — forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be CV_SIMULTANEOUS , CV_STAGGERED , or CV_STAGGERED1 :

— In the CV_SIMULTANEOUS approach, the state and sensitivity variables are corrected at the same
time. If the default Newton nonlinear solver is used, this amounts to performing a modified Newton
iteration on the combined nonlinear system;

— In the CV_STAGGERED approach, the correction step for the sensitivity variables takes place at
the same time for all sensitivity equations, but only after the correction of the state variables has
converged and the state variables have passed the local error test;

— In the CV_STAGGERED1 approach, all corrections are done sequentially, first for the state variables
and then for the sensitivity variables, one parameter at a time. If the sensitivity variables are not

5.3. Using CVODES for Forward Sensitivity Analysis 141

User Documentation for CVODES, v7.3.0

included in the error control, this approach is equivalent to CV_STAGGERED. Note that the CV_-
STAGGERED1 approach can be used only if the user-provided sensitivity right-hand side function
is of type CVSensRhs1Fn.

e £S1 —is the C function which computes the right-hand sides of the sensitivity ODE, one at a time. For
full details see CVSensRhs1Fn.

* ySO — a pointer to an array of Ns vectors containing the initial values of the sensitivities.
Return value:
e CV_SUCCESS — The call to CVodeSensInit1() was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

* CV_MEM_FAIL — A memory allocation request has failed.
e CV_ILL_INPUT — An input argument to CVodeSensInit1() has an illegal value.

Notes:
Passing £S1 = NULL indicates using the default internal difference quotient sensitivity right-hand side
routine. If an error occurred, CVodeSensInit1 () also sends an error message to the error handler function.

In terms of the problem size N, number of sensitivity vectors [V, and maximum method order maxord, the size of the
real workspace is increased as follows:

* Base value: lenrw = lenrw + (maxord + 5)N;N

e With CVodeSensSVtolerances(): lenrw = lenrw + NyN
the size of the integer workspace is increased as follows:

* Base value: leniw = leniw + (maxord + 5)N;N;

e With CVodeSensSVtolerances(): leniw = leniw + N NV;
where [V; is the number of integers in one N_Vector.

The routine CVodeSensReInit (), useful during the solution of a sequence of problems of same size, reinitializes the
sensitivity-related internal memory. The call to it must follow a call to CVodeSensInit() or CVodeSensInit1()
(and maybe a call to CVodeReInit()). The number Ns of sensitivities is assumed to be unchanged since the call to
the initialization function. The call to the CVodeSensReInit () function has the form:

int CVodeSensReInit (void *cvode_mem, int ism, N_Vector *yS0)
The routine CVodeSensReInit () reinitializes forward sensitivity computations.

Arguments:
¢ cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

» ism — forward sensitivity analysis!correction strategies a flag used to select the sensitivity solution
method. Its value can be CV_SIMULTANEOUS , CV_STAGGERED , or CV_STAGGERED1.

* ySO — a pointer to an array of Ns variables of type N_Vector containing the initial values of the
sensitivities.

Return value:
e CV_SUCCESS — The call to CVodeSensReInit () was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_SENS — Memory space for sensitivity integration was not allocated through a previous call to
CVodeSensInit().

142 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CV_ILL_INPUT — An input argument to CVodeSensReInit () has an illegal value.
e CV_MEM_FAIL — A memory allocation request has failed.

Notes:
All arguments of CVodeSensReInit() are the same as those of the functions CVodeSensInit() and
CVodeSensInitl(). If an error occurred, CVodeSensReInit () also sends a message to the error han-
dler function. CVodeSensReInit () potentially does some minimal memory allocation (for the sensitivity
absolute tolerance) and for arrays of counters used by the CV_STAGGERED1 method.

Warning

The value of the input argument ism must be compatible with the type of the sensitivity ODE right-
hand side function. Thus if the sensitivity module was initialized using CVodeSensInit (), then it is
illegal to pass ism = CV_STAGGERED1 to CVodeSensReInit().

To deallocate all forward sensitivity-related memory (allocated in a prior call to CVodeSensInit() or CVode-
SensInit1()), the user must call

void CVodeSensFree (void *cvode_mem)

The function CVodeSensFree () frees the memory allocated for forward sensitivity computations by a previous
call to CVodeSensInit () or CVodeSensInitl().

Arguments:

* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
Return value:

* The function has no return value.

Notes:

In general, CVodeSensFree () need not be called by the user, as it is invoked automatically by CVode-
Free().

After a call to CVodeSensFree(), forward sensitivity computations can be reactivated only by calling
CVodeSensInit() or CVodeSensInitl() again.

To activate and deactivate forward sensitivity calculations for successive CVODES runs, without having to allocate and
deallocate memory, the following function is provided:

int CVodeSensToggleOff (void *cvode_mem)

The function CVodeSensToggleOff() deactivates forward sensitivity calculations. It does not deallocate
sensitivity-related memory.

Arguments:

* cvode_mem — pointer to the memory previously returned by CVodeCreate ().
Return value:

e CV_SUCCESS - CVodeSensToggleOff () was successful.

e CV_MEM_NULL - cvode_mem was NULL.

Notes:

Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at a later time (using
CVodeSensReInit()).

5.3. Using CVODES for Forward Sensitivity Analysis 143

User Documentation for CVODES, v7.3.0

5.3.2.2 Forward sensitivity tolerance specification functions
One of the following three functions must be called to specify the integration tolerances for sensitivities. Note that this
call must be made after the call to CVodeSensInit () or CVodeSensInitl().

int CVodeSensSStolerances (void *cvode_mem, sunrealtype reltolS, sunrealtype *abstolS)

The function CVodeSensSStolerances () specifies scalar relative and absolute tolerances.
Arguments:
e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
* reltolS —is the scalar relative error tolerance.

* abstolS —is a pointer to an array of length Ns containing the scalar absolute error tolerances, one for
each parameter.

Return value:
e CV_SUCCESS — The call to CVodeSStolerances was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

* CV_NO_SENS — The sensitivity allocation function CVodeSensInit () or CVodeSensInit1() hasnot
been called.

e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeSensSVtolerances (void *cvode_mem, sunrealtype reltolS, N_Vector *abstolS)

The function CVodeSensSVtolerances () specifies scalar relative tolerance and vector absolute tolerances.
Arguments:

e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

* reltolS —is the scalar relative error tolerance.

e abstolS —is an array of Ns variables of type N_Vector. The N_Vector from abstolS[is] specifies
the vector tolerances for is -th sensitivity.

Return value:
e CV_SUCCESS — The call to CVodeSVtolerances was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_SENS — The allocation function for sensitivities has not been called.

e CV_ILL_INPUT - The relative error tolerance was negative or an absolute tolerance vector had a neg-
ative component.

Notes:
This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of any vector yS[i].

int CVodeSensEEtolerances (void *cvode_mem)

When CVodeSensEEtolerances () is called, CVODES will estimate tolerances for sensitivity variables based
on the tolerances supplied for states variables and the scaling factors p.

Arguments:
e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

Return value:

144 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CV_SUCCESS — The call to CVodeSensEEtolerances () was successful.

e CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

e CV_NO_SENS — The sensitivity allocation function has not been called.

5.3.2.3 Forward sensitivity nonlinear solver interface functions

As in the pure ODE case, when computing solution sensitivities using forward sensitivitiy analysis CVODES uses
the SUNNonlinearSolver implementation of Newton’s method defined by the SUNNONLINSOL_NEWTON module (see
§9.3) by default. To specify a different nonlinear solver in CVODES, the user’s program must create a SUNNonlinear-
Solver object by calling the appropriate constructor routine. The user must then attach the SUNNonlinearSolver
object to CVODES by calling CVodeSetNonlinearSolverSensSim() when using the CV_SIMULTANEOQUS corrector
option, or CVodeSetNonlinearSolver () and CVodeSetNonlinearSolverSensStg() or CVodeSetNonlinear-
SolverSensStgl() when using the CV_STAGGERED or CV_STAGGERED1 corrector option respectively, as documented
below.

When changing the nonlinear solver in CVODES, CVodeSetNonlinearSolver () must be called after CVodeInit ();
similarly CVodeSetNonlinearSolverSensSim(), CVodeSetNonlinearSolverSensStg(), and CVodeSetNon-
linearSolverSensStgl() must be called after CVodeSensInit (). If any calls to CVode () have been made, then
CVODES will need to be reinitialized by calling CVodeReInit () to ensure that the nonlinear solver is initialized
correctly before any subsequent calls to CVode ().

The first argument passed to the routines CVodeSetNonlinearSolverSensSim(), CVodeSetNonlinearSol-
verSensStg(), and CVodeSetNonlinearSolverSensStgl() is the CVODES memory pointer returned by CVode-
Create () and the second argument is the SUNNonlinearSolver object to use for solving the nonlinear systems (2.5)
or (2.6) A call to this function attaches the nonlinear solver to the main CVODES integrator.

int CVodeSetNonlinearSolverSensSim(void *cvode_mem, SUNNonlinearSolver NLS)

The function CVodeSetNonlinearSolverSensSim() attaches a SUNNonlinearSolver object (NLS) to
CVODES when using the CV_SIMULTANEOUS approach to correct the state and sensitivity variables at the same
time.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e NLS — SUNNonlinearSolver object to use for solving nonlinear systems (2.5) or (2.6).
Return value:

* CV_SUCCESS — The nonlinear solver was successfully attached.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_ILL_INPUT — The SUNNONLINSOL object is NULL, does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.

int CVodeSetNonlinearSolverSensStg(void *cvode_mem, SUNNonlinearSolver NLS)

The function CVodeSetNonlinearSolverSensStg() attaches a SUNNonlinearSolver object (NLS) to
CVODES when using the CV_STAGGERED approach to correct all the sensitivity variables after the correction of
the state variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* NLS — SUNNONLINSOL object to use for solving nonlinear systems.

5.3. Using CVODES for Forward Sensitivity Analysis 145

User Documentation for CVODES, v7.3.0

Return value:
* CV_SUCCESS - The nonlinear solver was successfully attached.
e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_ILL_INPUT — The SUNNONLINSOL object is NULL, does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.

Notes:
This function only attaches the SUNNonlinearSolver object for correcting the sensitivity variables. To at-
tach a SUNNonlinearSolver object for the state variable correction use CVodeSetNonlinearSolver().

int CVodeSetNonlinearSolverSensStgl (void *cvode_mem, SUNNonlinearSolver NLS)

The function CVodeSetNonlinearSolverSensStgl() attaches a SUNNonlinearSolver object (NLS) to
CVODES when using the CV_STAGGERED1 approach to correct the sensitivity variables one at a time after the
correction of the state variables.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* NLS — SUNNONLINSOL object to use for solving nonlinear systems.
Return value:

¢ CV_SUCCESS - The nonlinear solver was successfully attached.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_ILL_INPUT — The SUNNONLINSOL object is NULL, does not implement the required nonlinear
solver operations, is not of the correct type, or the residual function, convergence test function, or
maximum number of nonlinear iterations could not be set.

Notes:
This function only attaches the SUNNonlinearSolver object for correcting the sensitivity variables. To at-
tach a SUNNonlinearSolver object for the state variable correction use CVodeSetNonlinearSolver().

5.3.2.4 CVODES solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function CVode () is exactly the same as in
§5.1. However, in this case the return value flag can also be one of the following:

* CV_SRHSFUNC_FAIL — The sensitivity right-hand side function failed in an unrecoverable manner.
e CV_FIRST_SRHSFUNC_ERR — The sensitivity right-hand side function failed at the first call.

e CV_REPTD_SRHSFUNC_ERR — Convergence tests occurred too many times due to repeated recoverable errors in
the sensitivity right-hand side function. This flag will also be returned if the sensitivity right-hand side function
had repeated recoverable errors during the estimation of an initial step size.

e CV_UNREC_SRHSFUNC_ERR — The sensitivity right-hand function had a recoverable error, but no recovery was
possible. This failure mode is rare, as it can occur only if the sensitivity right-hand side function fails recoverably
after an error test failed while at order one.

146 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.3.2.5 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to CVodeSensInit () or CVodeSensInitl(), or
reinitialized by a call to CVodeSensReInit (), then CVODES computes both a solution and sensitivities at time t.
However, CVode () will still return only the solution y in yout. Solution sensitivities can be obtained through one of
the following functions:

int CVodeGetSens (void *cvode_mem, sunrealtype *tret, N_Vector *yS)

The function CVodeGetSens () returns the sensitivity solution vectors after a successful return from CVode ().
Arguments:

* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* tret — the time reached by the solver output.

e yS — array of computed forward sensitivity vectors. This vector array must be allocated by the user.
Return value:

e CV_SUCCESS — CVodeGetSens () was successful.

e CV_MEM_NULL — cvode_mem was NULL.

* CV_NO_SENS - Forward sensitivity analysis was not initialized.

e CV_BAD_DKY - yS is NULL.

Notes:
Note that the argument tret is an output for this function. Its value will be the same as that returned at the
last CVode () call.

The function CVodeGetSensDky () computes the k-th derivatives of the interpolating polynomials for the sensitivity
variables at time t. This function is called by CVodeGetSens () with k = 0, but may also be called directly by the

user.

int CVodeGetSensDky (void *cvode_mem, sunrealtype t, int k, N_Vector *dkyS)

The function CVodeGetSensDky () returns derivatives of the sensitivity solution vectors after a successful return
from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by CVODES.

e k — order of derivatives.

¢ dkyS — array of Ns vectors containing the derivatives on output. The space for dkyS must be allocated
by the user.

Return value:
» CV_SUCCESS — CVodeGetSensDky () succeeded.
e CV_MEM_NULL — cvode_mem was NULL.
* CV_NO_SENS — Forward sensitivity analysis was not initialized.
e CV_BAD_DKY - One of the vectors dkyS is NULL.
e CV_BAD_K - kis not in the range 0, 1, ..., qlast.

e CV_BAD_T — The time t is not in the allowed range.

5.3.

Using CVODES for Forward Sensitivity Analysis 147

User Documentation for CVODES, v7.3.0

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn through the functions
CVodeGetSens1() and CVodeGetSensDky1 (), defined as follows:

int CVodeGetSens1(void *cvode_mem, sunrealtype *tret, int is, N_Vector yS)

The function CVodeGetSens1() returns the is-th sensitivity solution vector after a successful return from
CVode ().

Arguments:

* cvode_mem — pointer to the memory previously allocated by CVodeInit().

* tret — the time reached by the solver output.

* is — specifies which sensitivity vector is to be returned 0 < is < Ng.

* yS — the computed forward sensitivity vector. This vector array must be allocated by the user.
Return value:

* CV_SUCCESS — CVodeGetSens1() was successful.

e CV_MEM_NULL - cvode_mem was NULL.

e CV_NO_SENS — Forward sensitivity analysis was not initialized.

CV_BAD_IS — The index is is not in the allowed range.

CV_BAD_DKY — yS is NULL.
e CV_BAD_T — The time t is not in the allowed range.

Notes:
Note that the argument tret is an output for this function. Its value will be the same as that returned at the
last CVode () call.

int CVodeGetSensDky1 (void *cvode_mem, sunrealtype t, intk, int is, N_Vector dkyS)

The function CVodeGetSensDky1() returns the k-th derivative of the is-th sensitivity solution vector after a
successful return from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by CVODES.

* k — order of derivative.

* is —specifies the sensitivity derivative vector to be returned 0 < is < Nj.

» dkyS - the vector containing the derivative. The space for dkyS must be allocated by the user.
Return value:

e CV_SUCCESS - CVodeGetSensDky1 () succeeded.

e CV_MEM_NULL - The pointer to cvode_mem was NULL.

* CV_NO_SENS - Forward sensitivity analysis was not initialized.

e CV_BAD_DKY — dkysS or one of the vectors dkyS[i] is NULL.

e CV_BAD_IS — The index is is not in the allowed range.

e CV_BAD_K - kis not in the range 0, 1, ..., qlast.

e CV_BAD_T — The time t is not in the allowed range.

148

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.3.2.6 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default values through
calls to CVodeSetSens* functions. Table 5.8 lists all forward sensitivity optional input functions in CVODES which
are described in detail in the remainder of this section.

‘We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors. Finally, a call to a CVodeSetSens***
function can be made from the user’s calling program at any time and, if successful, takes effect immediately.

Table 5.8: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors CVodeSetSensParams () NULL

DQ approximation method CVodeSetSensDQMethod () centered/0.0
Error control strategy CVodeSetSensErrCon() SUNFALSE

Maximum no. of nonlinear iterations CVodeSetSensMaxNonlinIters() 3

int CVodeSetSensParams (void *cvode_mem, sunrealtype *p, sunrealtype *pbar, int *plist)

The function CVodeSetSensParams () specifies problem parameter information for sensitivity calculations.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

* p —a pointer to the array of real problem parameters used to evaluate f(¢,y,p). If non-NULL, p must
point to a field in the user’s data structure user_data passed to the right-hand side function.

* pbar —an array of Ns positive scaling factors. If non-NULL, pbar must have all its components > 0.0.

e plist — an array of Ns non-negative indices to specify which components p[i] to use in estimating
the sensitivity equations. If non-NULL, plist must have all components > 0.

Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.
e CV_ILL_INPUT — An argument has an illegal value.
Notes:

Warning

This function must be preceded by a call to CVodeSensInit () or CVodeSensInitl().

int CVodeSetSensDQMethod (void *cvode_mem, int DQtype, sunrealtype DQrhomax)

The function CVodeSetSensDQMethod() specifies the difference quotient strategy in the case in which the
right-hand side of the sensitivity equations are to be computed by CVODES.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* DQtype — specifies the difference quotient type. Its value can be CV_CENTERED or CV_FORWARD.

5.3. Using CVODES for Forward Sensitivity Analysis 149

User Documentation for CVODES, v7.3.0

* DQrhomax — positive value of the selection parameter used in deciding switching between a simulta-
neous or separate approximation of the two terms in the sensitivity right-hand side.

Return value:
e CV_SUCCESS - The optional value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_ILL_INPUT — An argument has an illegal value.

Notes:
If DQrhomax = 0.0, then no switching is performed. The approximation is done simultaneously using
either centered or forward finite differences, depending on the value of DQtype. For values of DQrhomax
> 1.0, the simultaneous approximation is used whenever the estimated finite difference perturbations for
states and parameters are within a factor of DQrhomax, and the separate approximation is used otherwise.
Note that a value DQrhomax < 1.0 will effectively disable switching. See §2.7 for more details. The default
value are DQtype == CV_CENTERED and DQrhomax=0.0.

int CVodeSetSensErrCon (void *cvode_mem, sunbooleantype errconS)

The function CVodeSetSensErrCon() specifies the error control strategy for sensitivity variables.
Arguments:
* cvode_mem — pointer to the CVODES memory block.

* errconS - specifies whether sensitivity variables are to be included SUNTRUE or not SUNFALSE in the
error control mechanism.

Return value:
* CV_SUCCESS — The optional value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.

Notes:
By default, errconsS is set to SUNFALSE. If errconS = SUNTRUE then both state variables and sensitiv-
ity variables are included in the error tests. If errconS = SUNFALSE then the sensitivity variables are
excluded from the error tests. Note that, in any event, all variables are considered in the convergence tests.

int CVodeSetSensMaxNonlinIters (void *cvode_mem, int maxcorS)

The function CVodeSetSensMaxNonlinIters() specifies the maximum number of nonlinear solver iterations
for sensitivity variables per step.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* maxcorS — maximum number of nonlinear solver iterations allowed per step > 0.
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CV_MEM_FAIL — The SUNNONLINSOL module is NULL.

Notes:
The default value is 3.

150 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.3.2.7 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward sensitivity com-
putations are listed in Table 5.9 and described in detail in the remainder of this section.

Table 5.9: Forward sensitivity optional outputs

Optional output Routine name

No. of calls to sensitivity r.h.s. function CVodeGetSensNumRhsEvals ()

No. of calls to r.h.s. function for sensitivity CVodeGetNumRhsEvalsSens ()

No. of sensitivity local error test failures CVodeGetSensNumErrTestFails ()

No. of failed steps due to sensitivity nonlinear solver failures CVodeGetNumStepSensSolveFails()

No. of failed steps due to staggered sensitivity nonlinear solver CVodeGetNumStepStgrSensSolveFails()
failures

No. of calls to lin. solv. setup routine for sens. CVodeGetSensNumLinSolvSetups()

Error weight vector for sensitivity variables CVodeGetSensErriWeights ()

No. of sens. nonlinear solver iterations CVodeGetSensNumNonlinSolvIters()

No. of sens. convergence failures CVodeGetSensNumNonlinSolvConvFails()
No. of staggered nonlinear solver iterations CVodeGetStgrSensNumNonlinSolvIters()
No. of staggered convergence failures CVodeGetStgrSensNumNonlinSolvCon-

vFails()

int CVodeGetSensNumRhsEvals (void *cvode_mem, long int nfSevals)

The function CVodeGetSensNumRhsEvals () returns the number of calls to the sensitivity right-hand side func-
tion.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nfSevals — number of calls to the sensitivity right-hand side function.
Return value:

e CV_SUCCESS — The optional output value has been successfully set.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:
In order to accommodate any of the three possible sensitivity solution methods, the default internal finite
difference quotient functions evaluate the sensitivity right-hand sides one at a time. Therefore, nfSevals
will always be a multiple of the number of sensitivity parameters (the same as the case in which the user
supplies a routine of type CVSensRhs1Fn).

int CVodeGetNumRhsEvalsSens (void *cvode_mem, long int nfevalsS)

The function CVodeGetNumRhsEvalsSens () returns the number of calls to the user’s right-hand side function
due to the internal finite difference approximation of the sensitivity right-hand sides.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* nfevalsS —number of calls to the user’s ODE right-hand side function for the evaluation of sensitivity
right-hand sides.

Return value:

5.3.

Using CVODES for Forward Sensitivity Analysis 151

User Documentation for CVODES, v7.3.0

* CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if the internal finite difference approximation routines are used for the
evaluation of the sensitivity right-hand sides.

int CVodeGetSensNumErrTestFails (void *cvode_mem, long int nSetfails)

The function CVodeGetSensNumErrTestFails () returns the number of local error test failures for the sensi-
tivity variables that have occurred.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nSetfails — number of error test failures.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if the sensitivity variables have been included in the error test (see CVode-
SetSensErrCon()). Even in that case, this counter is not incremented if the ism = CV_SIMULTANEOUS
sensitivity solution method has been used.

int CVodeGetNumStepSensSolveFails(void *cvode_mem, long int *nSncfails)

Returns the number of failed steps due to a sensitivity nonlinear solver failure.
Arguments:
* cvode_mem — pointer to the CVODE memory block.
e nSncfails — number of step failures.
Return value:
* CV_SUCCESS — The optional output value has been successfully set.
* CV_NO_SENS — Forward sensitivity analysis was not initialized.

e CV_MEM_NULL — The CVODE memory block was not initialized through a previous call to CVodeCre-
ate().

int CVodeGetNumStepStgrSensSolveFails (void *cvode_mem, long int *nSTGR Infails)

Returns the number of failed steps due to staggered sensitivity nonlinear solver failures for each sensitivity equa-
tion separately, in the CV_STAGGERED1 case.

Arguments:
* cvode_mem — pointer to the CVODE memory block.
e nSTGR1Infails — number of step failures.
Return value:
* CV_SUCCESS - The optional output value has been successfully set.

e CV_NO_SENS - Forward sensitivity analysis was not initialized.

152 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CV_MEM_NULL — The CVODE memory block was not initialized through a previous call to CVodeCre-
ate().

int CVodeGetSensNumLinSolvSetups (void *cvode_mem, long int nlinsetupsS)

The function CVodeGetSensNumLinSolvSetups () returns the number of calls to the linear solver setup func-
tion due to forward sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nlinsetupsS — number of calls to the linear solver setup function.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if a nonlinear solver requiring a linear solve has been used and if either
the ism = CV_STAGGERED or the ism = CV_STAGGERED1 sensitivity solution method has been specified
(see §5.3.2.1).

int CVodeGetSensStats (void *cvode_mem, long int *nfSevals, long int *nfevalsS, long int *nSetfails, long int
*nlinsetupsS)

The function CVodeGetSensStats () returns all of the above sensitivity-related solver statistics as a group.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nfSevals — number of calls to the sensitivity right-hand side function.
* nfevalsS — number of calls to the ODE right-hand side function for sensitivity evaluations.
e nSetfails — number of error test failures.
e nlinsetupsS — number of calls to the linear solver setup function.
Return value:
* CV_SUCCESS - The optional output values have been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS — Forward sensitivity analysis was not initialized.

int CVodeGetSensErriWeights (void *cvode_mem, N_Vector *eSweight)

The function CVodeGetSensErrifeights() returns the sensitivity error weight vectors at the current time.
These are the reciprocals of the W; of (2.7) for the sensitivity variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* eSweight — pointer to the array of error weight vectors.
Return value:
e CV_SUCCESS - The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_SENS - Forward sensitivity analysis was not initialized.

5.3. Using CVODES for Forward Sensitivity Analysis 153

User Documentation for CVODES, v7.3.0

Notes:
The user must allocate memory for eweightsS.

int CVodeGetSensNumNonlinSolvIters (void *cvode_mem, long int nSniters)

The function CVodeGetSensNumNonlinSolvIters () returns the number of nonlinear iterations performed for
sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e nSniters — number of nonlinear iterations performed.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.
e CV_MEM_FAIL — The SUNNONLINSOL module is NULL.

Notes:
This counter is incremented only if ism was CV_STAGGERED or CV_STAGGERED1 (see §5.3.2.1). In the

CV_STAGGERED1 case, the value of nSniters is the sum of the number of nonlinear iterations performed
for each sensitivity equation. These individual counters can be obtained through a call to CVodeGetSt-
grSensNumNonlinSolvIters() (see below).

int CVodeGetSensNumNonlinSolvConvFails(void *cvode_mem, long int nSncfails)

The function CVodeGetSensNumNonlinSolvConvFails () returns the number of nonlinear convergence fail-
ures that have occurred for sensitivity calculations.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nSncfails — number of nonlinear convergence failures.
Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:
This counter is incremented only if ism was CV_STAGGERED or CV_STAGGERED1. In the CV_STAGGERED1
case, the value of nSncfails is the sum of the number of nonlinear convergence failures that occurred for
each sensitivity equation. These individual counters can be obtained through a call to CVodeGetStgrSen-
sNumNonlinSolvConvFails() (see below).

int CVodeGetSensNonlinSolvStats (void *cvode_mem, long int nSniters, long int nSncfails)

The function CVodeGetSensNonlinSolvStats () returns the sensitivity-related nonlinear solver statistics as a
group.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* nSniters — number of nonlinear iterations performed.

e nSncfails — number of nonlinear convergence failures.

Return value:

154 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* CV_SUCCESS - The optional output values have been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_SENS - Forward sensitivity analysis was not initialized.

e CV_MEM_FAIL — The SUNNONLINSOL module is NULL.

int CVodeGetStgrSensNumNonlinSolvIters (void *cvode_mem, long int *nSTGR Initers)

The function CVodeGetStgrSensNumNonlinSolvIters() returns the number of nonlinear iterations per-
formed for each sensitivity equation separately, in the CV_STAGGERED1 case.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* nSTGR1niters — an array of dimension Ns which will be set with the number of nonlinear iterations
performed for each sensitivity system individually.

Return value:
* CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:

Warning

The user must allocate space for nSTGR1niters.

int CVodeGetStgrSensNumNonlinSolvConvFails(void *cvode_mem, long int *nSTGR Incfails)

The function CVodeGetStgrSensNumNonlinSolvConvFails () returns the number of nonlinear convergence
failures that have occurred for each sensitivity equation separately, in the CV_STAGGERED1 case.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* nSTGRIncfails — an array of dimension Ns which will be set with the number of nonlinear conver-
gence failures for each sensitivity system individually.

Return value:
e CV_SUCCESS — The optional output value has been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
e CV_NO_SENS — Forward sensitivity analysis was not initialized.

Notes:

Warning

The user must allocate space for nSTGRIncfails.

int CVodeGetStgrSensNonlinSolvStats(void *cvode_mem, long int *nSTRG 1niterslong, int *nSTGR Incfails)

The function CVodeGetStgrSensNonlinSolvStats () returns the number of nonlinear iterations and conver-
gence failures that have occurred for each sensitivity equation separately, in the CV_STAGGERED1 case.

5.3. Using CVODES for Forward Sensitivity Analysis 155

User Documentation for CVODES, v7.3.0

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* nSTGR1Initers — an array of dimension Ns which will be set with the number of nonlinear iterations
performed for each sensitivity system individually.

* nSTGRIncfails — an array of dimension Ns which will be set with the number of nonlinear conver-
gence failures for each sensitivity system individually.

Return value:
e CV_SUCCESS - The optional output values have been successfully set.
e CV_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

e CV_MEM_FAIL — The SUNNONLINSOL module is NULL.

5.3.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §5.1.4, when using CVODES for forward
sensitivity analysis, the user has the option of providing a routine that calculates the right-hand side of the sensitivity
equations (2.14).

By default, CVODES uses difference quotient approximation routines for the right-hand sides of the sensitivity equa-
tions. However, CVODES allows the option for user-defined sensitivity right-hand side routines (which also provides
a mechanism for interfacing CVODES to routines generated by automatic differentiation).

5.3.3.1 Sensitivity equations right-hand side (all at once)

If the CV_SIMULTANEOUS or CV_STAGGERED approach was selected in the call to CVodeSensInit() or CVode-
SensInitl(), the user may provide the right-hand sides of the sensitivity equations (2.14), for all sensitivity pa-
rameters at once, through a function of type CVSensRhsFn defined by:

typedef int (*CVSensRhsFn)(int Ns, sunrealtype t, N_Vector 'y, N_Vector ydot, N_Vector *yS, N_Vector *ySdot, void
*user_data, N_Vector tmpl, N_Vector tmp2)

This function computes the sensitivity right-hand side for all sensitivity equations at once. It must compute the

0 0

vectors —fsi(t) + ! and store them in ySdot[i].
dy Op;

Arguments:

* Ns —is the number of sensitivities.

e t —is the current value of the independent variable.

* y —is the current value of the state vector, y(t) .

e ydot — is the current value of the right-hand side of the state equations.

* yS — contains the current values of the sensitivity vectors.

* ySdot —is the output of CVSensRhsFn . On exit it must contain the sensitivity right-hand side vectors.

* user_data — is a pointer to user data, the same as the user_data parameter passed to CVodeSe-
tUserData() .

e tmpl, tmp2 — are vectors of length NV which can be used as temporary storage.

156 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Return value:
A CVSensRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CV_SRHSFUNC_FAIL is returned).

Notes:

Allocation of memory for ySdot is handled within CVODES. There are two situations in which recovery
is not possible even if CVSensRhsFn function returns a recoverable error flag. One is when this occurs at
the very first call to the CVSensRhsFn (in which case CVODES returns CV_FIRST_SRHSFUNC_ERR). The
other is when a recoverable error is reported by CVSensRhsFn after an error test failure, while the linear
multistep method order is equal to 1 (in which case CVODES returns CV_UNREC_SRHSFUNC_ERR).

Warning

A sensitivity right-hand side function of type CVSensRhsFn is not compatible with the CV_STAGGERED1
approach.

5.3.3.2 Sensitivity equations right-hand side (one at a time)

Alternatively, the user may provide the sensitivity right-hand sides, one sensitivity parameter at a time, through a
function of type CVSensRhs1Fn. Note that a sensitivity right-hand side function of type CVSensRhs1Fn is compatible
with any valid value of the argument ism to CVodeSensInit() and CVodeSensInitl(), and is required if ism =
CV_STAGGERED1 in the call to CVodeSensInit1(). The type CVSensRhs1Fn is defined by

typedef int (*CVSensRhs1Fn)(int Ns, sunrealtype t, N_Vector y, N_Vector ydot, int iS, N_Vector yS, N_Vector ySdot,
void *user_data, N_Vector tmpl, N_Vector tmp2)

This function computes the sensitivity right-hand side for one sensitivity equation at a time. It must compute the

vector (

%)si(t) + (8%) for ¢ = iS and store it in ySdot.

Arguments:

Ns — is the number of sensitivities.

t — is the current value of the independent variable.

y — is the current value of the state vector, y(¢) .

ydot —is the current value of the right-hand side of the state equations.

iS - is the index of the parameter for which the sensitivity right-hand side must be computed (0 < iS
< Ns).

yS — contains the current value of the iS -th sensitivity vector.

ySdot — is the output of CVSensRhs1Fn . On exit it must contain the iS -th sensitivity right-hand side
vector.

user_data — is a pointer to user data, the same as the user_data parameter passed to CVodeSe-
tUserData() .

tmpl, tmp2 — are vectors of length /N which can be used as temporary storage.

Return value:
A CVSensRhs1Fn should return 0 if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CV_SRHSFUNC_FAIL is returned).

5.3. Using CVODES for Forward Sensitivity Analysis 157

User Documentation for CVODES, v7.3.0

Notes:
Allocation of memory for ySdot is handled within CVODES. There are two situations in which recovery
is not possible even if CVSensRhs1Fn function returns a recoverable error flag. One is when this occurs
at the very first call to the CVSensRhs1Fn (in which case CVODES returns CV_FIRST_SRHSFUNC_ERR).
The other is when a recoverable error is reported by CVSensRhs1Fn after an error test failure, while the
linear multistep method order equal to 1 (in which case CVODES returns CV_UNREC_SRHSFUNC_ERR).

5.3.4 Integration of quadrature equations depending on forward sensitivities
CVODES provides support for integration of quadrature equations that depends not only on the state variables but also
on forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation. Steps that are unchanged
from the skeleton program presented in §5.3.1 are grayed out and new or modified steps are in bold.

1.

o ® Nk w N

[\ I N T N R e e e e e e e
N = © 0 0 N Nk W b = O

23.
24. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

158 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

25.

26.

27.
28.

29.
30.
31.

32.

33.

Initialize sensitivity-dependent quadrature integration

Call CVodeQuadSensInit () to specify the quadrature equation right-hand side function and to allocate internal
memory related to quadrature integration.

Set optional inputs for sensitivity-dependent quadrature integration

Call CVodeSetQuadSensErrCon() to indicate whether or not quadrature variables should be used in the step
size control mechanism. If so, one of the CVodeQuadSens*tolerances functions must be called to specify the
integration tolerances for quadrature variables.

Extract sensitivity-dependent quadrature variables

Call CVodeGetQuadSens (), CVodeGetQuadSens1(), CVodeGetQuadSensDky () or CVodeGetQuadSens-
Dky1 () to obtain the values of the quadrature variables or their derivatives at the current time.

Get sensitivity-dependent quadrature optional outputs

Call CVodeGetQuadSens* functions to obtain desired optional output related to the integration of sensitivity-
dependent quadratures.

Destroy objects

Destroy memory for sensitivity-dependent quadrature variables

5.3.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function CVodeQuadSensInit () activates integration of quadrature equations depending on sensitivities and
allocates internal memory related to these calculations. If rhsQS is input as NULL, then CVODES uses an internal
function that computes difference quotient approximations to the functions ¢; = gy5s; + gy, , in the notation of (2.13).
The form of the call to this function is as follows:

int CVodeQuadSensInit (void *cvode_mem, CVQuadSensRhsFn thsQS, N_Vector *yQS0)

The function CVodeQuadSensInit () provides required problem specifications, allocates internal memory, and
initializes quadrature integration.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

* rhsQS —is the function which computes fqs , the right-hand side of the sensitivity-dependent quadra-
ture..

* yQSO — contains the initial values of sensitivity-dependent quadratures.
Return value:
e CV_SUCCESS — The call to CVodeQuadSensInit () was successful.
e CVODE_MEM_NULL — The CVODES memory was not initialized by a prior call to CVodeCreate().

CVODE_MEM_FAIL — A memory allocation request failed.

CV_NO_SENS - The sensitivities were not initialized by a prior call to CVodeSensInit () or CVode-
SensInitl().

CV_ILL_INPUT - The parameter yQS® is NULL.

5.3. Using CVODES for Forward Sensitivity Analysis 159

User Documentation for CVODES, v7.3.0

Notes:

Warning

Before calling CVodeQuadSensInit(), the user must enable the sensitivities by calling CVode-
SensInit() or CVodeSensInitl(). If an error occurred, CVodeQuadSensInit () also sends an
error message to the error handler function.

int CVodeQuadSensReInit (void *cvode_mem, N_Vector *yQS0)

The function CVodeQuadSensReInit() provides required problem specifications and reinitializes the
sensitivity-dependent quadrature integration.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* yQSO — contains the initial values of sensitivity-dependent quadratures.
Return value:
e CV_SUCCESS — The call to CVodeQuadSensReInit () was successful.
e CVODE_MEM_NULL — The CVODES memory was not initialized by a prior call to CVodeCreate().

* CV_NO_SENS — Memory space for the sensitivity calculation was not allocated by a prior call to CVode-
SensInit() or CVodeSensInitl().

e CV_NO_QUADSENS — Memory space for the sensitivity quadratures integration was not allocated by a
prior call to CVodeQuadSensInit().

e CV_ILL_INPUT — The parameter yQSO is NULL.

Notes:
If an error occurred, CVodeQuadSensReInit () also sends an error message to the error handler function.

void CVodeQuadSensFree (void *cvode_mem)
The function CVodeQuadSensFree () frees the memory allocated for sensitivity quadrature integration.
Arguments:
* cvode_mem — pointer to the CVODE memory block.

Return value:
There is no return value.

Notes:
In general, CVodeQuadSensFree () need not be called by the user as it is called automatically by CVode-
Free().

5.3.4.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode () is exactly the same as in §5.1.
However, in this case the return value flag can also be one of the following:

¢ CV_QSRHSFUNC_ERR - The sensitivity quadrature right-hand side
function failed in an unrecoverable manner.

e CV_FIRST_QSRHSFUNC_ERR — The sensitivity quadrature right-hand side
function failed at the first call.

160 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CV_REPTD_QSRHSFUNC_ERR — Convergence test failures occurred too many times due to repeated recoverable
errors in the quadrature right-hand side function. This flag will also be returned if the quadrature right-hand side
function had repeated recoverable errors during the estimation of an initial step size (assuming the sensitivity
quadrature variables are included in the error tests).

5.3.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to CVodeQuadSensInit (), or reinitialized by a call
to CVodeQuadSensReInit (), then CVODES computes a solution, sensitivity vectors, and quadratures depending on
sensitivities at time t. However, CVode () will still return only the solution y. Sensitivity-dependent quadratures can
be obtained using one of the following functions:

int CVodeGetQuadSens (void *cvode_mem, sunrealtype tret, N_Vector *yQS)

The function CVodeGetQuadSens () returns the quadrature sensitivities solution vectors after a successful return
from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().
* tret — the time reached by the solver output.

* yQS — array of Ns computed sensitivity-dependent quadrature vectors. This vector array must be allo-
cated by the user.

Return value:
e CV_SUCCESS — CVodeGetQuadSens () was successful.
e CVODE_MEM_NULL — cvode_mem was NULL.
* CV_NO_SENS — Sensitivities were not activated.
* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e CV_BAD_DKY - yQS or one of the yQS[i] is NULL.

The function CVodeGetQuadSensDky () computes the k-th derivatives of the interpolating polynomials for the
sensitivity-dependent quadrature variables at time t. This function is called by CVodeGetQuadSens() with k = 0,
but may also be called directly by the user.

int CVodeGetQuadSensDky (void *cvode_mem, sunrealtype t, intk, N_Vector *dkyQS)

The function CVodeGetQuadSensDky () returns derivatives of the quadrature sensitivities solution vectors after
a successful return from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

¢ t — the time at which information is requested. The time t must fall within the interval defined by the
last successful step taken by CVODES.

* k — order of the requested derivative.

» dkyQS — array of Ns the vector containing the derivatives on output. This vector array must be allocated
by the user.

Return value:
e CV_SUCCESS - CVodeGetQuadSensDky () succeeded.
* CVODE_MEM_NULL — The pointer to cvode_mem was NULL.

e CV_NO_SENS — Sensitivities were not activated.

5.3. Using CVODES for Forward Sensitivity Analysis 161

User Documentation for CVODES, v7.3.0

CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

CV_BAD_DKY — dkyQS or one of the vectors dkyQS[i] is NULL.
e CV_BAD_K - kis not in the range 0, 1, ..., qlast.
e CV_BAD_T — The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn through the functions
CVodeGetQuadSens1() and CVodeGetQuadSensDky1 (), defined as follows:

int CVodeGetQuadSens1 (void *cvode_mem, sunrealtype tret, int is, N_Vector yQS)

The function CVodeGetQuadSens1 () returns the is-th sensitivity of quadratures after a successful return from
CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().
* tret — the time reached by the solver output.
* is — specifies which sensitivity vector is to be returned 0 < is < Nj.

* yQS - the computed sensitivity-dependent quadrature vector. This vector array must be allocated by
the user.

Return value:
e CV_SUCCESS - CVodeGetQuadSens1 () was successful.
e CVODE_MEM_NULL — cvode_mem was NULL.
e CV_NO_SENS - Forward sensitivity analysis was not initialized.
* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e CV_BAD_IS — The index is is not in the allowed range.
» CV_BAD_DKY — yQS is NULL.

int CVodeGetQuadSensDky1 (void *cvode_mem, sunrealtype t, int k, int is, N_Vector dkyQS)

The function CVodeGetQuadSensDky1 () returns the k-th derivative of the is-th sensitivity solution vector after
a successful return from CVode ().

Arguments:
* cvode_mem — pointer to the memory previously allocated by CVodeInit ().

* t — specifies the time at which sensitivity information is requested. The time t must fall within the
interval defined by the last successful step taken by CVODES.

* k — order of derivative.
* is — specifies the sensitivity derivative vector to be returned 0 < is < Nj.

» dkyQS — the vector containing the derivative on output. The space for dkyQS must be allocated by the
user.

Return value:
e CV_SUCCESS - CVodeGetQuadSensDky1 () succeeded.
e CVODE_MEM_NULL — cvode_mem was NULL.
* CV_NO_SENS - Forward sensitivity analysis was not initialized.

* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

162 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

CV_BAD_DKY — dkyQS is NULL.

CV_BAD_IS — The index is is not in the allowed range.
e CV_BAD_K - kis not in the range 0, 1, ..., qlast.

e CV_BAD_T — The time t is not in the allowed range.

5.3.5 Optional inputs for sensitivity-dependent quadrature integration
CVODES provides the following optional input functions to control the integration of sensitivity-dependent quadrature
equations.

int CVodeSetQuadSensErrCon (void *cvode_mem, sunbooleantype errconQS)

The function CVodeSetQuadSensErrCon() specifies whether or not the quadrature variables are to be used in
the step size control mechanism. If they are, the user must call one of the functions CVodeQuadSensSStoler-
ances (), CVodeQuadSensSVtolerances (), or CVodeQuadSensEEtolerances () to specify the integration
tolerances for the quadrature variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

* errconQS — specifies whether sensitivity quadrature variables are to be included SUNTRUE or not
SUNFALSE in the error control mechanism.

Return value:
* CV_SUCCESS — The optional value has been successfully set.
e CVODE_MEM_NULL — cvode_mem is NULL.
* CV_NO_SENS — Sensitivities were not activated.
* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

Notes:
By default, errconQs is set to SUNFALSE.

Warning

It is illegal to call CVodeSetQuadSensErrCon() before a call to CVodeQuadSensInit().

int CVodeQuadSensSStolerances (void *cvode_mem, sunrealtype reltolQS, sunrealtype *abstolQS)
The function CVodeQuadSensSStolerances () specifies scalar relative and absolute tolerances.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

¢ reltolQS — tolerances is the scalar relative error tolerance.

* abstolQS —is a pointer to an array containing the Ns scalar absolute error tolerances.
Return value:

e CV_SUCCESS - The optional value has been successfully set.

e CVODE_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_SENS — Sensitivities were not activated.

* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

5.3. Using CVODES for Forward Sensitivity Analysis 163

User Documentation for CVODES, v7.3.0

e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeQuadSensSVtolerances (void *cvode_mem, sunrealtype reltolQS, N_Vector *abstolQS)
The function CVodeQuadSensSVtolerances () specifies scalar relative and vector absolute tolerances.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
¢ reltolQS — tolerances is the scalar relative error tolerance.

* abstolQS —is an array of Ns variables of type N_Vector. The N_Vector abstolS[is] specifies
the vector tolerances for is -th quadrature sensitivity.

Return value:

e CV_SUCCESS — The optional value has been successfully set.

CV_NO_QUAD — Quadrature integration was not initialized.

CVODE_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_SENS - Sensitivities were not activated.

* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.
e CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeQuadSensEEtolerances (void *cvode_mem)

A call to the function CVodeQuadSensEEtolerances() specifies that the tolerances for the sensitivity-
dependent quadratures should be estimated from those provided for the pure quadrature variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
Return value:
* CV_SUCCESS — The optional value has been successfully set.
e CVODE_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_SENS — Sensitivities were not activated.
* CV_NO_QUADSENS — Quadratures depending on the sensitivities were not activated.

Notes:
When CVodeQuadSensEEtolerances () is used, before calling CVode (), integration of pure quadratures
must be initialize and tolerances for pure quadratures must be also specified (see §5.2).

5.3.6 Optional outputs for sensitivity-dependent quadrature integration
CVODES provides the following functions that can be used to obtain solver performance information related to quadra-
ture integration.

int CVodeGetQuadSensNumRhsEvals (void *cvode_mem, long int nrhsQSevals)

The function CVodeGetQuadSensNumRhsEvals () returns the number of calls made to the user’s quadrature
right-hand side function.

Arguments:
* cvode_mem — pointer to the CVODES memory block.

¢ nrhsQSevals — number of calls made to the user’s rhsQS function.

164 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Return value:
* CV_SUCCESS - The optional output value has been successfully set.
e CVODE_MEM_NULL — The cvode_mem pointer is NULL.
e CV_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.

int CVodeGetQuadSensNumErrTestFails (void *cvode_mem, long int nQSetfails)

The function CVodeGetQuadSensNumErrTestFails () returns the number of local error test failures due to
quadrature variables.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* nQSetfails — number of error test failures due to quadrature variables.
Return value:
* CV_SUCCESS — The optional output value has been successfully set.
e CVODE_MEM_NULL — The cvode_mem pointer is NULL.
* CV_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.

int CVodeGetQuadSensErrWeights (void *cvode_mem, N_Vector *eQSweight)

The function CVodeGetQuadSensErrifeights () returns the quadrature error weights at the current time.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* eQSweight — array of quadrature error weight vectors at the current time.
Return value:

* CV_SUCCESS - The optional output value has been successfully set.

e CVODE_MEM_NULL — The cvode_mem pointer is NULL.

* CV_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.
Notes:

Warning

The user must allocate memory for eQSweight. If quadratures were not included in the error control
mechanism (through a call to CVodeSetQuadSensErrCon() with errconQS = SUNTRUE), then this
function does not set the eQSweight array.

int CVodeGetQuadSensStats (void *cvode_mem, long int nrhsQSevals, long int nQSetfails)
The function CVodeGetQuadSensStats () returns the CVODES integrator statistics as a group.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

e nrhsQSevals — number of calls to the user’s rhsQS function.

* nQSetfails — number of error test failures due to quadrature variables.
Return value:

* CV_SUCCESS - the optional output values have been successfully set.

5.3. Using CVODES for Forward Sensitivity Analysis 165

User Documentation for CVODES, v7.3.0

e CVODE_MEM_NULL - the cvode_mem pointer is NULL.

* CV_NO_QUADSENS - Sensitivity-dependent quadrature integration has not been initialized.

5.3.6.1 User-supplied function for sensitivity-dependent quadrature integration

For the integration of sensitivity-dependent quadrature equations, the user must provide a function that defines the right-
hand side of those quadrature equations. For the sensitivities of quadratures (2.13) with integrand ¢, the appropriate
right-hand side functions are given by: ¢; = ¢, ; + gy, . This user function must be of type CVQuadSensRhsFn defined
as follows:

typedef int (*CVQuadSensRhsFn)(int Ns, sunrealtype t, N_Vector y, N_Vector *yS, N_Vector yQdot, N_Vector
*yQSdot, void *user_data, N_Vector tmp, N_Vector tmpQ)

This function computes the sensitivity quadrature equation right-hand side for a given value of the independent
variable ¢ and state vector y.

Arguments:
* Ns —is the number of sensitivity vectors.
* t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
* ys —is an array of Ns variables of type N_Vector containing the dependent sensitivity vectors s;.
* yQdot —is the current value of the quadrature right-hand side, q.
¢ yQSdot- array of Ns vectors to contain the right-hand sides.
* user_data — is the user_data pointer passed to CVodeSetUserData().
e tmpl, tmp2 — are N_Vector objects which can be used as temporary storage.

Return value:
A CVQuadSensRhsFn should return O if successful, a positive value if a recoverable error occurred (in
which case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and CV_QRHS_FAIL is returned).

Notes:
Allocation of memory for rhsvalQs is automatically handled within CVODES.

Here y is of type N_Vector and yS is a pointer to an array containing Ns vectors of type N_Vector. Itis the
user’s responsibility to access the vector data consistently (including the use of the correct accessor macros
from each N_Vector implementation). For the sake of computational efficiency, the vector functions in
the two N_Vector implementations provided with CVODES do not perform any consistency checks with
respect to their N_Vector arguments.

There are two situations in which recovery is not possible even if CVQuadSensRhsFn function returns a
recoverable error flag. One is when this occurs at the very first call to the CVQuadSensRhsFn (in which
case CVODES returns CV_FIRST_QSRHSFUNC_ERR). The other is when a recoverable error is reported by
CVQuadSensRhsFn after an error test failure, while the linear multistep method order is equal to 1 (in which
case CVODES returns CV_UNREC_QSRHSFUNC_ERR).

166 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.3.7 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of CVODES may appear
at first glance to be erroneous. One would expect that, in such cases, the sensitivity variables would not influence in
any way the step size selection. A comparison of the solver diagnostics reported for cvsdenx and the second run of
the cvsfwddenx example in [62] indicates that this may not always be the case.

The short explanation of this behavior is that the step size selection implemented by the error control mechanism in
CVODES is based on the magnitude of the correction calculated by the nonlinear solver. As mentioned in §5.3.2.1,
even with partial error control selected (in the call to CVodeSetSensErrCon()), the sensitivity variables are included
in the convergence tests of the nonlinear solver.

When using the simultaneous corrector method §2.7 the nonlinear system that is solved at each step involves both
the state and sensitivity equations. In this case, it is easy to see how the sensitivity variables may affect the conver-
gence rate of the nonlinear solver and therefore the step size selection. The case of the staggered corrector approach
is more subtle. After all, in this case (ism = CV_STAGGERED or CV_STAGGERED1 in the call to CVodeSensInit ()
CVodeSensInit1()), the sensitivity variables at a given step are computed only once the solver for the nonlinear state
equations has converged. However, if the nonlinear system corresponding to the sensitivity equations has convergence
problems, CVODES will attempt to improve the initial guess by reducing the step size in order to provide a better
prediction of the sensitivity variables. Moreover, even if there are no convergence failures in the solution of the sensi-
tivity system, CVODES may trigger a call to the linear solver’s setup routine which typically involves reevaluation of
Jacobian information (Jacobian approximation in the case of CVDENSE and CVBAND, or preconditioner data in the
case of the Krylov solvers). The new Jacobian information will be used by subsequent calls to the nonlinear solver for
the state equations and, in this way, potentially affect the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver convergence failures
or calls to the linear solver setup routine have been triggered by convergence problems due to the state or the sensitivity
equations. When using one of the staggered corrector methods however, these situations can be identified by carefully
monitoring the diagnostic information provided through optional outputs. If there are no convergence failures in the
sensitivity nonlinear solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given system of ODEs on the
step size selection (through the mechanisms described above) is problem-dependent and can therefore lead to either an
increase or decrease of the total number of steps that CVODES takes to complete the simulation. At first glance, one
would expect that the impact of the sensitivity variables, if any, would be in the direction of increasing the step size and
therefore reducing the total number of steps. The argument for this is that the presence of the sensitivity variables in
the convergence test of the nonlinear solver can only lead to additional iterations (and therefore a smaller final iteration
error), or to additional calls to the linear solver setup routine (and therefore more up-to-date Jacobian information),
both of which will lead to larger steps being taken by CVODES. However, this is true only locally. Overall, a larger
integration step taken at a given time may lead to step size reductions at later times, due to either nonlinear solver
convergence failures or error test failures.

5.4 Using CVODES for Adjoint Sensitivity Analysis

This chapter describes the use of CVODES to compute sensitivities of derived functions using adjoint sensitivity anal-
ysis. As mentioned before, the adjoint sensitivity module of CVODES provides the infrastructure for integrating back-
ward in time any system of ODEs that depends on the solution of the original IVP, by providing various interfaces to
the main CVODES integrator, as well as several supporting user-callable functions. For this reason, in the following
sections we refer to the backward problem and not to the adjoint problem when discussing details relevant to the ODEs
that are integrated backward in time. The backward problem can be the adjoint problem (2.20) or (2.23), and can be
augmented with some quadrature differential equations.

CVODES uses various constants for both input and output. These are defined as needed in this chapter, but for conve-
nience are also listed separately in §12.

5.4. Using CVODES for Adjoint Sensitivity Analysis 167

User Documentation for CVODES, v7.3.0

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed descriptions of
the interface to the various user-callable functions and of the user-supplied functions that were not already described
in §5.1.

5.4.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of CVODES. The user program is to have
these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer many of the details to
the later sections. As in §5.1.2, most steps are independent of the N_Vector, SUNMatrix, SUNLinearSolver, and
SUNNonlinearSolver implementations used. For the steps that are not, refer to Chapters §6, §7, §8, and §9 for the
specific name of the function to be called or macro to be referenced.

Steps that are unchanged from the skeleton programs presented in §5.1.2, §5.3.1, and §5.2 are grayed out and new or
modified steps are in bold.

1.

o ® Nk w N

e e e e e T e e T T
® NS kWD = O

19.

20.

. Allocate space for the adjoint computation

Call CVodeAdjInit() to allocate memory for the combined forward-backward problem. This call requires
Nd, the number of steps between two consecutive checkpoints. CVodeAdjInit() also specifies the type of
interpolation used (see §2.9).

Integrate forward problem

Call CVodeF (), a wrapper for the CVODES main integration function CVode (), either in CV_NORMAL mode
to the time tout or in CV_ONE_STEP mode inside a loop (if intermediate solutions of the forward problem are
desired). The final value of tret is then the maximum allowable value for the endpoint 1" of the backward
problem.

Set problem dimensions etc. for the backward problem

This generally includes the backward problem vector length NB, and possibly the local vector length NBlocal.

168

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

21.

22.

23.

24.

25.

26.

27.

28.

Set initial values for the backward problem
Set the endpoint time tB® = T, and set the corresponding vector yB® at which the backward problem starts.
Create the backward problem

Call CVodeCreateB(), a wrapper for CVodeCreate(), to create the CVODES memory block for the new
backward problem. Unlike CVodeCreate (), the function CVodeCreateB() does not return a pointer to the
newly created memory block. Instead, this pointer is attached to the internal adjoint memory block (created by
CVodeAdjInit()) and returns an identifier called which that the user must later specify in any actions on the
newly created backward problem.

Allocate memory for the backward problem

Call CVodeInitB() (or CVodeInitBS(), when the backward problem depends on the forward sensitivities).
The two functions are actually wrappers for CVodeInit () and allocate internal memory, specify problem data,
and initialize CVODES at tB0 for the backward problem.

Specify integration tolerances for backward problem

Call CVodeSStolerancesB() or CVodeSVtolerancesB() to specify a scalar relative tolerance and scalar
absolute tolerance or scalar relative tolerance and a vector of absolute tolerances, respectively. The functions are
wrappers for CVodeSStolerances () and CVodeSVtolerances (), but they require an extra argument which,
the identifier of the backward problem returned by CVodeCreateB().

Create matrix object for the backward problem

If a nonlinear solver requiring a linear solve will be used (e.g., the the default Newton iteration) and the linear
solver will be a direct linear solver, then a template Jacobian matrix must be created by calling the appropriate
constructor function defined by the particular SUNMatrix implementation.

For the native SUNDIALS SUNMatrix implementations, the matrix object may be created using a call of the
form SUN***Matrix(...) where **¥* is the name of the matrix (see §7 for details).

Create linear solver object for the backward problem

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then the desired linear
solver object for the backward problem must be created by calling the appropriate constructor function defined
by the particular SUNLinearSolver implementation.

For any of the SUNDIALS-supplied SUNLinearSolver implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);
where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §5.1.3.5 and Chapter §8.

Note that it is not required to use the same linear solver module for both the forward and the backward prob-
lems; for example, the forward problem could be solved with the SUNLINSOL_BAND linear solver module and the
backward problem with SUNLINSOL_SPGMR linear solver module.

Set linear solver interface optional inputs for the backward problem

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLinearSolver module in Chapter §8.

Attach linear solver module for the backward problem

If a nonlinear solver requiring a linear solver is chosen for the backward problem (e.g., the default Newton
iteration), then initialize the CVLS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with the call to CVodeSetLinearSolverB()

Alternately, if the CVODES-specific diagonal linear solver module, CVDIAG, is desired, initialize the linear
solver module and attach it to CVODES with a call to CVDiagB().

5.4. Using CVODES for Adjoint Sensitivity Analysis 169

User Documentation for CVODES, v7.3.0

29.

30.

31.

32.

33.

34.

35.

36.

Set optional inputs for the backward problem

Call CVodeSet*B functions to change from their default values any optional inputs that control the behavior of
CVODES. Unlike their counterparts for the forward problem, these functions take an extra argument which, the
identifier of the backward problem returned by CVodeCreateB().

Create nonlinear solver object for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNonlinearSolver implementation
(e.g.,NLSB = SUNNonlinSol_***(...); where *** is the name of the nonlinear solver.

Attach nonlinear solver module for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then initialize the nonlinear solver interface by
attaching the nonlinear solver object by calling CVodeSetNonlinearSolverB().

Initialize quadrature calculation

If additional quadrature equations must be evaluated, call CVodeQuadInitB() or CVodeQuadInitBS() (if
quadrature depends also on the forward sensitivities). These functions are wrappers around CVodeQuadInit ()
and can be used to initialize and allocate memory for quadrature integration. Optionally, call CVodeSetQuad*B
functions to change from their default values optional inputs that control the integration of quadratures during
the backward phase.

Integrate backward problem

Call CVodeB(), a second wrapper around the CVODES main integration function CVode (), to integrate the
backward problem from tBO. This function can be called either in CV_NORMAL or CV_ONE_STEP mode. Typically,
CVodeB () will be called in CV_NORMAL mode with an end time equal to the initial time ¢, of the forward problem.

Extract quadrature variables

If applicable, call CVodeGetQuadB (), a wrapper around CVodeGetQuad (), to extract the values of the quadra-
ture variables at the time returned by the last call to CVodeB().

Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These include appro-
priate destructors for the vectors y and yB, a call to CVodeFree() to free the CVODES memory block for the
forward problem. If one or more additional Adjoint Sensitivity Analyses are to be done for this problem, a call to
CVodeAdjFree () may be made to free and deallocate memory allocated for the backward problems, followed
by a call to CVodeAdjInit().

Free the nonlinear solver memory for the forward and backward problems

Free linear solver and matrix memory for the forward and backward problems

The above user interface to the adjoint sensitivity module in CVODES was motivated by the desire to keep it as close
as possible in look and feel to the one for ODE IVP integration. Note that if steps back_start-back_end are not present,
a program with the above structure will have the same functionality as one described in §5.1.2 for integration of ODEs,
albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps back_start-back_end
above for each successive backward problem. In the process, each call to CVodeCreateB() creates a new value of the
identifier which.

170

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.4.2 User-callable functions for adjoint sensitivity analysis
5.4.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to CVodeF (), memory for the combined forward-
backward problem must be allocated by a call to the function CVodeAdjInit (). The form of the call to this function
is

int CVodeAdjInit (void *cvode_mem, long int Nd, int interpType)

The function CVodeAdjInit() updates CVODES memory block by allocating the internal memory needed
for backward integration. Space is allocated for the Nd = N_d interpolation data points, and a linked list of
checkpoints is initialized.

Arguments:

* cvode_mem — is the pointer to the CVODES memory block returned by a previous call to CVodeCre-
ate().

* Nd - is the number of integration steps between two consecutive checkpoints.

* interpType — specifies the type of interpolation used and can be CV_POLYNOMIAL or CV_HERMITE ,
indicating variable-degree polynomial and cubic Hermite interpolation, respectively see §2.9.

Return value:
e CV_SUCCESS — CVodeAdjInit () was successful.
e CV_MEM_FAIL — A memory allocation request has failed.
e CV_MEM_NULL — cvode_mem was NULL.

e CV_ILL_INPUT - One of the parameters was invalid: Nd was not positive or interpType is not one
of the CV_POLYNOMIAL or CV_HERMITE.

Notes:
The user must set Nd so that all data needed for interpolation of the forward problem solution between
two checkpoints fits in memory. CVodeAdjInit () attempts to allocate space for 2*Nd+3 variables of type
N_Vector. If an error occurred, CVodeAdjInit () also sends a message to the error handler function.

int CVodeAdjReInit (void *cvode_mem)

The function CVodeAdjReInit () reinitializes the CVODES memory block for ASA, assuming that the number

of steps between check points and the type of interpolation remain unchanged.

Arguments:

* cvode_mem — is the pointer to the CVODES memory block returned by a previous call to CVodeCre-
ate().

Return value:
e CV_SUCCESS — CVodeAdjReInit () was successful.
e CV_MEM_NULL — cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () was not previously called.

Notes:
The list of check points (and associated memory) is deleted. The list of backward problems is kept. How-
ever, new backward problems can be added to this list by calling CVodeCreateB(). If a new list of back-
ward problems is also needed, then free the adjoint memory (by calling CVodeAdjFree()) and reinitialize
ASA with CVodeAdjInit (). The CVODES memory for the forward and backward problems can be reini-
tialized separately by calling CVodeReInit () and CVodeReInitB(), respectively.

5.4. Using CVODES for Adjoint Sensitivity Analysis 171

User Documentation for CVODES, v7.3.0

void CVodeAdjFree (void *cvode_mem)

The function CVodeAdjFree () frees the memory related to backward integration allocated by a previous call to
CVodeAdjInit().

Argument:

* cvode_mem — is the pointer to the CVODES memory block returned by a previous call to CVodeCre-
ate().

Return value:
The function has no return value.

Notes:
This function frees all memory allocated by CVodeAdjInit (). This includes workspace memory, the
linked list of checkpoints, memory for the interpolation data, as well as the CVODES memory for the back-
ward integration phase. Unless one or more further calls to CVodeAdjInit () are to be made, CVodeAd-
jFree () should not be called by the user, as it is invoked automatically by CVodeFree ().

5.4.2.2 Forward integration function

The function CVodeF () is very similar to the CVODES function CVode () in that it integrates the solution of the
forward problem and returns the solution in y. At the same time, however, CVodeF () stores checkpoint data every Nd
integration steps. CVodeF () can be called repeatedly by the user. Note that CVodeF () is used only for the forward
integration pass within an Adjoint Sensitivity Analysis. It is not for use in Forward Sensitivity Analysis; for that, see
§5.3. The call to this function has the form

int CVodeF (void *cvode_mem, sunrealtype tout, N_Vector yret, sunrealtype *tret, int itask, int *ncheck)

The function CVodeF () integrates the forward problem over an interval in ¢ and saves checkpointing data.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* tout — the next time at which a computed solution is desired.

e yret — the computed solution vector y.

* tret — the time reached by the solver output.

» itask —output mode a flag indicating the job of the solver for the next step. The CV_NORMAL task is to
have the solver take internal steps until it has reached or just passed the user-specified tout parameter.
The solver then interpolates in order to return an approximate value of y(tout). The CV_ONE_STEP
option tells the solver to just take one internal step and return the solution at the point reached by that
step.

* ncheck — the number of internal checkpoints stored so far.
Return value:
e CV_SUCCESS — CVodeF () succeeded.
e CV_TSTOP_RETURN — CVodeF () succeeded by reaching the optional stopping point.

e CV_ROOT_RETURN — CVodeF () succeeded and found one or more roots. In this case, tret is the
location of the root. If nrtfn > 1, call CVodeGetRootInfo() to see which g; were found to have a
root.

e CV_NO_MALLOC — The function CVodeInit () has not been previously called.
e CV_ILL_INPUT - One of the inputs to CVodeF () is illegal.

* CV_TOO_MUCH_WORK — The solver took mxstep internal steps but could not reach tout.

172 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CV_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some internal
step.

e CV_ERR_FAILURE — Error test failures occurred too many times during one internal time step or oc-
curred with |h| = Appip-

e CV_CONV_FAILURE — Convergence test failures occurred too many times during one internal time step
or occurred with |h| = hpin.

e CV_LSETUP_FAIL — The linear solver’s setup function failed in an unrecoverable manner.
e CV_LSOLVE_FAIL — The linear solver’s solve function failed in an unrecoverable manner.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CV_MEM_FAIL — A memory allocation request has failed in an attempt to allocate space for a new
checkpoint.

Notes:

All failure return values are negative and therefore a test flag< 0 will trap all CVodeF () failures. At this
time, CVodeF () stores checkpoint information in memory only. Future versions will provide for a safeguard
option of dumping checkpoint data into a temporary file as needed. The data stored at each checkpoint is
basically a snapshot of the CVODES internal memory block and contains enough information to restart the
integration from that time and to proceed with the same step size and method order sequence as during the
forward integration. In addition, CVodeF () also stores interpolation data between consecutive checkpoints
so that, at the end of this first forward integration phase, interpolation information is already available from
the last checkpoint forward. In particular, if no checkpoints were necessary, there is no need for the second
forward integration phase.

Warning

It is illegal to change the integration tolerances between consecutive calls to CVodeF (), as this information
is not captured in the checkpoint data.

5.4.2.3 Backward problem initialization functions

The functions CVodeCreateB() and CVodeInitB() (or CVodeInitBS()) must be called in the order listed. They
instantiate a CVODES solver object, provide problem and solution specifications, and allocate internal memory for the
backward problem.

int CVodeCreateB (void *cvode_mem, int ImmB, int *which)

The function CVodeCreateB() instantiates a CVODES solver object and specifies the solution method for the
backward problem.

Arguments:
e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().

* 1mmB - specifies the linear multistep method and may be one of two possible values: CV_ADAMS or
CV_BDF.

* which — contains the identifier assigned by CVODES for the newly created backward problem. Any
call to CVode*B functions requires such an identifier.

Return value:
e CV_SUCCESS — The call to CVodeCreateB() was successful.
e CV_MEM_NULL — cvode_mem was NULL.

5.4. Using CVODES for Adjoint Sensitivity Analysis 173

User Documentation for CVODES, v7.3.0

e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.
* CV_MEM_FAIL — A memory allocation request has failed.

There are two initialization functions for the backward problem — one for the case when the backward problem does
not depend on the forward sensitivities, and one for the case when it does. These two functions are described next.

int CVodeInitB(void *cvode_mem, int which, CVRhsFnB rthsB, sunrealtype tBO, N_Vector yB0)

The function CVodeInitB() provides problem specification, allocates internal memory, and initializes the back-
ward problem.

Arguments:
* cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
* which — represents the identifier of the backward problem.

e rhsB — is the CVRhsFnB function which computes fp , the right-hand side of the backward ODE
problem.

* tBO —specifies the endpoint T" where final conditions are provided for the backward problem, normally
equal to the endpoint of the forward integration.

e yBO — is the initial value at ¢ = tB® of the backward solution.
Return value:
e CV_SUCCESS — The call to CVodeInitB() was successful.
e CV_NO_MALLOC — The function CVodeInit () has not been previously called.
e CV_MEM_NULL - cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CV_BAD_TBO — The final time tB® was outside the interval over which the forward problem was solved.

e CV_ILL_INPUT — The parameter which represented an invalid identifier, or either yB® or rhsB was
NULL.

Notes:
The memory allocated by CVodeInitB() is deallocated by the function CVodeAdjFree().

The function CVodeInitB() initializes the backward problem when it does not depend on the forward sensitivities. It
is essentially a wrapper for CVodeInit () with some particularization for backward integration, as described below.

For the case when backward problem also depends on the forward sensitivities, user must call CVodeInitBS() instead
of CVodeInitB(). Only the third argument of each function differs between these two functions.

int CVodeInitBS (void *cvode_mem, int which, CVRAhsFnBS thsBS, sunrealtype tBO, N_Vector yB0)

The function CVodeInitBS() provides problem specification, allocates internal memory, and initializes the
backward problem.

Arguments:
e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
* which —represents the identifier of the backward problem.

» rhsBS — is the CVRhsFnBS function which computes fp , the right-hand side of the backward ODE
problem.

* tBO — specifies the endpoint T where final conditions are provided for the backward problem.
* yBO — is the initial value at ¢ = tBO of the backward solution.

Return value:

174 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* CV_SUCCESS — The call to CVodeInitB() was successful.

e CV_NO_MALLOC — The function CVodeInit () has not been previously called.

e CV_MEM_NULL — cvode_mem was NULL.

e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CV_BAD_TBO — The final time tBO was outside the interval over which the forward problem was solved.

e CV_ILL_INPUT — The parameter which represented an invalid identifier, either yB® or rhsBS was
NULL, or sensitivities were not active during the forward integration.

Notes:
The memory allocated by CVodeInitBS() is deallocated by the function CVodeAdjFree ().

The function CVodeReInitB() reinitializes CVODES for the solution of a series of backward problems, each iden-
tified by a value of the parameter which. CVodeReInitB() is essentially a wrapper for CVodeReInit (), and so
all details given for CVodeReInit () apply here. Also note that CVodeReInitB() can be called to reinitialize the
backward problem even it has been initialized with the sensitivity-dependent version CVodeInitBS (). Before calling
CVodeReInitB() for a new backward problem, call any desired solution extraction functions CVodeGet** associated
with the previous backward problem. The call to the CVodeReInitB() function has the form

int CVodeReInitB(void *cvode_mem, int which, sunrealtype tBO, N_Vector yB0)
The function CVodeReInitB() reinitializes a CVODES backward problem.

Arguments:
* cvode_mem — pointer to CVODES memory block returned by CVodeCreate().
* which —represents the identifier of the backward problem.
* tBO — specifies the endpoint T where final conditions are provided for the backward problem.
¢ yBO — is the initial value at t = tBO of the backward solution.
Return value:

e CV_SUCCESS — The call to CVodeReInitB() was successful.

CV_NO_MALLOC — The function CVodeInit () has not been previously called.

CV_MEM_NULL — The cvode_mem memory block pointer was NULL.

CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CV_BAD_TBO — The final time tB@® is outside the interval over which the forward problem was solved.

CV_ILL_INPUT — The parameter which represented an invalid identifier, or yB® was NULL.

5.4.2.4 Tolerance specification functions for backward problem
One of the following two functions must be called to specify the integration tolerances for the backward problem. Note
that this call must be made after the call to CVodeInitB() or CVodeInitBS().

int CVodeSStolerancesB(void *cvode_mem, int which, sunrealtype reltolB, sunrealtype abstolB)

The function CVodeSStolerancesB() specifies scalar relative and absolute tolerances.
Arguments:
e cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
» which —represents the identifier of the backward problem.

e reltolB —is the scalar relative error tolerance.

5.4. Using CVODES for Adjoint Sensitivity Analysis 175

User Documentation for CVODES, v7.3.0

abstolB — is the scalar absolute error tolerance.

Return value:

CV_SUCCESS — The call to CVodeSStolerancesB() was successful.

CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

CV_NO_MALLOC — The allocation function CVodeInit () has not been called.
CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CV_ILL_INPUT - One of the input tolerances was negative.

int CVodeSVtolerancesB (void *cvode_mem, int which, sunrealtype reltolB, N_Vector abstolB)

The function CVodeSVtolerancesB() specifies scalar relative tolerance and vector absolute tolerances.

Arguments:

cvode_mem — pointer to the CVODES memory block returned by CVodeCreate ().
which — represents the identifier of the backward problem.
reltolB — is the scalar relative error tolerance.

abstolB — is the vector of absolute error tolerances.

Return value:

Notes:

CV_SUCCESS — The call to CVodeSVtolerancesB() was successful.

CV_MEM_NULL — The CVODES memory block was not initialized through a previous call to CVode-
Create().

CV_NO_MALLOC — The allocation function CVodeInit () has not been called.
CV_NO_AD] — The function CVodeAdjInit () has not been previously called.

CV_ILL_INPUT — The relative error tolerance was negative or the absolute tolerance had a negative
component.

This choice of tolerances is important when the absolute error tolerance needs to be different for each
component of the state vector y.

5.4.2.5 Linear solver initialization functions for backward problem

All CVODES linear solver modules available for forward problems are available for the backward problem. They
should be created as for the forward problem and then attached to the memory structure for the backward problem
using the following functions.

int CVodeSetLinearSolverB (void *cvode_mem, int which, SUNLinearSolver LS, SUNMatrix A)

The function CVodeSetLinearSolverB() attaches a generic SUNLinearSolver object LS and corresponding
template Jacobian SUNMatrix object A to CVODES, initializing the CVLS linear solver interface for solution of
the backward problem.

Arguments:

cvode_mem — pointer to the CVODES memory block.
which — represents the identifier of the backward problem returned by CVodeCreateB().

LS — SUNLINSOL object to use for solving linear systems for the backward problem.

176

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e A - SUNMATRIX object for used as a template for the Jacobian for the backward problem or NULL if
not applicable.

Return value:
* CVLS_SUCCESS — The CVLS initialization was successful.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.
e CVLS_MEM_FAIL — A memory allocation request failed.
¢ CVLS_NO_ADJ — The function CVAdjInit has not been previously called.

Notes:
If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process,
so if additional storage is required within the SUNMatrix object (e.g., for factorization of a banded ma-
trix), ensure that the input object is allocated with sufficient size (see the documentation of the particular
SUNMatrix type in §7).

Added in version 4.0.0: Replaces the deprecated functions CVD1sSetLinearSolverB and CVSpilsSetLin-
earSolverB.

int CVDiagB (void *cvode_mem, int which)

The function CVDiagB selects the CVDIAG linear solver for the solution of the backward problem. The user’s
main program must include the cvodes_diag.h header file.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which —represents the identifier of the backward problem returned by CVodeCreateB().
Return value:
¢ CVDIAG_SUCCESS — The CVDIAG initialization was successful.
e CVDIAG_MEM_NULL - The cvode_mem pointer is NULL.
* CVDIAG_ILL_INPUT — The CVDIAG solver is not compatible with the current NVECTOR module.
e CVDIAG_MEM_FAIL — A memory allocation request failed.

Notes:
The CVDIAG solver is the simplest of all of the available CVODES linear solver interfaces. The CVDIAG
solver uses an approximate diagonal Jacobian formed by way of a difference quotient. The user does not
have the option of supplying a function to compute an approximate diagonal Jacobian.

5.4.2.6 Nonlinear solver initialization function for backward problem

All CVODES nonlinear solver modules available for forward problems are available for the backward problem. As
with the forward problem CVODES uses the SUNNonlinearSolver implementation of Newton’s method defined by
the SUNNONLINSOL_NEWTON module by default.

To specify a different nonlinear solver for the backward problem, the user’s program must create a SUNNonlinear-
Solver object by calling the appropriate constructor routine. The user must then attach the SUNNonlinearSolver
object by calling CVodeSetNonlinearSolverB(), as documented below.

When changing the nonlinear solver in CVODES, CVodeSetNonlinearSolverB() must be called after
CVodeInitB(). If any calls to CVodeB() have been made, then CVODES will need to be reinitialized by calling
CVodeReInitB() to ensure that the nonlinear solver is initialized correctly before any subsequent calls to CVodeB().

5.4. Using CVODES for Adjoint Sensitivity Analysis 177

User Documentation for CVODES, v7.3.0

int CVodeSetNonlinearSolverB (void *cvode_mem, int which, SUNNonlinearSolver NLS)

The function CVodeSetNonlinearSolverB() attaches a SUNNONLINEARSOLVER object (NLS) to CVODES for
the solution of the backward problem.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* which — represents the identifier of the backward problem returned by CVodeCreateB().

e NLS — SUNNONLINSOL object to use for solving nonlinear systems for the backward problem.
Return value:

* CV_SUCCESS — The nonlinear solver was successfully attached.

e CV_MEM_NULL — The cvode_mem pointer is NULL.

e CVLS_NO_ADJ — The function CVAdjInit has not been previously called.

e CV_ILL_INPUT — The parameter which represented an invalid identifier or the SUNNONLINSOL
object is NULL , does not implement the required nonlinear solver operations, is not of the correct type,
or the residual function, convergence test function, or maximum number of nonlinear iterations could
not be set.

5.4.2.7 Backward integration function

The function CVodeB () performs the integration of the backward problem. It is essentially a wrapper for the CVODES
main integration function CVode () and, in the case in which checkpoints were needed, it evolves the solution of the
backward problem through a sequence of forward-backward integration pairs between consecutive checkpoints. The
first run of each pair integrates the original IVP forward in time and stores interpolation data; the second run integrates
the backward problem backward in time and performs the required interpolation to provide the solution of the IVP to
the backward problem.

The function CVodeB() does not return the solution yB itself. To obtain that, call the function CVodeGetB (), which
is also described below.

The CVodeB () function does not support rootfinding, unlike CVodeF (), which supports the finding of roots of functions
of (¢,y). If rootfinding was performed by CVodeF (), then for the sake of efficiency, it should be disabled for CVodeB ()
by first calling CVodeRootInit () with nrtfn = 0.

The call to CVodeB () has the form

int CVodeB (void *cvode_mem, sunrealtype tBout, int itaskB)
The function CVodeB () integrates the backward ODE problem.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* tBout — the next time at which a computed solution is desired.

» itaskB — output mode a flag indicating the job of the solver for the next step. The CV_NORMAL task is
to have the solver take internal steps until it has reached or just passed the user-specified value tBout.
The solver then interpolates in order to return an approximate value of y B(tBout). The CV_ONE_STEP
option tells the solver to take just one internal step in the direction of tBout and return.

Return value:
e CV_SUCCESS - CVodeB() succeeded.
e CV_MEM_NULL - cvode_mem was NULL.

178 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CV_NO_BCK — No backward problem has been added to the list of backward problems by a call to
CVodeCreateB().

e CV_NO_FWD — The function CVodeF () has not been previously called.

e CV_ILL_INPUT - One of the inputs to CVodeB() is illegal.

* CV_BAD_ITASK — The itaskB argument has an illegal value.

e CV_TOO_MUCH_WORK — The solver took mxstep internal steps but could not reach tBout.

e CV_TOO_MUCH_ACC — The solver could not satisfy the accuracy demanded by the user for some internal
step.

* CV_ERR_FAILURE - Error test failures occurred too many times during one internal time step.

* CV_CONV_FAILURE - Convergence test failures occurred too many times during one internal time step.
e CV_LSETUP_FAIL — The linear solver’s setup function failed in an unrecoverable manner.

e CV_SOLVE_FAIL — The linear solver’s solve function failed in an unrecoverable manner.

e CV_BCKMEM_NULL — The solver memory for the backward problem was not created with a call to
CVodeCreateB().

e CV_BAD_TBOUT —The desired output time tBout is outside the interval over which the forward problem
was solved.

* CV_REIFWD_FAIL —Reinitialization of the forward problem failed at the first checkpoint corresponding
to the initial time of the forward problem.

e CV_FWD_FAIL — An error occurred during the integration of the forward problem.

Notes:
All failure return values are negative and therefore a test flag < 0 will trap all CVodeB() failures. In the
case of multiple checkpoints and multiple backward problems, a given call to CVodeB() in CV_ONE_STEP
mode may not advance every problem one step, depending on the relative locations of the current times
reached. But repeated calls will eventually advance all problems to tBout.

In the case of multiple checkpoints and multiple backward problems, a given call to CVodeB () in CV_ONE_STEP mode
may not advance every problem one step, depending on the relative locations of the current times reached. But repeated
calls will eventually advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function CVodeGetB() as follows:

int CVodeGetB (void *cvode_mem, int which, sunrealtype *tret, N_Vector yB)
The function CVodeGetB () provides the solution yB of the backward ODE problem.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
¢ which - the identifier of the backward problem.
* tret — the time reached by the solver output.
¢ yB — the backward solution at time tret.
Return value:
e CV_SUCCESS — CVodeGetB() was successful.
e CV_MEM_NULL — cvode_mem is NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

5.4. Using CVODES for Adjoint Sensitivity Analysis 179

User Documentation for CVODES, v7.3.0

e CV_ILL_INPUT — The parameter which is an invalid identifier.

Warning

The user must allocate space for yB. To obtain the solution associated with a given backward problem at some
other time within the last integration step, first obtain a pointer to the proper CVODES memory structure by
calling CVodeGetAdjCVodeBmem() and then use it to call CVodeGetDky ().

5.4.2.8 Adjoint sensitivity optional input
At any time during the integration of the forward problem, the user can disable the checkpointing of the forward
sensitivities by calling the following function:

int CVodeAdjSetNoSensi (void *cvode_mem)

The function CVodeAdjSetNoSensi () instructs CVodeF () not to save checkpointing data for forward sensitiv-
ities anymore.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
Return value:
* CV_SUCCESS — The call to CVodeCreateB() was successful.
e CV_MEM_NULL — cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

5.4.2.9 Optional input functions for the backward problem

As for the forward problem there are numerous optional input parameters that control the behavior of the CVODES
solver for the backward problem. CVODES provides functions that can be used to change these optional input param-
eters from their default values which are then described in detail in the remainder of this section, beginning with those
for the main CVODES solver and continuing with those for the linear solver interfaces. Note that the diagonal linear
solver module has no optional inputs. For the most casual use of CVODES, the reader can skip to §5.4.3.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
All error return values are negative, so the test flag < 0 will catch all errors. Finally, a call to a CVodeSet***B
function can be made from the user’s calling program at any time and, if successful, takes effect immediately.

Main solver optional input functions

only difference is that the user must specify the identifier which of the backward problem within the list managed by
CVODES.

The optional input functions defined for the backward problem are:

flag CVodeSetUserDataB(cvode_mem, which, user_dataB);
flag CVodeSetMaxOrdB(cvode_mem, which, maxordB);

flag = CVodeSetMaxNumStepsB(cvode_mem, which, mxstepsB);
flag CVodeSetInitStepB(cvode_mem, which, hinB)

flag = CVodeSetMinStepB(cvode_mem, which, hminB);

(continues on next page)

180 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

flag
flag
flag

(continued from previous page)
= CVodeSetMaxStepB(cvode_mem, which, hmaxB);
CVodeSetStabLimDetB(cvode_mem, which, stldetB);
CVodeSetConstraintsB(cvode_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it can also be CV_-
NO_AD] if CVodeAdjInit () has not been called, or CV_ILL_INPUT if which was an invalid identifier.

Linear solver interface optional input functions

When using matrix-based linear solver modules, the CVLS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix or the linear system for the backward problem. The function to evaluate the Jacobian
can be attached through a call to either CVodeSetJacFnB() or CVodeSetJacFnBS (), with the second used when the
backward problem depends on the forward sensitivities.

int CVodeSetJacFnB(void *cvode_mem, int which, CVLsJacFnB jacB)

The function CVodeSetJacFnB() specifies the Jacobian approximation function to be used for the backward
problem.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* which — represents the identifier of the backward problem.
* jacB - user-defined Jacobian approximation function.
Return value:
e CVLS_SUCCESS — CVodeSetJacFnB() succeeded.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CVLS_LMEM_NULL — The linear solver has not been initialized with a call to CVodeSetLinear-
SolverB().

e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.
Added in version 4.0.0: Replaces the deprecated function CVD1sSetJacFnB.

int CVodeSetJacFnBS (void *cvode_mem, int which, CVLsJacFnBS jacBS)

The function CVodeSetJacFnBS () specifies the Jacobian approximation function to be used for the backward
problem, in the case where the backward problem depends on the forward sensitivities.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* which — represents the identifier of the backward problem.
* jacBS — user-defined Jacobian approximation function.
Return value:
* CVLS_SUCCESS — CVodeSetJacFnBS () succeeded.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

5.4. Using CVODES for Adjoint Sensitivity Analysis 181

User Documentation for CVODES, v7.3.0

e CVLS_LMEM_NULL — The linear solver has not been initialized with a call to CVodeSetLinear-
SolverB().

e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.
Added in version 4.0.0: Replaces the deprecated function CVD1sSetJacFnBS.

int CVodeSetLinSysFnB(void *cvode_mem, int which, CVLsLinSysFnB linsysB)

The function CVodeSetLinSysFnB() specifies the linear system approximation function to be used for the back-
ward problem.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* which — represents the identifier of the backward problem.
* linsysB — user-defined linear system approximation function.
Return value:
e CVLS_SUCCESS — CVodeSetLinSysFnB() succeeded.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CVLS_LMEM_NULL — The linear solver has not been initialized with a call to CVodeSetLinear-
SolverB().

e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

int CVodeSetLinSysFnBS (void *cvode_mem, int which, CVLsLinSysFnBS linsysBS)

The function CVodeSetLinSysFnBS() specifies the linear system approximation function to be used for the
backward problem, in the case where the backward problem depends on the forward sensitivities.

Arguments:
* cvode_mem — pointer to the CVODES memory returned by CVodeCreate().
* which — represents the identifier of the backward problem.
* linsysBS — user-defined linear system approximation function.
Return value:
e CVLS_SUCCESS — CVodeSetLinSysFnBS () succeeded.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CVLS_LMEM_NULL - The linear solver has not been initialized with a call to CVodeSetLinear-
SolverB().

e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

The function CVodeSetLinearSolutionScalingB() can be used to enable or disable solution scaling when using a
matrix-based linear solver.

int CVodeSetLinearSolutionScalingB (void *cvode_mem, int which, sunbooleantype onoffB)

The function CVodeSetLinearSolutionScalingB() enables or disables scaling the linear system solution to
account for a change in 7y in the linear system in the backward problem. For more details see §8.2.1.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

182 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* which — represents the identifier of the backward problem.
* onoffB — flag to enable SUNTRUE or disable SUNFALSE scaling
Return value:
e CVLS_SUCCESS — The flag value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
* CVLS_LMEM_NULL — The CVLS linear solver interface has not been initialized.

e CVLS_ILL_INPUT - The attached linear solver is not matrix-based or the linear multistep method type
is not BDF.

Notes:
By default scaling is enabled with matrix-based linear solvers when using BDF methods.

int CVodeSetJacTimesB (void *cvode_mem, int which, CVLsJacTimesSetupFnB jsetupB, CVLsJacTimesVecFnB
jtvB)

The function CVodeSetJacTimesB() specifies the Jacobian-vector setup and product functions to be used.
Arguments:

* cvode_mem — pointer to the CVODES memory block.

* which - the identifier of the backward problem.

* jtsetupB — user-defined function to set up the Jacobian-vector product. Pass NULL if no setup is
necessary.

* jtvB — user-defined Jacobian-vector product function.
Return value:

* CVLS_SUCCESS — The optional value has been successfully set.

e CVLS_MEM_NULL — cvode_mem was NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CVLS_ILL_INPUT - The parameter which represented an invalid identifier.
Added in version 4.0.0: Replaces the deprecated function CVSpilsSetJacTimesB.

int CVodeSetJacTimesBS (void *cvode_mem, int which, CVLsJacTimesVecFnBS jtvBS)

The function CVodeSetJacTimesBS () specifies the Jacobian-vector setup and product functions to be used, in
the case where the backward problem depends on the forward sensitivities.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which — the identifier of the backward problem.

* jtsetupBS — user-defined function to set up the Jacobian-vector product. Pass NULL if no setup is
necessary.

* jtvBS — user-defined Jacobian-vector product function.
Return value:

* CVLS_SUCCESS — The optional value has been successfully set.

e CVLS_MEM_NULL — cvode_mem was NULL.

5.4. Using CVODES for Adjoint Sensitivity Analysis 183

User Documentation for CVODES, v7.3.0

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CVLS_ILL_INPUT - The parameter which represented an invalid identifier.
Added in version 4.0.0: Replaces the deprecated function CVSpilsSetJacTimesBS.

When using the internal difference quotient the user may optionally supply an alternative right-hand side function for
use in the Jacobian-vector product approximation for the backward problem by calling CVodeSetJacTimesRhsFnB().
The alternative right-hand side function should compute a suitable (and differentiable) approximation to the right-hand
side function provided to CVodeInitB() or CVodeInitBS(). For example, as done in [28] for a forward integration
without sensitivity analysis, the alternative function may use lagged values when evaluating a nonlinearity in the right-
hand side to avoid differencing a potentially non-differentiable factor.

int CVodeSetJacTimesRhsFnB(void *cvode_mem, int which, CVRhsFn jtimesRhsFn)

The function CVodeSetJacTimesRhsFnB() specifies an alternative ODE right-hand side function for use in the
internal Jacobian-vector product difference quotient approximation.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which - the identifier of the backward problem.

* jtimesRhsFn — is the CC function which computes the alternative ODE right-hand side function to
use in Jacobian-vector product difference quotient approximations.

Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — The cvode_mem pointer is NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

CVLS_ILL_INPUT — The parameter which represented an invalid identifier or the internal difference
quotient approximation is disabled.

Notes:
The default is to use the right-hand side function provided to CVodeInit () in the internal difference quo-
tient. If the input right-hand side function is NULL, the default is used. This function must be called after
the CVLS linear solver interface has been initialized through a call to CVodeSetLinearSolverB().

int CVodeSetPreconditionerB(void *cvode_mem, int which, CVLsPrecSetupFnB psetupB, CVLsPrecSetupFnB
psolveB)

The function CVodeSetPreconditionerB() specifies the preconditioner setup and solve functions for the back-
ward integration.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which - the identifier of the backward problem.
* psetupB — user-defined preconditioner setup function.
* psolveB — user-defined preconditioner solve function.
Return value:
* CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — cvode_mem was NULL.

184 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CVLS_ILL_INPUT - The parameter which represented an invalid identifier.

Notes:
The psetupB argument may be NULL if no setup operation is involved in the preconditioner.

Added in version 4.0.0: Replaces the deprecated function CVSpilsSetPrecSolveFnB.

int CVodeSetPreconditionerBS (void *cvode_mem, int which, CVLsPrecSetupFnBS psetupBS,
CVLsPrecSolveFnBS psolveBS)

The function CVodeSetPreconditionerBS() specifies the preconditioner setup and solve functions for the
backward integration, in the case where the backward problem depends on the forward sensitivities.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* which - the identifier of the backward problem.

¢ psetupBS — user-defined preconditioner setup function.

* psolveBS — user-defined preconditioner solve function.
Return value:

* CVLS_SUCCESS — The optional value has been successfully set.

e CVLS_MEM_NULL — cvode_mem was NULL.

CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

CVLS_NO_ADJ] — The function CVodeAdjInit () has not been previously called.

CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
The psetupBS argument may be NULL if no setup operation is involved in the preconditioner.

Added in version 4.0.0: Replaces the deprecated function CVSpilsSetPrecSolveFnBS.

int CVodeSetEpsLinB (void *cvode_mem, int which, sunrealtype eplifacB)

The function CVodeSetEpsLinB() specifies the factor by which the Krylov linear solver’s convergence test
constant is reduced from the nonlinear iteration test constant. This routine can be used in both the cases where
the backward problem does and does not depend on the forward sensitivities.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* which - the identifier of the backward problem.

* eplifacB - value of the convergence test constant reduction factor > 0.0.
Return value:

* CVLS_SUCCESS — The optional value has been successfully set.

e CVLS_MEM_NULL — cvode_mem was NULL.

e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.

e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CVLS_ILL_INPUT - The parameter which represented an invalid identifier, or eplifacB was negative.

5.4. Using CVODES for Adjoint Sensitivity Analysis 185

User Documentation for CVODES, v7.3.0

Notes:
The default value is 0.05. Passing a value eplifacB = 0.0 also indicates using the default value.

Added in version 4.0.0: Replaces the deprecated function CVSpilsSetEpsLinB.

int CVodeSetLSNormFactorB (void *cvode_mem, int which, sunrealtype nrmfac)

The function CVodeSetLSNormFactorB() specifies the factor to use when converting from the integrator tol-
erance (WRMS norm) to the linear solver tolerance (L2 norm) for Newton linear system solves e.g., tol_L2 =
fac * tol_WRMS. This routine can be used in both the cases wherethe backward problem does and does not
depend on the forward sensitivities.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
e which — the identifier of the backward problem.

e nrmfac — the norm conversion factor. If nrmfac is: > 0 then the provided value is used. = 0 then the
conversion factor is computed using the vector lengthi.e., ntmfac = N_VGetLength(y) default. < 0
then the conversion factor is computed using the vector dot product nrmfac = N_VDotProd(v,v)
where all the entries of v are one.

Return value:
e CVLS_SUCCESS — The optional value has been successfully set.
e CVLS_MEM_NULL — cvode_mem was NULL.
e CVLS_LMEM_NULL — The CVLS linear solver has not been initialized.
e CVLS_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CVLS_ILL_INPUT — The parameter which represented an invalid identifier.

Notes:
This function must be called after the CVLS linear solver interface has been initialized through a call
to CVodeSetLinearSolverB(). Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0
(CVODES v5.0.0) the value of nrmfac was computed using the vector dot product i.e., the nrmfac <
0 case.

5.4.2.10 Optional output functions for the backward problem

The user of the adjoint module in CVODES has access to any of the optional output functions described in §5.1.3.12,

both for the main solver and for the linear solver modules. The first argument of these CVodeGet* and CVode*Get*
functions is the pointer to the CVODES memory block for the backward problem. In order to call any of these functions,
the user must first call the following function to obtain this pointer.

void *CVodeGetAdjCVodeBmem (void *cvode_mem, int which)

The function CVodeGetAdjCVodeBmem() returns a pointer to the CVODES memory block for the backward
problem.

Arguments:
* cvode_mem — pointer to the CVODES memory block created by CVodeCreate().
e which - the identifier of the backward problem.

Return value:

e void

186

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Warning

The user should not modify cvode_memB in any way. Optional output calls should pass cvode_memB as the
first argument; for example, to get the number of integration steps: flag = CVodeGetNumSteps(cvodes_-
memB, nsteps).

To get values of the forward solution during a backward integration, use the following function. The input value of
t would typically be equal to that at which the backward solution has just been obtained with CVodeGetB(). In any
case, it must be within the last checkpoint interval used by CVodeB().

int CVodeGetAdjY (void *cvode_mem, sunrealtype t, N_Vector y)

The function CVodeGetAdjY () returns the interpolated value of the forward solution y during a backward inte-
gration.

Arguments:
* cvode_mem — pointer to the CVODES memory block created by CVodeCreate ().
* t — value of the independent variable at which y is desired input.
* y — forward solution y/(t).
Return value:
e CV_SUCCESS - CVodeGetAdjY () was successful.
e CV_MEM_NULL - cvode_mem was NULL.

e CV_GETY_BADT — The value of t was outside the current checkpoint interval.

Warning

The user must allocate space for y.

int CVodeGetAdjCheckPointsInfo (void *cvode_mem, CVadjCheckPointRec *ckpnt)

The function CVodeGetAdjCheckPointsInfo() loads an array of ncheck + 1 records of type CVadjCheck-
PointRec. The user must allocate space for the array ckpnt.

Arguments:

* cvode_mem — pointer to the CVODES memory block created by CVodeCreate().

* ckpnt — array of ncheck+1 checkpoint records.
Return value:

e void
The checkpoint structure is defined as
struct CVadjCheckPointRec

void *my_addr
The address of current checkpoint in cvode_mem->cv_adj_mem

void *next_addr

The address of next checkpoint.

5.4. Using CVODES for Adjoint Sensitivity Analysis 187

User Documentation for CVODES, v7.3.0

sunrealtype t0

The start time of the checkpoint interval
sunrealtype t1

The end time of the checkpoint interval

long int nstep
The step counter at t®

int order
The method order at t0

sunrealtype step
The step size at t®

5.4.2.11 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend on the forward
sensitivities. Accordingly, either CVodeQuadInitB() or CVodeQuadInitBS() should be used to allocate internal
memory and to initialize backward quadratures. For any other operation (extraction, optional input/output, reinitializa-
tion, deallocation), the same function is callable regardless of whether or not the quadratures are sensitivity-dependent.

Backward quadrature initialization functions

The function CVodeQuadInitB() initializes and allocates memory for the backward integration of quadrature equa-
tions that do not depend on forward sensitivities. It has the following form:

int CVodeQuadInitB(void *cvode_mem, int which, CVQuadRhsFnB rhsQB, N_Vector yQBO0)

The function CVodeQuadInitB() provides required problem specifications, allocates internal memory, and ini-
tializes backward quadrature integration.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which - the identifier of the backward problem.
¢ rhsQB - is the function which computes fQB.
* yQBO — is the value of the quadrature variables at tB@®.
Return value:
* CV_SUCCESS — The call to CVodeQuadInitB() was successful.
e CV_MEM_NULL — cvode_mem was NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CV_MEM_FAIL — A memory allocation request has failed.
e CV_ILL_INPUT — The parameter which is an invalid identifier.

The function CVodeQuadInitBS() initializes and allocates memory for the backward integration of quadrature equa-
tions that depends on the forward sensitivities.

int CVodeQuadInitBS (void *cvode_mem, int which, CVQuadRhsFnBS rhsQBS, N_Vector yQBS0)

The function CVodeQuadInitBS() provides required problem specifications, allocates internal memory, and
initializes backward quadrature integration.

188 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Arguments:

* cvode_mem — pointer to the CVODES memory block.

* which - the identifier of the backward problem.

» rhsQBS - is the function which computes fQBS.

* yQBSO — is the value of the sensitivity-dependent quadrature variables at tBO.
Return value:

e CV_SUCCESS — The call to CVodeQuadInitBS () was successful.

e CV_MEM_NULL — cvode_mem was NULL.

e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.

e CV_MEM_FAIL — A memory allocation request has failed.

e CV_ILL_INPUT — The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling the following func-
tion. Before calling CVodeQuadReInitB() for a new backward problem, call any desired solution extraction functions
CVodeGet** associated with the previous backward problem.

int CVodeQuadReInitB(void *cvode_mem, int which, N_Vector yQBO)

The function CVodeQuadReInitB() re-initializes the backward quadrature integration.
Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which - the identifier of the backward problem.
* yQBO - is the value of the quadrature variables at tBO.
Return value:
e CV_SUCCESS — The call to CVodeQuadReInitB() was successful.
e CV_MEM_NULL - cvode_mem was NULL.
¢ CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CV_MEM_FAIL — A memory allocation request has failed.

e CV_NO_QUAD - Quadrature integration was not activated through a previous call to CVodeQua-
dInitB().

e CV_ILL_INPUT — The parameter which is an invalid identifier.

Notes:
The function CVodeQuadReInitB() can be called after a call to either CVodeQuadInitB() or CVode-
QuadInitBS().

54.

Using CVODES for Adjoint Sensitivity Analysis 189

User Documentation for CVODES, v7.3.0

Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of CVodeB (), CVODES provides a wrapper for
the function CVodeGetQuad().

int CVodeGetQuadB (void *cvode_mem, int which, sunrealtype *tret, N_Vector yQB)

The function CVodeGetQuadB () returns the quadrature solution vector after a successful return from CVodeB().
Arguments:
* cvode_mem — pointer to the CVODES memory.
e tret — the time reached by the solver output.
* yQB — the computed quadrature vector.
Return value:
e CV_SUCCESS — CVodeGetQuadB () was successful.
e CV_MEM_NULL — cvode_mem is NULL.
e CV_NO_ADJ — The function CVodeAdjInit () has not been previously called.
e CV_NO_QUAD - Quadrature integration was not initialized.
e CV_BAD_DKY - yQB was NULL.
e CV_ILL_INPUT — The parameter which is an invalid identifier.

Warning

The user must allocate space for yQB. To obtain the quadratures associated with a given backward problem
at some other time within the last integration step, first obtain a pointer to the proper CVODES memory
structure by calling CVodeGetAdjCVodeBmem() and then use it to call CVodeGetQuadDky ().

Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from their default values
through calls to one of the following functions which are wrappers for the corresponding optional input functions
defined in §5.2.4. The user must specify the identifier which of the backward problem for which the optional values
are specified.

flag = CVodeSetQuadErrConB(cvode_mem, which, errconQ);
flag = CVodeQuadSStolerancesB(cvode_mem, which, reltolQ, abstolQ);
flag CVodeQuadSVtolerancesB(cvode_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it can also be CV_NO_-
ADJ if the function CVodeAdjInit () has not been previously called or CV_ILL_INPUT if the parameter which was
an invalid identifier.

Access to optional outputs related to backward quadrature integration can be obtained by calling the corresponding
CVodeGetQuad* functions (see §5.2.5). A pointer cvode_memB to the CVODES memory block for the backward
problem, required as the first argument of these functions, can be obtained through a call to the functions CVodeGe-
tAdjCVodeBmem().

190 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

5.4.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required ODE right-hand side function and any optional functions for the forward problem, when using
the adjoint sensitivity module in CVODES, the user must supply one function defining the backward problem ODE
and, optionally, functions to supply Jacobian-related information and one or two functions that define the preconditioner
(if an iterative SUNLinearSolver module is selected) for the backward problem. Type definitions for all these user-
supplied functions are given below.

5.4.3.1 ODE right-hand side for the backward problem

If the backward problem does not depend on the forward sensitivities, the user must provide a rhsB function of type
CVRhsFnB defined as follows:

typedef int (*CVRhsFnB)(sunrealtype t, N_Vector y, N_Vector yB, N_Vector yBdot, void *user_dataB)

This function evaluates the right-hand side fg(¢,y,yp) of the backward problem ODE system. This could be
either (2.20) or (2.23).

Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yB —is the current value of the backward dependent variable vector.
» yBdot - is the output vector containing the right-hand side fp of the backward ODE problem.
* user_dataB — is a pointer to the same user data passed to CVodeSetUserDataB.

Return value:
A CVRhsFnB should return 0 if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CVodeB () returns CV_RHSFUNC_FAIL).

Notes:

Allocation of memory for yBdot is handled within CVODES. The y, yB, and yBdot arguments are all of
type N_Vector, but yB and yBdot typically have different internal representations from y. It is the user’s
responsibility to access the vector data consistently (including the use of the correct accessor macros from
each N_Vector implementation). For the sake of computational efficiency, the vector functions in the two
N_Vector implementations provided with CVODES do not perform any consistency checks with respect to
their N_Vector arguments (see §6). The user_dataB pointer is passed to the user’s rhsB function every
time it is called and can be the same as the user_data pointer used for the forward problem.

Warning

Before calling the user’s rhsB function, CVODES needs to evaluate (through interpolation) the values of
the states from the forward integration. If an error occurs in the interpolation, CVODES triggers an unre-
coverable failure in the right-hand side function which will halt the integration and CVodeB() will return
CV_RHSFUNC_FAIL.

5.4. Using CVODES for Adjoint Sensitivity Analysis 191

User Documentation for CVODES, v7.3.0

5.4.3.2 ODE right-hand side for the backward problem depending on the forward sensitivities

If the backward problem does depend on the forward sensitivities, the user must provide a rhsBS function of type
CVRhsFnBS defined as follows:

typedef int (*CVRhSFnBS)(sunrealtype t, N_Vector 'y, N_Vector *yS, N_Vector yB, N_Vector yBdot, void
*user_dataB)

This function evaluates the right-hand side f5(t,y, yp, s) of the backward problem ODE system. This could be
either (2.20) or (2.23).

Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yS —a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
e yB —is the current value of the backward dependent variable vector.
* yBdot —is the output vector containing the right-hand side.
* user_dataB — is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value:
A CVRhsFnBS should return 0 if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the integration
is halted and CVodeB () returns CV_RHSFUNC_FAIL).

Notes:

Allocation of memory for gBdot is handled within CVODES. The y, yB, and yBdot arguments are all of
type N_Vector, but yB and yBdot typically have different internal representations from y. Likewise for
each yS[i]. It is the user’s responsibility to access the vector data consistently (including the use of the
correct accessor macros from each N_Vector implementation). For the sake of computational efficiency,
the vector functions in the two N_Vector implementations provided with CVODES do not perform any
consistency checks with respect to their N_Vector arguments (see §6). The user_dataB pointer is passed
to the user’s rhsBS function every time it is called and can be the same as the user_data pointer used for
the forward problem.

Warning

Before calling the user’s rhsBS function, CVODES needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers an
unrecoverable failure in the right-hand side function which will halt the integration and CVodeB () will return
CV_RHSFUNC_FAIL.

5.4.3.3 Quadrature right-hand side for the backward problem

The user must provide an £QB function of type CVQuadRhsFnB defined by

typedef int (*CVQuadRhsFnB)(sunrealtype t, N_Vector y, N_Vector yB, N_Vector qBdot, void *user_dataB)
This function computes the quadrature equation right-hand side for the backward problem.

Arguments:
* t —is the current value of the independent variable.

¢ y —is the current value of the forward solution vector.

192 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* yB —is the current value of the backward dependent variable vector.
* gBdot —is the output vector containing the right-hand side £QB of the backward quadrature equations.
* user_dataB —is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value:
A CVQuadRhsFnB should return 0 if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CVodeB () returns CV_QRHSFUNC_FAIL).

Notes:

Allocation of memory for rhsvalBQ is handled within CVODES. The y, yB, and qBdot arguments are all
of type N_Vector, but they typically do not all have the same representation. It is the user’s responsibility
to access the vector data consistently (including the use of the correct accessor macros from each N_-
Vector implementation). For the sake of computational efficiency, the vector functions in the two N_-
Vector implementations provided with CVODES do not perform any consistency checks with respect to
their N_Vector arguments (see §6). The user_dataB pointer is passed to the user’s £QB function every
time it is called and can be the same as the user_data pointer used for the forward problem.

Warning

Before calling the user’s £QB function, CVODES needs to evaluate (through interpolation) the values of the
states from the forward integration. If an error occurs in the interpolation, CVODES triggers an unrecoverable
failure in the quadrature right-hand side function which will halt the integration and CVodeB() will return
CV_QRHSFUNC_FATIL.

5.4.3.4 Sensitivity-dependent quadrature right-hand side for the backward problem

The user must provide an £QBS function of type CVQuadRhsFnBS defined by

typedef int (*CVQuadRhsFnBS)(sunrealtype t, N_Vector y, N_Vector *yS, N_Vector yB, N_Vector qBdot, void
*user_dataB)

This function computes the quadrature equation right-hand side for the backward problem.
Arguments:
e t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
e yS —a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
* yB —is the current value of the backward dependent variable vector.
* gBdot —is the output vector containing the right-hand side £QBS of the backward quadrature equations.
* user_dataB — is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value:
A CVQuadRhsFnBS should return 0O if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CVodeB () returns CV_QRHSFUNC_FAIL).

Notes:
Allocation of memory for gBdot is handled within CVODES. The y, yS, and qBdot arguments are all
of type N_Vector, but they typically do not all have the same internal representation. Likewise for each
yS[i]. Itis the user’s responsibility to access the vector data consistently (including the use of the correct
accessor macros from each N_Vector implementation). For the sake of computational efficiency, the vector

5.4. Using CVODES for Adjoint Sensitivity Analysis 193

User Documentation for CVODES, v7.3.0

functions in the two N_Vector implementations provided with CVODES do not perform any consistency
checks with respect to their N_Vector arguments (see §6). The user_dataB pointer is passed to the user’s
£QBS function every time it is called and can be the same as the user_data pointer used for the forward

problem.

Warning

CV_QRHSFUNC_FATIL.

Before calling the user’s £QBS function, CVODES needs to evaluate (through interpolation) the values of the
states from the forward integration. If an error occurs in the interpolation, CVODES triggers an unrecoverable
failure in the quadrature right-hand side function which will halt the integration and CVodeB() will return

5.4.3.5 Jacobian construction for the backward problem (matrix-based linear solvers)

If a matrix-based linear solver module is used for the backward problem (i.e., a non-NULL SUNMatrix object was
supplied to CVodeSetLinearSolverB()), the user may provide a function of type CVLsJacFnB or CVLsJacFnBS,

defined as follows:

typedef int (*CVLsJacFnB)(sunrealtype t, N_Vector y, N_Vector yB, N_Vector fyB, SUNMatrix JacB, void
*user_dataB, N_Vector tmp1B, N_Vector tmp2B, N_Vector tmp3B)

This function computes the Jacobian of the backward problem (or an approximation to it).

Arguments:

* t —is the current value of the independent variable.

¢ y —is the current value of the forward solution vector.

¢ yB —is the current value of the backward dependent variable vector.

» fyB —is the current value of the backward right-hand side function fz.

* JacB - is the output approximate Jacobian matrix.

* user_dataB - is a pointer to the same user data passed to CVodeSetUserDataB.

e tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the CVLsJacFnB function as temporary storage or work space.

Return value:

A CVLsJacFnB should return O if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct, while CVLS sets 1last_flag to CVLS_JACFUNC_RECVR), or a negative
value if it failed unrecoverably (in which case the integration is halted, CVodeB () returns CV_LSETUP_FAIL
and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Notes:

A user-supplied Jacobian function must load the matrix JacB with an approximation to the Jacobian matrix
at the point (t, y, yB), where y is the solution of the original IVP at time tt, and yB is the solution of
the backward problem at the same time. Information regarding the structure of the specific SUNMatrix
structure (e.g. number of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMatrix interface functions (see §7 for details). With direct linear solvers (i.e.,
linear solvers with type SUNLINEARSOLVER_DIRECT), the Jacobian matrix J(¢,y) is zeroed out prior to
calling the user-supplied Jacobian function so only nonzero elements need to be loaded into JacB.

194

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

Warning

Before calling the user’s CVLsJacFnB, CVODES needs to evaluate (through interpolation) the values of the
states from the forward integration. If an error occurs in the interpolation, CVODES triggers an unrecoverable
failure in the Jacobian function which will halt the integration (CVodeB() returns CV_LSETUP_FAIL and
CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Added in version 4.0.0: Replaces the deprecated type CVD1sJacFnB.

typedef int (*CVLsJacFnBS)(sunrealtype t, N_Vector 'y, N_Vector *yS, N_Vector yB, N_Vector fyB, SUNMatrix
JacB, void *user_dataB, N_Vector tmpl1B, N_Vector tmp2B, N_Vector tmp3B)
This function computes the Jacobian of the backward problem (or an approximation to it), in the case where the
backward problem depends on the forward sensitivities.

Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yS —a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
* yB —is the current value of the backward dependent variable vector.
o fyB — is the current value of the backward right-hand side function fg.
* JacB - is the output approximate Jacobian matrix.
* user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB.

e tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the CVLsLinSysFnBS function as temporary storage or work space.

Return value:
A CVLsJacFnBS should return 0 if successful, a positive value if a recoverable error occurred (in which case
CVODES will attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR), or a negative
value if it failed unrecoverably (in which case the integration is halted, CVodeB () returns CV_LSETUP_FAIL
and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Notes:

A user-supplied Jacobian function must load the matrix JacB with an approximation to the Jacobian matrix
at the point (t, y, yS, yB), where y is the solution of the original IVP at time tt, yS is the vector of for-
ward sensitivities at time tt, and yB is the solution of the backward problem at the same time. Information
regarding the structure of the specific SUNMatrix structure (e.g. number of rows, upper/lower bandwidth,
sparsity type) may be obtained through using the implementation-specific SUNMatrix interface functions
(see §7). With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT, the Jacobian
matrix J(t,y) is zeroed out prior to calling the user-supplied Jacobian function so only nonzero elements
need to be loaded into JacB.

Warning

Before calling the user’s CVLsJacFnBS, CVODES needs to evaluate (through interpolation) the values of the
states from the forward integration. If an error occurs in the interpolation, CVODES triggers an unrecoverable
failure in the Jacobian function which will halt the integration (CVodeB() returns CV_LSETUP_FAIL and
CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Added in version 4.0.0: Replaces the deprecated type CVD1sJacFnBS.

5.4. Using CVODES for Adjoint Sensitivity Analysis 195

User Documentation for CVODES, v7.3.0

5.4.3.6 Linear system construction for the backward problem (matrix-based linear solvers)

With matrix-based linear solver modules, as an alternative to optionally supplying a function for evaluating the Ja-
cobian of the ODE right-hand side function, the user may optionally supply a function of type CVLsLinSysFnB or
CVLsLinSysFnBS for evaluating the linear system, Mp = I — ypJp (or an approximation of it) for the backward
problem.

typedef int (*CVLsLinSysFnB)(sunrealtype t, N_Vector y, N_Vector yB, N_Vector tyB, SUNMatrix AB,
sunbooleantype jokB, sunbooleantype *jcurB, sunrealtype gammaB, void *user_dataB, N_Vector tmp1B, N_Vector
tmp2B, N_Vector tmp3B);

This function computes the linear system of the backward problem (or an approximation to it).
Arguments:

* t —is the current value of the independent variable.

e y —is the current value of the forward solution vector.

* yB —is the current value of the backward dependent variable vector.

o fyB — is the current value of the backward right-hand side function fp.

* AB - is the output approximate linear system matrix.

* jokB — is an input flag indicating whether Jacobian-related data needs to be recomputed (jokB =
SUNFALSE) or information saved from a previous information can be safely used (jokB = SUNTRUE).

¢ jcurB - is an output flag which must be set to SUNTRUE if Jacobian-related data was recomputed or
SUNFALSE otherwise.

e gammaB — is the scalar appearing in the matrix Mp = I — vpJp.
* user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB.

e tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the CVLsLinSysFnB function as temporary storage or work space.

Return value:
A CVLsLinSysFnB should return 0 if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR), or a nega-
tive value if it failed unrecoverably (in which case the integration is halted, CVodeB () returns CV_LSETUP_-
FAIL and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Notes:
A user-supplied linear system function must load the matrix AB with an approximation to the linear system
matrix at the point (t, y, yB), where y is the solution of the original IVP at time tt, and yB is the
solution of the backward problem at the same time.

Warning

Before calling the user’s CVLsLinSysFnB, CVODES needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers an
unrecoverable failure in the linear system function which will halt the integration (CVodeB() returns CV_-
LSETUP_FAIL and CVLS sets 1last_flag to CVLS_JACFUNC_UNRECVR).

typedef int (*CVLSLinSysFnBS)(sunrealtype t, N_Vector y, N_Vector *yS, N_Vector yB, N_Vector fyB, SUNMatrix
AB, sunbooleantype jokB, sunbooleantype *jcurB, sunrealtype gammaB, void *user_dataB, N_Vector tmp1B,
N_Vector tmp2B, N_Vector tmp3B);

196 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

This function computes the linear system of the backward problem (or an approximation to it), in the case where
the backward problem depends on the forward sensitivities.

Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yS —a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
* yB —is the current value of the backward dependent variable vector.
» fyB —is the current value of the backward right-hand side function f5.
* AB - is the output approximate linear system matrix.

* jokB — is an input flag indicating whether Jacobian-related data needs to be recomputed (jokB =
SUNFALSE) or information saved from a previous information can be safely used (jokB = SUNTRUE).

* jcurB — is an output flag which must be set to SUNTRUE if Jacobian-related data was recomputed or
SUNFALSE otherwise.

* gammaB — is the scalar appearing in the matrix
* user_dataB - is a pointer to the same user data passed to CVodeSetUserDataB.

e tmplB, tmp2B, tmp3B — are pointers to memory allocated for variables of type N_Vector which can
be used by the CVLsLinSysFnBS function as temporary storage or work space.

Return value:
A CVLsLinSysFnBS should return 0 if successful, a positive value if a recoverable error occurred (in
which case CVODES will attempt to correct, while CVLS sets last_flag to CVLS_JACFUNC_RECVR),
or a negative value if it failed unrecoverably (in which case the integration is halted, CVodeB() returns
CV_LSETUP_FAIL and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

Notes:
A user-supplied linear system function must load the matrix AB with an approximation to the linear system
matrix at the point (t, y, yS, yB),where y is the solution of the original IVP at time tt, yS is the vector
of forward sensitivities at time t, and yB is the solution of the backward problem at the same time.

Warning

Before calling the user’s CVLsLinSysFnBS, CVODES needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers an
unrecoverable failure in the linear system function which will halt the integration (CVodeB() returns CV_-
LSETUP_FAIL and CVLS sets last_flag to CVLS_JACFUNC_UNRECVR).

5.4.3.7 Jacobian-vector product for the backward problem (matrix-free linear solvers)

If a matrix-free linear solver is to be used for the backward problem (i.e., a NULL-valued SUNMatrix was supplied
to CVodeSetLinearSolverB() in the steps described in §5.4.1, the user may provide a function of type CVLsJac-
TimesVecFnB or CVLsJacTimesVecFnBS in the following form, to compute matrix-vector products Jv. If such a
function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*CVLsJacTimesVecFnB)(N_Vector vB, N_Vector JVB, sunrealtype t, N_Vector y, N_Vector yB,
N_Vector fyB, void *jac_dataB, N_Vector tmpB);

This function computes the action of the Jacobian JB for the backward problem on a given vector vB.

5.4. Using CVODES for Adjoint Sensitivity Analysis 197

User Documentation for CVODES, v7.3.0

Arguments:

vB — is the vector by which the Jacobian must be multiplied to the right.

JvB — is the computed output vector JB*vB.

t — is the current value of the independent variable.

y —is the current value of the forward solution vector.

yB — is the current value of the backward dependent variable vector.

fyB —is the current value of the backward right-hand side function fp.
user_dataB — is a pointer to the same user data passed to CVodeSetUserDataB.

tmpB — is a pointer to memory allocated for a variable of type N_Vector which can be used by CVL-
sJacTimesVecFnB as temporary storage or work space.

Return value:
The return value of a function of type CVLsJacTimesVecFnB should be if successful or nonzero if an error
was encountered, in which case the integration is halted.

Notes:

A user-supplied Jacobian-vector product function must load the vector JvB with the product of the Jacobian
of the backward problem at the point (t, y, yB) and the vector vB. Here, y is the solution of the original
IVP at time t and yB is the solution of the backward problem at the same time. The rest of the arguments
are equivalent to those passed to a function of type CVLsJacTimesVecFn. If the backward problem is the
adjoint of § = f(t, y), then this function is to compute —(3f/dy;)Tvp.

Added in version 4.0.0: Replaces the deprecated type CVSpilsJacTimesVecFnB.

typedef int (*CVLsJacTimesVecFnBS)(N_Vector vB, N_Vector IVvB, sunrealtype t, N_Vector y, N_Vector *yS,
N_Vector yB, N_Vector tyB, void *user_dataB, N_Vector tmpB);

This function computes the action of the Jacobian JB for the backward problem on a given vector vB, in the case
where the backward problem depends on the forward sensitivities.

Arguments:

vB — is the vector by which the Jacobian must be multiplied to the right.

JvB — is the computed output vector JB*vB.

t — is the current value of the independent variable.

y —is the current value of the forward solution vector.

yS —is a pointer to an array containing the forward sensitivity vectors.

yB — is the current value of the backward dependent variable vector.

fyB — is the current value of the backward right-hand side function f5.
user_dataB — is a pointer to the same user data passed to CVodeSetUserDataB.

tmpB — is a pointer to memory allocated for a variable of type N_Vector which can be used by CVL-
sJacTimesVecFnB as temporary storage or work space.

Return value:
The return value of a function of type CVLsJacTimesVecFnBS should be if successful or nonzero if an
error was encountered, in which case the integration is halted.

Notes:

A user-supplied Jacobian-vector product function must load the vector JvB with the product of the Jacobian
of the backward problem at the point (t, y, yB) and the vector vB. Here, y is the solution of the original

198

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

IVP at time t and yB is the solution of the backward problem at the same time. The rest of the arguments
are equivalent to those passed to a function of type CVLsJacTimesVecFn.

Added in version 4.0.0: Replaces the deprecated type CVSpilsJacTimesVecFnBS.

5.4.3.8 Jacobian-vector product setup for the backward problem (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type CVLsJacTimesSetupFnB or CVLsJacTimesSetupFnBS,
defined as follows:

typedef int (*CVLsJacTimesSetupFnB)(sunrealtype t, N_Vector 'y, N_Vector yB, N_Vector fyB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-times-vector routine for the
backward problem.

Arguments:
e t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
* yB —is the current value of the backward dependent variable vector.
e fyB —is the current value of the right-hand-side for the backward problem.
* user_dataB —is a pointer to user data CVodeSetUserDataB.

Return value:
The value returned by the Jacobian-vector setup function should be if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:

Each call to the Jacobian-vector setup function is preceded by a call to the backward problem residual
user function with the same (t,y, yB) arguments. Thus, the setup function can use any auxiliary data
that is computed and saved during the evaluation of the right-hand-side function. If the user’s CVLsJac-
TimesVecFnB function uses difference quotient approximations, it may need to access quantities not in the
call list. These include the current stepsize, the error weights, etc. To obtain these, the user will need to add
a pointer to cvode_mem to user_dataB and then use the CVGet* functions described in §5.1.3.12. The
unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

Added in version 4.0.0: Replaces the deprecated function type CVSpilsJacTimesSetupFnB.

typedef int (*CVLsJacTimesSetupFnBS)(sunrealtype t, N_Vectory, N_Vector *yS, N_Vector yB, N_Vector fyB,
void *user_dataB)

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-times-vector routine for the
backward problem, in the case that the backward problem depends on the forward sensitivities.

Arguments:
* t —is the current value of the independent variable.
* y —is the current value of the dependent variable vector, y(t).
* yS —a pointer to an array of Ns vectors containing the sensitivities of the forward solution.
* yB —is the current value of the backward dependent variable vector.
o fyB —is the current value of the right-hand-side function for the backward problem.

* user_dataB — is a pointer to the same user data provided to CVodeSetUserDataB.

5.4. Using CVODES for Adjoint Sensitivity Analysis 199

User Documentation for CVODES, v7.3.0

Return value:
The value returned by the Jacobian-vector setup function should be if successful, positive for a recoverable
error (in which case the step will be retried), or negative for an unrecoverable error (in which case the
integration is halted).

Notes:

Each call to the Jacobian-vector setup function is preceded by a call to the backward problem residual user
function with the same (t,y, yS, yB) arguments. Thus, the setup function can use any auxiliary data
that is computed and saved during the evaluation of the right-hand-side function. If the user’s CVLsJac-
TimesVecFnBS function uses difference quotient approximations, it may need to access quantities not in
the call list. These include the current stepsize, the error weights, etc. To obtain these, the user will need
to add a pointer to cvode_mem to user_dataB and then use the CVGet* functions described in §5.1.3.12.
The unit roundoff can be accessed as SUN_UNIT_ROUNDOFF defined in sundials_types.h.

Added in version 4.0.0: Replaces the deprecated type CVSpilsJacTimesSetupFnBS.

5.4.3.9 Preconditioner solve for the backward problem (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinearSolver solver module, then the user must provide
a function to solve the linear system Pz = r, where P may be either a left or a right preconditioner matrix. Here P
should approximate (at least crudely) the matrix Mg = I — ygJpg, where Jg = 0fp/dyp. If preconditioning is done
on both sides, the product of the two preconditioner matrices should approximate Mp. This function must be of one
of the following two types:

typedef int (*CVLsPrecSolveFnB)(sunrealtype t, N_Vector y, N_Vector yB, N_Vector fyB, N_Vector rvecB,
N_Vector zvecB, sunrealtype gammaB, sunrealtype deltaB, void *user_dataB)

This function solves the preconditioning system Pz = r for the backward problem.

Arguments:

t — is the current value of the independent variable.

y — is the current value of the forward solution vector.

yB — is the current value of the backward dependent variable vector.

fyB — is the current value of the backward right-hand side function fp.

rvecB —is the right-hand side vector r of the linear system to be solved.

zvecB — is the computed output vector.

gammaB — is the scalar appearing in the matrix, Mp = I — v Jp.

deltaB —is an input tolerance to be used if an iterative method is employed in the solution.

user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB.

Return value:
The return value of a preconditioner solve function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Added in version 4.0.0: Replaces the deprecated type CVSpilsPrecSolveFnB.

typedef int (*CVLsPrecSolveFnBS)(sunrealtype t, N_Vector 'y, N_Vector *yS, N_Vector yB, N_Vector fyB,
N_Vector rvecB, N_Vector zvecB, sunrealtype gammaB, sunrealtype deltaB, void *user_dataB)

This function solves the preconditioning system Pz = r for the backward problem, in the case where the back-
ward problem depends on the forward sensitivities.

Arguments:

200

Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* t —is the current value of the independent variable.

¢ y —is the current value of the forward solution vector.

* yS —is a pointer to an array containing the forward sensitivity vectors.

* yB —is the current value of the backward dependent variable vector.

¢ fyB —is the current value of the backward right-hand side function fg.

» rvecB —is the right-hand side vector r of the linear system to be solved.

* zvecB —is the computed output vector.

e gammaB — is the scalar appearing in the matrix, Mp = I — vpJp.

* deltaB —is an input tolerance to be used if an iterative method is employed in the solution.
* user_dataB - is a pointer to the same user data passed to CVodeSetUserDataB.

Return value:
The return value of a preconditioner solve function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Added in version 4.0.0: Replaces the deprecated type CVSpilsPrecSolveFnBS.

5.4.3.10 Preconditioner setup for the backward problem (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then this needs to be
done in a user-supplied function of one of the following two types:

typedef int (*CVLsPrecSetupFnB)(sunrealtype t, N_Vector y, N_Vector yB, N_Vector tyB, sunbooleantype jokB,
sunbooleantype *jcurPtrB, sunrealtype gammaB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner for the backward
problem.

Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yB —is the current value of the backward dependent variable vector.
¢ fyB —is the current value of the backward right-hand side function fg.

* jokB — is an input flag indicating whether Jacobian-related data needs to be recomputed (jokB =
SUNFALSE) or information saved from a previous invocation can be safely used (jokB = SUNTRUE).

e jcurPtr —is an output flag which must be set to SUNTRUE if Jacobian-related data was recomputed
or SUNFALSE otherwise.

* gammaB — is the scalar appearing in the matrix Mp = I — ygJp.
* user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB.

Return value:
The return value of a preconditioner setup function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Added in version 4.0.0: Replaces the deprecated type CVSpilsPrecSetupFnB.

54.

Using CVODES for Adjoint Sensitivity Analysis 201

User Documentation for CVODES, v7.3.0

typedef int (*CVLsPrecSetupFnBS)(sunrealtype t, N_Vector 'y, N_Vector *yS, N_Vector yB, N_Vector fyB,
sunbooleantype jokB, sunbooleantype *jcurPtrB, sunrealtype gammaB, void *user_dataB)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner for the backward
problem, in the case where the backward problem depends on the forward sensitivities.

Arguments:
* t —is the current value of the independent variable.
¢ y —is the current value of the forward solution vector.
* yS —is a pointer to an array containing the forward sensitivity vectors.
* yB —is the current value of the backward dependent variable vector.
e fyB — is the current value of the backward right-hand side function fp.

e jokB — is an input flag indicating whether Jacobian-related data needs to be recomputed (jokB =
SUNFALSE) or information saved from a previous invocation can be safely used (jokB = SUNTRUE).

* jcurPtr —is an output flag which must be set to SUNTRUE if Jacobian-related data was recomputed
or SUNFALSE otherwise.

* gammaB — is the scalar appearing in the matrix Mp = I — ygJp.
* user_dataB — is a pointer to the same user data passed to CVodeSetUserDataB.

Return value:
The return value of a preconditioner setup function for the backward problem should be if successful,
positive for a recoverable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Added in version 4.0.0: Replaces the deprecated type CVSpilsPrecSetupFnBS.

5.4.4 Using CVODES preconditioner modules for the backward problem

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of linear systems can be
greatly enhanced through preconditioning. Both preconditioner modules provided with SUNDIALS, the serial banded
preconditioner CVBANDPRE and the parallel band-block-diagonal preconditioner module CVBBDPRE, provide in-
terface functions through which they can be used on the backward integration phase.

5.4.4.1 Using the banded preconditioner CVBANDPRE

The adjoint module in CVODES offers an interface to the banded preconditioner module CVBANDPRE described in
section §5.2.7.1. This preconditioner, usable only in a serial setting, provides a band matrix preconditioner based on
difference quotients of the backward problem right-hand side function £B. It generates a banded approximation to the
Jacobian with m;p sub-diagonals and m,, p super-diagonals to be used with one of the Krylov linear solvers.

In order to use the CVBANDPRE module in the solution of the backward problem, the user need not define any
additional functions. Instead, after an iterative SUNLinearSolver object has been attached to CVODES via a call to
CVodeSetLinearSolverB(), the following call to the CVBANDPRE module initialization function must be made.
int CVBandPrecInitB(void *cvode_mem, int which, sunindextype nB, sunindextype muB, sunindextype mlB)

The function CVBandPrecInitB() initializes and allocates memory for the CVBANDPRE preconditioner for
the backward problem. It creates, allocates, and stores (internally in the CVODES solver block) a pointer to the
newly created CVBANDPRE memory block.

Arguments:

* cvode_mem — pointer to the CVODES memory block.

202 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* which — the identifier of the backward problem.
* nB — backward problem dimension.
* muB — upper half-bandwidth of the backward problem Jacobian approximation.
* mlB — lower half-bandwidth of the backward problem Jacobian approximation.
Return value:
* CVLS_SUCCESS — The call to CVBandPrecInitB() was successful.
e CVLS_MEM_FAIL — A memory allocation request has failed.
e CVLS_MEM_NULL — The cvode_mem argument was NULL.
e CVLS_LMEM_NULL — No linear solver has been attached.
e CVLS_ILL_INPUT — An invalid parameter has been passed.
For more details on CVBANDPRE see §5.2.7.1.

5.4.4.2 Using the band-block-diagonal preconditioner CVBBDPRE

The adjoint module in CVODES offers an interface to the band-block-diagonal preconditioner module CVBBDPRE
described in section §5.2.7.2. This generates a preconditioner that is a block-diagonal matrix with each block being a
band matrix and can be used with one of the Krylov linear solvers and with the MPI-parallel vector module NVECTOR_-
PARALLEL.

In order to use the CVBBDPRE module in the solution of the backward problem, the user must define one or two
additional functions, described at the end of this section.

Initialization of CVBBDPRE

The CVBBDPRE module is initialized by calling the following function, after an iterative SUNLinearSolver object
has been attached to CVODES via a call to CVodeSetLinearSolverB().

int CVBBDPrecInitB (void *cvode_mem, int which, sunindextype NlocalB, sunindextype mudqB, sunindextype
mldgB, sunindextype mukeepB, sunindextype mlkeepB, sunrealtype dqrelyB,
CVBBDLocalFnB glocB, CVBBDCommFnB gcommB)

The function CVBBDPrecInitB() initializes and allocates memory for the CVBBDPRE preconditioner for the
backward problem. It creates, allocates, and stores (internally in the CVODES solver block) a pointer to the
newly created CVBBDPRE memory block.

Arguments:
* cvode_mem — pointer to the CVODES memory block.
* which — the identifier of the backward problem.
* NlocalB - local vector dimension for the backward problem.
* mudgB — upper half-bandwidth to be used in the difference-quotient Jacobian approximation.
* mldgB — lower half-bandwidth to be used in the difference-quotient Jacobian approximation.
» mukeepB — upper half-bandwidth of the retained banded approximate Jacobian block.
* mlkeepB — lower half-bandwidth of the retained banded approximate Jacobian block.

¢ dgrelyB —the relative increment in components of yB used in the difference quotient approximations.
The default is dqrelyB = +/unit roundoff , which can be specified by passing dqrely = 0.0.

5.4. Using CVODES for Adjoint Sensitivity Analysis 203

User Documentation for CVODES, v7.3.0

* glocB - the function which computes the function ggt, y, y 5 approximating the right-hand side of the
backward problem.

» gcommB — the optional function which performs all interprocess communication required for the com-
putation of g.

Return value:
* CVLS_SUCCESS — The call to CVBBDPrecInitB() was successful.
e CVLS_MEM_FAIL — A memory allocation request has failed.
e CVLS_MEM_NULL — The cvode_mem argument was NULL.

CVLS_LMEM_NULL — No linear solver has been attached.

CVLS_ILL_INPUT - An invalid parameter has been passed.
int CVBBDPrecReInitB(void *cvode_mem, int which, sunindextype mudqB, sunindextype mldqB, sunrealtype
dqrelyB)
The function CVBBDPrecReInitB() reinitializes the CVBBDPRE preconditioner for the backward problem.
Arguments:
¢ cvode_mem — pointer to the CVODES memory block returned by CVodeCreate().
* which - the identifier of the backward problem.
» mudgB — upper half-bandwidth to be used in the difference-quotient Jacobian approximation.
¢ mldgB — lower half-bandwidth to be used in the difference-quotient Jacobian approximation.
* dgrelyB —the relative increment in components of yB used in the difference quotient approximations.
Return value:
e CVLS_SUCCESS — The call to CVBBDPrecReInitB() was successful.
e CVLS_MEM_FAIL — A memory allocation request has failed.
e CVLS_MEM_NULL — The cvode_mem argument was NULL.
e CVLS_PMEM_NULL — The CVBBDPrecInitB() has not been previously called.
e CVLS_LMEM_NULL — No linear solver has been attached.
e CVLS_ILL_INPUT — An invalid parameter has been passed.
For more details on CVBBDPRE see §5.2.7.2.

User-supplied functions for CVBBDPRE

To use the CVBBDPRE module, the user must supply one or two functions which the module calls to construct the
preconditioner: a required function glocB (of type CVBBDLocalFnB) which approximates the right-hand side of the
backward problem and which is computed locally, and an optional function gcommB (of type CVBBDCommFnB) which
performs all interprocess communication necessary to evaluate this approximate right-hand side. The prototypes for
these two functions are described below.

typedef int (*CVBBDLocalFnB)(sunindextype NlocalB, sunrealtype t, N_Vector y, N_Vector yB, N_Vector gB, void
*user_dataB)
This glocB function loads the vector gB, an approximation to the right-hand side fp of the backward problem,
as a function of t, y, and yB.

Arguments:

204 Chapter 5. Using CVODES

User Documentation for CVODES, v7.3.0

* NlocalB —is the local vector length for the backward problem.

e t —is the value of the independent variable.

¢ y —is the current value of the forward solution vector.

* yB —is the current value of the backward dependent variable vector.

* 9B —is the output vector, g5(t,y, yp)-

* user_dataB —is a pointer to the same user data passed to CVodeSetUserDataB.

Return value:
An CVBBDLocalFnB should return O if successful, a positive value if a recoverable error occurred (in
which case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and CVodeB () returns CV_LSETUP_FAIL).

Notes:
This routine must assume that all interprocess communication of data needed to calculate gB has already
been done, and this data is accessible within user_dataB.

Warning

Before calling the user’s CVBBDLocalFnB, CVODES needs to evaluate (through interpolation) the values
of the states from the forward integration. If an error occurs in the interpolation, CVODES triggers an
unrecoverable failure in the preconditioner setup function which will halt the integration (CVodeB () returns
CV_LSETUP_FAIL).

typedef int (*CVBBDCommFnB)(sunindextype NlocalB, sunrealtype t, N_Vector y, N_Vector yB, void *user_dataB)

This gcommB function must perform all interprocess communications necessary for the execution of the glocB
function above, using the input vectors y and yB.

Arguments:
* NlocalB - is the local vector length.
* t —is the value of the independent variable.
¢ y —is the current value of the forward solution vector.
¢ yB —is the current value of the backward dependent variable vector.
* user_dataB — is a pointer to the same user data passed to CVodeSetUserDataB.

Return value:
An CVBBDCommFnB should return 0 if successful, a positive value if a recoverable error occurred (in which
case CVODES will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and CVodeB () returns CV_LSETUP_FAIL).

Notes:
The gcommB function is expected to save communicated data in space defined within the structure user_-
dataB. Each call to the gcommB function is preceded by a call to the function that evaluates the right-hand
side of the backward problem with the same t, y, and yB, arguments. If there is no additional communica-
tion needed, then pass gcommB = NULL to CVBBDPrecInitB().

5.4. Using CVODES for Adjoint Sensitivity Analysis 205

User Documentation for CVODES, v7.3.0

206 Chapter 5. Using CVODES

Chapter 6

Vector Data Structures

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations in
serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of
the SUNDIALS packages (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on these
generic vector operations, making them immediately extensible to new user-defined vector objects. The only exceptions
to this rule relate to the direct linear solver modules (and associated matrices), since they rely on particular data storage
and access patterns in the NVECTORS used.

6.1 Description of the NVECTOR Modules

SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type N_Vector)
through a set of operations defined by, and specific to, the particular vector implementation. Users can provide a
custom vector implementation or use one provided with SUNDIALS. The generic operations are described below. In
the sections following, the implementations provided with SUNDIALS are described.

An N_Vector is a pointer to the _generic_N_Vector structure:
typedef struct _generic_N_Vector *N_Vector
struct _generic_N_Vector

The structure defining the SUNDIALS vector class.

void *content
Pointer to vector-specific member data.

N_Vector_Ops ops
A virtual table of vector operations provided by a specific implementation.

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

typedef _generic_N_Vector_Ops *N_Vector_Ops

207

User Documentation for CVODES, v7.3.0

struct _generic_N_Vector_Ops
The structure defining N_Vector operations.
N_Vector_ID (*nvgetvectorid)(N_Vecror)
The function implementing N_VGetVectorID()
N_Vector (*nvclone)(N_Vector)
The function implementing N_VCIone ()

N_Vector (*nvcloneempty)(N_Vector)
The function implementing N_VCIoneEmpty ()

void (*nvdestroy)(N_Vector)
The function implementing N_VDestroy ()
void (*nvspace)(N_Vector, sunindextype*, sunindextype*)
The function implementing N_VSpace ()
sunrealtype *(*nvgetarraypointer)(N_Vector)
The function implementing N_VGetArrayPointer()
sunrealtype *(*nvgetdevicearraypointer)(N_Vector)
The function implementing N_VGetDeviceArrayPointer ()
void (*nvsetarraypointer)(sunrealtype*, N_Vector)
The function implementing N_VSetArrayPointer()
SUNComm (*nvgetcommunicator)(N_Vecror)
The function implementing N_VGetCommunicator()
sunindextype (*nvgetlength)(N_Vector)
The function implementing N_VGetLength()
sunindextype (*nvgetlocallength)(N_Vecror)
The function implementing N_VGetLocalLength()
void (*nvlinearsum)(sunrealtype, N_Vector, sunrealtype, N_Vector, N_Vector)
The function implementing N_VLinearSum()
void (*nvconst)(sunrealtype, N_Vector)
The function implementing N_VConst ()
void (*nvprod)(N_Vector, N_Vector, N_Vector)
The function implementing N_VProd ()
void (*nvdiv)(N_Vector, N_Vector, N_Vector)
The function implementing N_VDiv ()
void (*nvscale)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VScale ()
void (*nvabs)(N_Vector, N_Vector)
The function implementing N_VAbs ()
void (*nvinv)(N_Vector, N_Vector)

The function implementing N_VInv()

208 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

void (*nvaddconst)(N_Vector, sunrealtype, N_Vector)
The function implementing N_VAddConst ()
sunrealtype (*nvdotprod)(N_Vector, N_Vector)
The function implementing N_VDotProd()
sunrealtype (*nvmaxnorm)(N_Vector)
The function implementing N_VMaxNorm()
sunrealtype (*nvwrmsnorm)(N_Vector, N_Vector)
The function implementing N_ViirmsNorm()
sunrealtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_ViirmsNormMask ()
sunrealtype (*nvmin)(N_Vector)
The function implementing N_VMin ()
sunrealtype (*nvwl2norm)(N_Vector, N_Vector)
The function implementing N_VWL2Norm()
sunrealtype (*nvl1lnorm)(N_Vector)
The function implementing N_VL INorm()
void (*nvcompare)(sunrealtype, N_Vector, N_Vector)
The function implementing N_VCompare ()
sunbooleantype (*nvinvtest)(N_Vector, N_Vector)
The function implementing N_VInvTest ()
sunbooleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMask ()
sunrealtype (*nvminquotient)(N_Vector, N_Vector)
The function implementing N_VMinQuotient ()
SUNErrCode (*nvlinearcombination)(int, sunrealtype*, N_Vector*, N_Vector)
The function implementing N_VLinearCombination()
SUNErrCode (*nvscaleaddmulti)(int, sunrealtype®, N_Vector, N_Vector*, N_Vector*)
The function implementing N_VScaleAddMulti ()
SUNErrCode (*nvdotprodmulti)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMulti ()

SUNErrCode (*nvlinearsumvectorarray)(int, sunrealtype, N_Vector*, sunrealtype, N_Vector*,
N_Vector¥)

The function implementing N_VLinearSumVectorArray ()

SUNErrCode (*nvscalevectorarray)(int, sunrealtype*, N_Vector*, N_Vector*)
The function implementing N_VScaleVectorArray ()

SUNErrCode (*nvconstvectorarray)(int, sunrealtype, N_Vector¥)
The function implementing N_VConstVectorArray ()

SUNErrCode (*nvwrmsnormvectorarray)(int, N_Vector*, N_Vector*, sunrealtype*)
The function implementing N_ViirmsNormVectorArray ()

6.1. Description of the NVECTOR Modules 209

User Documentation for CVODES, v7.3.0

SUNErrCode (*nvwrmsnormmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector, sunrealtype*)

The function implementing N_ViirmsNormMaskVectorArray ()

SUNErrCode (*nvscaleaddmultivectorarray)(int, int, sunrealtype®, N_Vector*, N_Vector**,
N_Vector**)

The function implementing N_VScaleAddMultiVectorArray ()
SUNErrCode (*nvlinearcombinationvectorarray)(int, int, sunrealtype®, N_Vector**, N_Vector*)
The function implementing N_VLinearCombinationVectorArray ()
sunrealtype (*nvdotprodlocal)(N_Vector, N_Vector)
The function implementing N_VDotProdLocal ()
sunrealtype (*nvmaxnormlocal)(N_Vector)
The function implementing N_VMaxNormLocal ()
sunrealtype (*nvminlocal)(N_Vector)
The function implementing N_VMinLocal ()
sunrealtype (*nvl1lnormlocal)(N_Vector)
The function implementing N_VL1NormLocal ()
sunbooleantype (*nvinvtestlocal)(N_Vector, N_Vector)
The function implementing N_VInvTestLocal ()
sunbooleantype (*nvconstrmasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VConstrMaskLocal ()
sunrealtype (*nvminquotientlocal)(N_Vector, N_Vector)
The function implementing N_VMinQuotientLocal ()
sunrealtype (*nvwsqrsumlocal)(N_Vector, N_Vector)
The function implementing N_ViWSqrSumLocal ()
sunrealtype (*nvwsqrsummasklocal)(N_Vector, N_Vector, N_Vector)
The function implementing N_VIWSqrSumMaskLocal ()
SUNErrCode (*nvdotprodmultilocal)(int, N_Vector, N_Vector*, sunrealtype*)
The function implementing N_VDotProdMultiLocal ()
SUNErrCode (*nvdotprodmul tiallreduce)(int, N_Vector, sunrealtype*)
The function implementing N_VDotProdMultiAlIReduce ()
SUNErrCode (*nvbufsize)(N_Vector, sunindextype*)
The function implementing N_VBufSize ()
SUNErrCode (*nvbufpack)(N_Vector, void*)
The function implementing N_VBufPack ()
SUNErrCode (*nvbufunpack)(N_Vector, void*)
The function implementing N_VBufUnpack ()
void (*nvprint)(N_Vector)
The function implementing N_VPrint ()

210 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

void (*nvprintfile)(N_Vector, FILE*)
The function implementing N_VPrintFile ()

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the operation
z +— cx for vectors = and z and a scalar c:

void N_VScale(sunrealtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

§6.2 contains a complete list of all standard vector operations defined by the generic NVECTOR module. §6.2.2,
§6.2.3,§6.2.4, §6.2.5, and §6.2.6 list optional fused, vector array, local reduction, single buffer reduction, and exchange
operations, respectively.

Fused and vector array operations (see §6.2.2 and §6.2.3) are intended to increase data reuse, reduce parallel communi-
cation on distributed memory systems, and lower the number of kernel launches on systems with accelerators. If a par-
ticular NVECTOR implementation defines a fused or vector array operation as NULL, the generic NVECTOR module
will automatically call standard vector operations as necessary to complete the desired operation. In all SUNDIALS-
provided NVECTOR implementations, all fused and vector array operations are disabled by default. However, these
implementations provide additional user-callable functions to enable/disable any or all of the fused and vector array
operations. See the following sections for the implementation specific functions to enable/disable operations.

Local reduction operations (see §6.2.4) are similarly intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within an NVECTOR_MANY VECTOR object
(see §6.17). If a particular NVECTOR implementation defines a local reduction operation as NULL, the NVECTOR_-
MANYVECTOR module will automatically call standard vector reduction operations as necessary to complete the
desired operation. All SUNDIALS-provided NVECTOR implementations include these local reduction operations,
which may be used as templates for user-defined implementations.

The single buffer reduction operations (§6.2.5) are used in low-synchronization methods to combine separate reductions
into one MPI_Allreduce call.

The exchange operations (see §6.2.6) are intended only for use with the XBraid library for parallel-in-time integration
(accessible from ARKODE) and are otherwise unused by SUNDIALS packages.

6.1.1 NVECTOR Utility Functions

The generic NVECTOR module also defines several utility functions to aid in creation and management of arrays of
N_Vector objects —these functions are particularly useful for Fortran users to utilize the NVECTOR_MANY VECTOR
or SUNDIALS’ sensitivity-enabled packages CVODES and IDAS.

The functions N_VCloneVectorArray () and N_VCloneVectorArrayEmpty () create (by cloning) an array of count
variables of type N_Vector, each of the same type as an existing N_Vector input:

N_Vector *N_VCloneVectorArray (int count, N_Vector w)

Clones an array of count N_Vector objects, allocating their data arrays (similar to N_VClone()).
Arguments:

* count — number of N_Vector objects to create.

* w—template N_Vector to clone.
Return value:

* pointer to a new N_Vector array on success.

6.1. Description of the NVECTOR Modules 211

User Documentation for CVODES, v7.3.0

* NULL pointer on failure.

N_Vector *N_VCloneVectorArrayEmpty (int count, N_Vector w)

Clones an array of count N_Vector objects, leaving their data arrays unallocated (similar to N_-
VCloneEmpty()).

Arguments:
e count — number of N_Vector objects to create.
* w—template N_Vector to clone.
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.
An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray():

void N_VDestroyVectorArray (N_Vector *vs, int count)

Destroys an array of count N_Vector objects.
Arguments:
e vs — N_Vector array to destroy.
e count — number of N_Vector objects in vs array.

Notes:
This routine will internally call the N_Vector implementation-specific N_VDestroy () operation.

If vs was allocated using N_VCIloneVectorArray () then the data arrays for each N_Vector object will
be freed; if vs was allocated using N_VCIloneVectorArrayEmpty () then it is the user’s responsibility to
free the data for each N_Vector object.

Finally, we note that users of the Fortran 2003 interface may be interested in the additional utility functions N_VNewVec-
torArray (), N_VGetVecAtIndexVectorArray(), and N_VSetVecAtIndexVectorArray (), that are wrapped as
FN_NewVectorArray, FN_VGetVecAtIndexVectorArray, and FN_VSetVecAtIndexVectorArray, respectively.
These functions allow a Fortran 2003 user to create an empty vector array, access a vector from this array, and set a
vector within this array:

N_Vector *N_VNewVectorArray (int count, SUNContext sunctx)

Creates an array of count N_Vector objects, the pointers to each are initialized as NULL.
Arguments:
e count — length of desired N_Vector array.
* sunctx —a SUNContext object
Return value:
* pointer to a new N_Vector array on success.
* NULL pointer on failure.
Changed in version 7.0.0: The function signature was updated to add the SUNContext argument.

N_Vector *N_VGetVecAtIndexVectorArray (N _Vector *vs, int index)

Accesses the N_Vector at the location index within the N_Vector array vs.
Arguments:

* vs — N_Vector array.

212 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

* index — desired N_Vector to access from within vs.
Return value:

* pointer to the indexed N_Vector on success.

e NULL pointer on failure (index < 0 or vs == NULL).

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

void N_VSetVecAtIndexVectorArray(N_Vector *vs, int index, N_Vector w)

Sets a pointer to w at the location index within the vector array vs.
Arguments:
* vs — N_Vector array.
* index — desired location to place the pointer to w within vs.
* w— N_Vector to set within vs.

Notes:
This routine does not verify that index is within the extent of vs, since vs is a simple N_Vector array that
does not internally store its allocated length.

6.1.2 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:
 Specify the content field of the N_Vector structure.

 Define and implement the vector operations. Note that the names of these routines should be unique to that im-
plementation in order to permit using more than one NVECTOR module (each with different N_Vector internal
data representations) in the same code.

* Define and implement user-callable constructor and destructor routines to create and free an N_Vector with the
new content field and with ops pointing to the new vector operations.

 Optionally, define and implement additional user-callable routines acting on the newly-defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

* Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly-defined N_Vector.

To aid in the creation of custom NVECTOR modules, the generic NVECTOR module provides two utility functions N_-
VNewEmpty () and N_VCopyOps (). When used in custom NVECTOR constructors and clone routines these functions
will ease the introduction of any new optional vector operations to the NVECTOR API by ensuring that only required
operations need to be set, and that all operations are copied when cloning a vector.

N_Vector N_VNewEmpty (SUNContext sunctx)
This allocates a new generic N_Vector object and initializes its content pointer and the function pointers in the

operations structure to NULL.

Return value: If successful, this function returns an N_Vector object. If an error occurs when allocating the
object, then this routine will return NULL.

void N_VFreeEmpty(N_Vector v)

This routine frees the generic N_Vector object, under the assumption that any implementation-specific data that
was allocated within the underlying content structure has already been freed. It will additionally test whether the
ops pointer is NULL, and, if it is not, it will free it as well.

6.1. Description of the NVECTOR Modules 213

User Documentation for CVODES, v7.3.0

Arguments:
e v —an N_Vector object

SUNErrCode N_VCopyOps (N_Vector w, N_Vector v)
This function copies the function pointers in the ops structure of w into the ops structure of v.

Arguments:
* w — the vector to copy operations from
* v — the vector to copy operations to
Return value: Returns a SUNErrCode.

enum N_Vector_ID

Each N_Vector implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 6.1. It is recommended that a user supplied NVECTOR implementation use the SUNDIALS_-
NVEC_CUSTON identifier.

Table 6.1: Vector Identifications associated with vector kernels supplied

with SUNDIALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS_NVEC_RAJA RAIJA vector 9
SUNDIALS_NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS NVEC_MANYVECTOR “Many Vector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR MPI-enabled ‘“Many Vector” vector 13
SUNDIALS_NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15

6.1.3 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited support for complex-
valued problems. However, since none of the built-in NVECTOR modules supports complex-valued data, users must
provide a custom NVECTOR implementation for this task. Many of the NVECTOR routines described in the subsection
§6.2 naturally extend to complex-valued vectors; however, some do not. To this end, we provide the following guidance:

e N_VMin() and N_VMinLocal () should return the minimum of all real components of the vector, i.e., m =
min real(x;).
0<i<n (i)

e N_VConst () (and similarly N_VConstVectorArray ()) should set the real components of the vector to the input
constant, and set all imaginary components to zero, i.e., z; = ¢+ 05 for 0 <7 < n.

* N_VAddConst () should only update the real components of the vector with the input constant, leaving all imag-
inary components unchanged.

214 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

e N_VWrmsNorm(), N_VWrmsNormMask (), N_VWSqrSumLocal () and N_VWSqrSumMaskLocal () should assume
that all entries of the weight vector w and the mask vector id are real-valued.

* N_VDotProd() should mathematically return a complex number for complex-valued vectors; as this is not pos-
sible with SUNDIALS’ current sunrealtype, this routine should be set to NULL in the custom NVECTOR
implementation.

e N_VCompare(), N_VConstrMask(), N_VMinQuotient (), N_VConstrMaskLocal() and N_VMinQuotient-
Local () are ill-defined due to the lack of a clear ordering in the complex plane. These routines should be set to
NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot. Specifically, although
each package’s linear solver interface (e.g., ARKLS or CVLS) may be used on complex-valued problems, none of the
built-in SUNMatrix or SUNLinearSolver modules will work (all of the direct linear solvers must store complex-valued
data, and all of the iterative linear solvers require N_VDotProd()). Hence a complex-valued user must provide custom
linear solver modules for their problem. At a minimum this will consist of a custom SUNLinearSolver implementation
(see §8.1.8), and optionally a custom SUNMatrix as well. The user should then attach these modules as normal to the
package’s linear solver interface.

Similarly, although both the SUNNonlinearSolver_Newton and SUNNonlinearSolver_FixedPoint modules may be
used with any of the IVP solvers (CVODE(S), IDA(S) and ARKODE) for complex-valued problems, the Anderson-
acceleration option with SUNNonlinearSolver_FixedPoint cannot be used due to its reliance on N_VDotProd(). By
this same logic, the Anderson acceleration feature within KINSOL will also not work with complex-valued vectors.

Finally, constraint-handling features of each package cannot be used for complex-valued data, due to the issue of order-
ing in the complex plane discussed above with N_VCompare (), N_VConstrMask(), N_VMinQuotient (), N_VCon-
strMaskLocal () and N_VMinQuotientLocal().

We provide a simple example of a complex-valued example problem, including a custom complex-valued Fortran
2003 NVECTOR module, in the files examples/arkode/F2003_custom/ark_analytic_complex_£2003. £90,
examples/arkode/F2003_custom/fnvector_complex_mod.f90, and examples/arkode/F2003_custom/
test_fnvector_complex_mod. £90.

6.2 Description of the NVECTOR operations

6.2.1 Standard vector operations
The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these

operations, we give the name, usage of the function, and a description of its mathematical operations below.

N _Vector ID N_VGetVectorID(N Vector w)

Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.
serial, parallel, ...) from the abstract N_Vector interface. Returned values are given in Table 6.1.

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

6.2. Description of the NVECTOR operations 215

User Documentation for CVODES, v7.3.0

N_Vector N_VCloneEmpty (N_Vector w)

Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w) ;

void N_VDestroy(N_Vector v)

Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace (N_Vector v, sunindextype *lrw, sunindextype *liw)

Returns storage requirements for the N_Vector v:
¢ [rw contains the number of sunrealtype words
* [iw contains the number of integer words.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied NVECTOR module if that information is not of interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

sunrealtype *N_VGetArrayPointer (N_Vector v)

Returns a pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of sunrealtype and is accessible from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial) linear solvers, and in
the interfaces to the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided with
SUNDIALS.

Usage:

vdata = N_VGetArrayPointer(v);

sunrealtype *N_VGetDeviceArrayPointer (N_Vector v)

Returns a device pointer to a sunrealtype array from the N_Vector v. Note that this assumes that the internal
data in N_Vector is a contiguous array of sunrealtype and is accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.

Usage:

vdata = N_VGetArrayPointer(v);

void N_VSetArrayPointer (sunrealtype *vdata, N_Vector v)

Replaces the data array pointer in an N_Vector with a given array of sunrealtype. Note that this assumes
that the internal data in the N_Vector is a contiguous array of sunrealtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

216

Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

N_VSetArrayPointer(vdata,v);

SUNComm N_VGetCommunicator (N_Vector v)

Returns the SUNComm (which is just an MPI_Comm when SUNDIALS is built with MPI, otherwise it is an int)
associated with the vector (if applicable). For MPI-unaware vector implementations, this should return SUN_-
COMM_NULL.

Usage:

MPI_Comm comm = N_VGetCommunicator(v); // Works if MPI is enabled
int comm = N_VGetCommunicator(v); // Works if MPI is disabled
SUNComm comm = N_VGetCommunicator(v); // Works with or without MPI

sunindextype N_VGetLength(N_Vector v)

Returns the global length (number of “active” entries) in the NVECTOR v. This value should be cumulative
across all processes if the vector is used in a parallel environment. If v contains additional storage, e.g., for
parallel communication, those entries should not be included.

Usage:
global_length = N_VGetLength(v);

sunindextype N_VGetLocalLength(N_Vector v)

Returns the local length (number of “active” entries) in the NVECTOR v. This value should be the length of the
array returned by N_VGetArrayPointer () or N_VGetDeviceArrayPointer().

Usage:

local_length = N_VGetLocalLength(v);

void N_VLinearSum(sunrealtype a, N_Vector X, sunrealtype b, N_Vector y, N_Vector z)
Performs the operation z = ax + by, where a and b are sunrealtype scalars and x and y are of type N_Vector:

zi=ax;+by;, 1=0,...,n—1.

The output vector z can be the same as either of the input vectors (x or y).

Usage:

N_VLinearSum(a, x, b, y, z);

void N_VConst (sunrealtype c, N_Vector z)
Sets all components of the N_Vector z to sunrealtype c:

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:

zi =%y, 1=0,...,n—1.

Usage:

6.2. Description of the NVECTOR operations 217

User Documentation for CVODES, v7.3.0

N_VProd(x, y, z);

void N_VDiv(N_Vector x, N_Vector'y, N_Vector z)

Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

zi = ﬁ, 1=0,...,n—1.
Yi
The y; may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.
Usage:

N_VDiv(x, y, 2);

void N_VScale (sunrealtype ¢, N_Vector x, N_Vector z)

Scales the N_Vector x by the sunrealtype scalar ¢ and returns the result in z:
zi=cx;, t=0,...,n—1.

Usage:

N_VScale(c, x, 2);

void N_VAbs (N Vector x, N_Vector z)

Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:
zi=lxzil, 1=0,...,n—1.
Usage:

N_VAbs(x, z);

void N_VInv(N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:

N_VInv(x, z);

void N_VAddConst (N_Vector x, sunrealtype b, N_Vector z)

Adds the sunrealtype scalar b to all components of x and returns the result in the N_Vector z:
zi=x;+b, 1=0,...,n—1.
Usage:

N_VAddConst(x, b, z);

218 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

sunrealtype N_VDotProd (N_Vector x, N_Vector z)
Returns the value of the dot-product of the vectors x and y:

n—1
A=Yz
i=0

Usage:
d = N_VDotProd(x, y);
sunrealtype N_VMaxNorm(N_Vector x)
Returns the value of the [, norm of the N_Vector x:

m = max |z;|.
0<i<n

Usage:

m = N_VMaxNorm(x);

sunrealtype N_VWrmsNorm (N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) sunrealtype weight vector w:

m= (i:(xzwlP) /n

i=0

Usage:
m = N_VWrmsNorm(x, w);
sunrealtype N_VWrmsNormMask (N_Vector x, N_Vector w, N_Vector id)

Returns the weighted root mean square norm of the N_Vector x with sunrealtype weight vector w built using
only the elements of x corresponding to positive elements of the N_Vector id:

m = (Z(mlwzH(zdl)P) /n,

=0

1 >0
where H (o) = “ .
0 a<0
Usage:
m = N_VWrmsNormMask(x, w, id);
sunrealtype N_VMin(N_Vector x)

Returns the smallest element of the N_Vector x:

m = min x;.
0<i<n

Usage:

m = N_VMin(x);

6.2. Description of the NVECTOR operations 219

User Documentation for CVODES, v7.3.0

sunrealtype N_VWL2Norm (N _Vector x, N_Vector w)
Returns the weighted Euclidean /5 norm of the N_Vector x with sunrealtype weight vector w:

Usage:

m = N_VWL2Norm(x, w);

sunrealtype N_VL1INorm(N_Vector x)
Returns the /; norm of the N_Vector x:

n—1
m= Z |;].
i=0

Usage:
m = N_VLINorm(x);

void N_VCompare (sunrealtype c, N_Vector x, N_Vector z)

Compares the components of the N_Vector x to the sunrealtype scalar ¢ and returns an N_Vector z such that
forall0 <7 < mn,

1.0 if |x;| > ¢,
zZ; = .
! 0.0 otherwise
Usage:
N_VCompare(c, x, z);
sunbooleantype N_VInvTest (N_Vector x, N_Vector z)

Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:
t = N_VInvTest(x, z);

sunbooleantype N_VConstrMask (N_Vector ¢, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in ¢;:

z, > 0 if ¢ =2,
ZT; > 0 if C; = 1,
2 < 0 if ¢ =-2,

There is no constraint on z; if ¢; = 0. This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0
where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint checking.

Usage:

220 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

t = N_VConstrMask(c, x, m);

sunrealtype N_VMinQuotient (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the ele-
ments in d:

num;

min .
0<i<n denom;

A zero element in denom will be skipped. If no such quotients are found, then the large value SUN_BIG_REAL
(defined in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotient(num, denom);

6.2.2 Fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce parallel
communication on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the NVECTOR interface
will call one of the above standard vector operations as necessary. As above, for each operation, we give the name,
usage of the function, and a description of its mathematical operations below.

SUNErrCode N_VLinearCombination(int nv, sunrealtype *c, N_Vector *X, N_Vector z)

This routine computes the linear combination of nv vectors with n elements:

nv—1

Zi = E CiTj.iy i:O,...,’I’L—l7
Jj=0

where c is an array of nv scalars, x; is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns a
SUNErrCode.

Usage:
retval = N_VLinearCombination(nv, c, X, z);

SUNErrCode N_VScaleAddMulti (int nv, sunrealtype *c, N_Vector x, N_Vector *Y, N_Vector *Z.)
This routine scales and adds one vector to nv vectors with n elements:

Zji =c¢jxi + Y5 Jj=0,...,nv—1 1=0,...,n—1,

where c is an array of scalars, x is a vector, y; is a vector in the vector array Y, and z; is an output vector in the
vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VScaleAddMulti(nv, c, x, Y, Z2);

SUNErrCode N_VDotProdMulti (int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the dot product of a vector with nv vectors having n elements:

n—1
dj:Z'Tiyj,ia j:07...7m)—1,
=0

6.2. Description of the NVECTOR operations 221

User Documentation for CVODES, v7.3.0

where d is an array of scalars containing the computed dot products, x is a vector, and y; is a vector the vector
array Y. The operation returns a SUNErrCode.

Usage:

retval = N_VDotProdMulti(nv, x, Y, d);

6.2.3 Vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

SUNErrCode N_VLinearSumVectorArray (int nv, sunrealtype a, N_Vector *X, sunrealtype b, N_Vector *Y,

N_Vector *7.)

This routine computes the linear sum of two vector arrays of nv vectors with n elements:
zj; =axj; +byj;, i=0,...,n—-1 5=0,...,n0—1,

where a and b are scalars, x; and y; are vectors in the vector arrays X and Y respectively, and z; is a vector in
the output vector array Z. The operation returns a SUNErrCode.

Usage:

retval = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

SUNErrCode N_VScaleVectorArray (int nv, sunrealtype *c, N_Vector *X, N_Vector *Z)

This routine scales each element in a vector of n elements in a vector array of nv vectors by a potentially different
constant:

zji =¢jxji, 1=0,...,n—=1 j7=0,...,nv—1,

where c is an array of scalars, x; is a vector in the vector array X, and z; is a vector in the output vector array Z.
The operation returns a SUNErrCode.

Usage:

retval = N_VScaleVectorArray(nv, c, X, Z);

SUNErrCode N_VConstVectorArray (int nv, sunrealtype c, N_Vector *7.)

This routine sets each element in a vector of n elements in a vector array of nv vectors to the same value:
zjz;=¢ 1=0,....n—1 j=0,...,nv—1,

where c is a scalar and z; is a vector in the vector array Z. The operation returns a SUNErrCode.
Usage:

retval = N_VConstVectorArray(nv, c, Z);

222

Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

SUNErrCode N_VWrmsNormVectorArray (int nv, N_Vector *X, N_Vector *W, sunrealtype *m)

This routine computes the weighted root mean square norm of each vector in a vector array:

n—1 1/2

1 2 .
mj = ;;(x”w“) , j=0,...,nv—1,

where z; is a vector in the vector array X, w; is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns a SUNErrCode.

Usage:

retval = N_VWrmsNormVectorArray(nv, X, W, m);

SUNErrCode N_VWrmsNormMaskVectorArray (int nv, N_Vector *X, N_Vector *W, N_Vector id, sunrealtype *m)
This routine computes the masked weighted root mean square norm of each vector in a vector array:

1 n—1 1/2
mj = (n > (xj,iwj,iH(idi))Q) s J=0,.,m0—1,

=0

where H(id;) = 1if id; > 0 and is zero otherwise, x; is a vector in the vector array X, w; is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns a SUNErrCode.

Usage:
retval = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

SUNErrCode N_VScaleAddMultiVectorArray (int nv, int nsum, sunrealtype *c, N_Vector *X, N_Vector **YY,
N Vector **77)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:
Zkji = CkTji + Yk gi, ©=0,...,n—1 j=0,...,nv—-1, k=0,...,nsum—1
where c is an array of scalars, x; is a vector in the vector array X, y ; is a vector in the array of vector arrays YY,
and zj, ; is an output vector in the array of vector arrays ZZ. The operation returns a SUNErrCode.
Usage:
retval = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);
SUNErrCode N_VLinearCombinationVectorArray (int nv, int nsum, sunrealtype *c, N_Vector **XX, N_Vector
*7)
This routine computes the linear combination of nsum vector arrays containing nv vectors:

nsum—1

Zji = E ki i, t=0,...,n—1 57=0,...,nv—1,
k=0

where c is an array of scalars, xy, ; is a vector in array of vector arrays XX, and z; ; is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns a SUNErrCode.

Usage:

retval = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

6.2. Description of the NVECTOR operations 223

User Documentation for CVODES, v7.3.0

6.2.4 Local reduction operations

The following local reduction operations are also optional. As with the fused and vector array operations, these are
intended to reduce parallel communication on distributed memory systems. If a particular NVECTOR implementation
defines one of the local reduction operations as NULL, the NVECTOR interface will call one of the above standard vector
operations as necessary. As above, for each operation, we give the name, usage of the function, and a description of its
mathematical operations below.

sunrealtype N_VDotProdLocal (N_Vector x, N_Vector y)
This routine computes the MPI task-local portion of the ordinary dot product of x and y:

Niocal —1
d= E ZiYi,
=0

where nj,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

d = N_VDotProdLocal(x, y);

sunrealtype N_VMaxNormLocal (N_Vector x)
This routine computes the MPI task-local portion of the maximum norm of the NVECTOR x:

m= max |z,
0<i<niocal

where 1ny,¢4; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

m = N_VMaxNormLocal(x);

sunrealtype N_VMinLocal (\V_Vector x)
This routine computes the smallest element of the MPI task-local portion of the NVECTOR x:

m= min x;,
0<i<niocal

where 1,4 corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

m = N_VMinLocal(x);

sunrealtype N_VL1NormLocal (N_Vector x)
This routine computes the MPI task-local portion of the /; norm of the N_Vector x:

Niocal —1

n=) el

=0

where ny,cq; corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

224 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

n = N_VLINormLocal (x);

sunrealtype N_VWSqrSumLocal (N_Vector x, N_Vector w)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w:

Niocal —1

s= > (zw)

=0

where 1,4 corresponds to the number of components in the vector on this MPI task (or nj,cq; = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumLocal(x, w);

sunrealtype N_VWSqrSumMaskLocal (N_Vector x, N_Vector w, N_Vector id)

This routine computes the MPI task-local portion of the weighted squared sum of the NVECTOR x with weight
vector w built using only the elements of x corresponding to positive elements of the NVECTOR id:

Niocal —1
m= Y (zwH(id;))?,
i=0
where
1 0
H(a) = a >
0 a<0

and nyeeqr corresponds to the number of components in the vector on this MPI task (or njycq; = n for MPI-
unaware applications).

Usage:

s = N_VWSqrSumMaskLocal(x, w, id);

sunbooleantype N_VInvTestLocal (N_Vector x)
This routine sets the MPI task-local components of the NVECTOR z to be the inverses of the components of the
NVECTOR x, with prior testing for zero values:

1 .
zi=—,1=0,...,npcar — 1
L

where 1y,cq; corresponds to the number of components in the vector on this MPI task (or nj4cq; = n for MPI-
unaware applications). This routine returns a boolean assigned to SUNTRUE if all task-local components of x are
nonzero (successful inversion) and returns SUNFALSE otherwise.

Usage:
t = N_VInvTestLocal(x);

sunbooleantype N_VConstrMaskLocal (N_Vector ¢, N_Vector X, N_Vector m)
Performs the following constraint tests based on the values in ¢;:

z, > 0 if ¢ =2,
ZT; > 0 if C; = 1,
x, < 0 if C; = —2,

6.2. Description of the NVECTOR operations 225

User Documentation for CVODES, v7.3.0

for all MPI task-local components of the vectors. This routine returns a boolean assigned to SUNFALSE if any
task-local element failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m,
with elements equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used
only for constraint checking.

Usage:

t = N_VConstrMaskLocal(c, x, m);

sunrealtype N_VMinQuotientLocal (N_Vector num, N_Vector denom)

This routine returns the minimum of the quotients obtained by term-wise dividing num; by denom;, for all MPI
task-local components of the vectors. A zero element in denom will be skipped. If no such quotients are found,
then the large value SUN_BIG_REAL (defined in the header file sundials_types.h) is returned.

Usage:

ming = N_VMinQuotientLocal (num, denom);

6.2.5 Single Buffer Reduction Operations

The following optional operations are used to combine separate reductions into a single MPI call by splitting the local
computation and communication into separate functions. These operations are used in low-synchronization orthogo-
nalization methods to reduce the number of MPI Allreduce calls. If a particular NVECTOR implementation does
not define these operations additional communication will be required.

SUNErrCode N_VDotProdMultiLocal (int nv, N_Vector x, N_Vector *Y, sunrealtype *d)
This routine computes the MPI task-local portion of the dot product of a vector x with nv vectors y;:

Niocal —1
dj: E xiyj,ia j=0,...,m}—1,
=0

where d is an array of scalars containing the computed dot products, x is a vector, y; is a vector in the vector array
Y, and ny,cq; corresponds to the number of components in the vector on this MPI task. The operation returns a
SUNErrCode.

Usage:
retval = N_VDotProdMultilocal(nv, x, Y, d);
SUNErrCode N_VDotProdMultiAllReduce (int nv, N_Vector X, sunrealtype *d)
This routine combines the MPI task-local portions of the dot product of a vector x with nv vectors:

retval = MPI_Allreduce(MPI_IN_PLACE, d, nv, MPI_SUNREALTYPE, MPI_SUM, comm)

where d is an array of nv scalars containing the local contributions to the dot product and comm is the MPI
communicator associated with the vector x. The operation returns a SUNErrCode.

Usage:

retval = N_VDotProdMultiAllReduce(nv, x, d);

226 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

6.2.6 Exchange operations

The following vector exchange operations are also optional and are intended only for use when interfacing with the
XBraid library for parallel-in-time integration. In that setting these operations are required but are otherwise unused
by SUNDIALS packages and may be set to NULL. For each operation, we give the function signature, a description of
the expected behavior, and an example of the function usage.

SUNErrCode N_VBufSize (N_Vector X, sunindextype *size)

This routine returns the buffer size need to exchange in the data in the vector x between computational nodes.

Usage:

flag = N_VBufSize(x, &buf_size)

SUNErrCode N_VBufPack (N _Vector x, void *buf)

This routine fills the exchange buffer buf with the vector data in x.

Usage:

flag = N_VBufPack(x, &buf)

SUNErrCode N_VBufUnpack (N_Vector x, void *buf)

This routine unpacks the data in the exchange buffer buf into the vector x.

Usage:

flag = N_VBufUnpack(x, buf)

6.2.7 Output operations

The following optional vector operations are for writing vector data either to stdout or to a given file.

void N_VPrint (N _Vector x)

This routine prints vector data to stdout

Usage:

N_VPrint(x);

void N_VPrintFile(N_Vecror x, FILE *file)

This routine writes vector data to the given file pointer.

Usage:

FILE* fp = fopen('vector_data.txt", "w");
N_VPrintFile(x, fp);
fclose(fp);

6.2. Description of the NVECTOR operations 227

User Documentation for CVODES, v7.3.0

6.3 NVECTOR functions used by CVODES

In Table 6.2 below, we list the vector functions in the N_Vector module used within the CVODES package. The table
also shows, for each function, which of the code modules uses the function. The CVODES column shows function us-
age within the main integrator module, while the remaining columns show function usage within each of the CVODES
linear solver interfaces, the CVBANDPRE and CVBBDPRE preconditioner modules, and the CVODES adjoint sensi-
tivity module (denoted here by CVODEA). Here CVLS stands for the generic linear solver interface in CVODES, and
CVDIAG stands for the diagonal linear solver interface in CVODES.

At this point, we should emphasize that the CVODES user does not need to know anything about the usage of vector
functions by the CVODES code modules in order to use CVODES. The information is presented as an implementation
detail for the interested reader.

Table 6.2: List of vector functions usage by CVODES code modules

CVODES CVLS CVDIAG CVBANDPRE CVBBDPRE CVODEA

N_VGetVectorID()
N_VGetLength()
N_VClone() X
N_VCloneEmpty ()
N_VDestroy ()
N_VCloneVectorArray ()
N_VDestroyVectorArray ()
N_VSpace()
N_VGetArrayPointer ()
N_VSetArrayPointer()
N_VLinearSum()
N_VConst()

N_VProd()

N_VDiv()

N_VScale()

N_VAbs ()

N_VInv()

N_VAddConst ()
N_VMaxNorm()
N_VWrmsNorm()

N_VMin()

N_VMinQuotient ()
N_VConstrMask()
N_VCompare ()
N_VInvTest() X
N_VLinearCombination()
N_VScaleAddMulti ()
N_VDotProdMulti()
N_VLinearSumVectorArray ()
N_VScaleVectorArray()
N_VConstVectorArray ()
N_VWrmsNormVectorArray ()
N_VScaleAddMultiVectorArray ()
N_VLinearCombinationVectorArray ()

ol
Moo=)
>
ol >

TR = =N

LT o T B R B B T B T I B e B
bl

Lo B B T B B O R B

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing SUNMATRIX DENSE

228 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

or SUNMATRIX _BAND Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for CVODES modules for user feed-
back.

3. The optional function N_VDotProdMulti () is only used in the SUNNONLINSOL_FIXEDPOINT module, or when
Classical Gram-Schmidt is enabled with SPGMR or SPEFGMR.

4. This routine is only used when an iterative or matrix iterative SUNLinearSolver module is supplied to
CVODES.

Each SUNLinearSolver object may require additional N_Vector routines not listed in the table above. Please see the
the relevant descriptions of these modules in §8 for additional detail on their N_Vector requirements.

The remaining operations from §6.2 not listed above are unused and a user-supplied N_Vector module for CVODES
could omit these operations (although some may be needed by SUNNonlinearSolver or SUNLinearSolver mod-
ules). The functions N_VMinQuotient (), N_VConstrMask(), and N_VCompare() are only used when constraint
checking is enabled and may be omitted if this feature is not used.

6.4 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of an N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;

};

The header file to be included when using this module is nvector_serial.h. The installed module library to link to
is libsundials_nvecserial.lib where .1ib is typically . so for shared libraries and .a for static libraries.

6.4.1 NVECTOR_SERIAL accessor macros

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)

This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector content
structure.

Implementation:
#define NV_CONTENT_S(v) ((N_VectorContent_Serial) (v->content))

NV_OWN_DATA_S(v)

Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

6.4. The NVECTOR_SERIAL Module 229

User Documentation for CVODES, v7.3.0

NV_DATA_S(v)

The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data.

Implementation:

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

NV_LENGTH_S(v)

Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_1len to be the length of v. On the other hand, the call NV_-
LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

NV_Ith_S(v, 1)

This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_S(v,1) sets r to be the value of the i-th component of v.
The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

6.4.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in §6.2.1, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Serial (e.g. N_-
VDestroy_Serial). All the standard vector operations listed in §6.2.1 with the suffix _Serial appended are callable
via the Fortran 2003 interface by prepending an F (e.g. FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:
N_Vector N_VNew_Serial (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.
N_Vector N_VNewEmpty_Serial (sunindextype vec_length, SUNContext sunctx)
This function creates a new serial N_Vector with an empty (NULL) data array.
N_Vector N_VMake_Serial (sunindextype vec_length, sunrealtype *v_data, SUNContext sunctx)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.
(This function does not allocate memory for v_data itself.)
void N_VPrint_Serial (\V_Vector v)

This function prints the content of a serial vector to stdout.

230 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

void N_VPrintFile_Serial (N Vector v, FILE *outfile)
This function prints the content of a serial vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Serial (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector
using N_VCIone (). This guarantees that the new vectors will have the same operations enabled/disabled as cloned
vectors inherit the same enable/disable options as the vector they are cloned, from while vectors created with N_-
VNew_Serial () will have the default settings for the NVECTOR_SERIAL module.
SUNErrCode N_VEnableFusedOps_Serial (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the serial vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_Serial (\V_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the serial
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_Serial (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the serial vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMulti_Serial (NV_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the serial
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_Serial (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the serial
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_Serial (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the serial vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableConstVectorArray_Serial (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the serial vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormVectorArray_Serial (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
serial vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormMaskVectorArray_Serial (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the serial vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMultiVectorArray_Serial (NV_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the serial vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombinationVectorArray_Serial (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the serial vector. The return value is a SUNErrCode.

Notes

6.4. The NVECTOR_SERIAL Module 231

User Documentation for CVODES, v7.3.0

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = NV_DATA_S(v), or equivalently v_data = N_VGetArrayPointer(v), and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,i) within the loop.

e N_VNewEmpty_Serial() and N_VMake_Serial() set the field own_data to SUNFALSE. The implementation
of N_VDestroy () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

* To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than one
N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
length.

6.4.3 NVECTOR_SERIAL Fortran Interface

The NVECTOR_SERIAL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_serial_mod Fortran module defines interfaces to all NVECTOR_SERIAL C functions using the
intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_Serial is interfaced as FN_VNew_Serial.

The Fortran 2003 NVECTOR_SERIAL interface module can be accessed with the use statement, i.e. use fnvec-
tor_serial_mod, and linking to the library libsundials_fnvectorserial_mod.1lib in addition to the C library.
For details on where the library and module file fnvector_serial_mod.mod are installed see §11. We note that the
module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the libsundials_-
fnvectorserial_mod library.

6.5 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPIL.
It defines the content field of an N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
sunrealtype *data;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_parallel.h. The installed module library to link
to is libsundials_nvecparallel.lib where .1ib is typically .so for shared libraries and . a for static libraries.

232 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

6.5.1 NVECTOR_PARALLEL accessor macros

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)

This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content structure
of type struct N_VectorContent_Parallel.

Implementation:
#define NV_CONTENT_P(v) ((N_VectorContent_Parallel) (v->content))
NV_OWN_DATA_P(v)

Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

NV_DATA_P(v)

The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the local_data
for the N_Vector v.

The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the pointer
v_data into data.

Implementation:

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

NV_LOCLENGTH_P(v)
The assignment v_l1len = NV_LOCLENGTH_P(v) sets v_1llen to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be 11len_v.

Implementation:

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

NV_GLOBLENGTH_P (v)
The assignment v_glen = NV_GLOBLENGTH_P (V) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

Implementation:
#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)
NV_COMM_P(v)

This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

6.5. The NVECTOR_PARALLEL Module 233

User Documentation for CVODES, v7.3.0

NV_Ith_P(v, i)

This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,1i) sets r to be the value of the i-th component of the local part of v.
The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.
Here i ranges from O to n — 1, where n is the local_length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

6.5.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in §6.2. Their
names are obtained from the generic names by appending the suffix _Parallel (e.g. N_VDestroy_Parallel). The
module NVECTOR_PARALLEL provides the following additional user-callable routines:

N_Vector N_VNew_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)

This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length,

SUNContext sunctx)

This function creates a new parallel N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Parallel (MPI_Comm comm, sunindextype local_length, sunindextype global_length,

sunrealtype *v_data, SUNContext sunctx)

This function creates and allocates memory for a parallel vector with user-provided data array.
(This function does not allocate memory for v_data itself.)

sunindextype N_VGetLocalLength_Parallel (N_Vecror v)
This function returns the local vector length.

void N_VPrint_Parallel (V_Vector v)

This function prints the local content of a parallel vector to stdout.

void N_VPrintFile_Parallel (NN Vector v, FILE *outfile)

This function prints the local content of a parallel vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Parallel(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VCIlone (). This guarantees that the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from, while vectors created with
N_VNew_Parallel () will have the default settings for the NVECTOR_PARALLEL module.

SUNErrCode N_VEnableFusedOps_Parallel (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parallel
vector. The return value is a SUNErrCode.

234 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

SUNErrCode N_VEnableLinearCombination_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_Parallel (N _Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parallel
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parallel vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Parallel (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parallel vector. The return value is a SUNErrCode.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the local component
array via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_P(v), and then access
v_data[i] within the loop than it is to use NV_Ith_P(v,1i) within the loop.

e N_VNewEmpty_Parallel() and N_VMake_Parallel() set the field own_data to SUNFALSE. The implementa-
tion of N_VDestroy () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.5. The NVECTOR_PARALLEL Module 235

User Documentation for CVODES, v7.3.0

6.5.3 NVECTOR_PARALLEL Fortran Interface

The NVECTOR_PARALLEL module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_parallel_mod Fortran module defines interfaces to all NVECTOR_PARALLEL C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Parallel is interfaced as FN_VNew_Parallel.

The Fortran 2003 NVECTOR_PARALLEL interface module can be accessed with the use statement, i.e. use fn-
vector_parallel_mod, and linking to the library 1libsundials_fnvectorparallel_mod.1lib in addition to the
C library. For details on where the library and module file fnvector_parallel_mod.mod are installed see §11. We
note that the module is accessible from the Fortran 2003 SUNDIALS integrators without separately linking to the
libsundials_fnvectorparallel_mod library.

6.6 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content field
of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous data array,
a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on the vector
are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_openmp.h. The installed module library to link to
is 1ibsundials_nvecopenmp.lib where .1ib is typically .so for shared libraries and .a for static libraries. The
Fortran module file to use when using the Fortran 2003 interface to this module is fnvector_openmp_mod .mod.

6.6.1 NVECTOR_OPENMP accessor macros

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP (v)

This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP (v) sets v_cont to be a pointer to the OpenMP N_Vector content
structure.

Implementation:

#define NV_CONTENT_OMP(v) ((N_VectorContent_OpenMP) (v->content))

236 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

NV_OWN_DATA_OMP (v)

Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) (NV_CONTENT_OMP(v)->own_data)

NV_DATA_OMP(v)

The assignment v_data = NV_DATA_OMP (v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

#define NV_DATA_OMP(v) (NV_CONTENT_OMP(v)->data)

NV_LENGTH_OMP (v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP (V) sets v_len to be the /length of v. On the other hand, the call
NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_OMP(v) (NV_CONTENT_OMP(v)->length)

NV_NUM_THREADS_OMP (v)

Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_OMP (v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) (NV_CONTENT_OMP(v)->num_threads)

NV_Ith_OMP(v, i)

This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_OMP(v,i) sets r to be the value of the i-th component of v.
The assignment NV_Ith_OMP(v,i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) (NV_DATA_OMP(v)[i])

6.6. The NVECTOR_OPENMP Module 237

User Documentation for CVODES, v7.3.0

6.6.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _OpenMP (e.g. N_-
VDestroy_OpenMP). All the standard vector operations listed in §6.2 with the suffix _OpenMP appended are callable
via the Fortran 2003 interface by prepending an F’ (e.g. “'FN_VDestroy_OpenMP").

The module NVECTOR_OPENMP provides the following additional user-callable routines:

N_Vector N_VNew_OpenMP (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP (sunindextype vec_length, sunrealtype *v_data, int num_threads, SUNContext sunctx)

This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.
(This function does not allocate memory for v_data itself.)

void N_VPrint_OpenMP (N_Vector v)

This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP (N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenlMP (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenlP () will
have the default settings for the NVECTOR_OPENMP module.
SUNErrCode N_VEnableFusedOps_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the OpenMP
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the OpenMP
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the OpenMP vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMulti_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
OpenMP vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
OpenMP vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_OpenMP (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the OpenMP
vector. The return value is a SUNErrCode.

238 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

SUNErrCode N_VEnableConstVectorArray_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the OpenMP
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the OpenMP vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_OpenMP (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the OpenMP vector. The return value is a SUNErrCode.

Notes

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_OMP(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_OMP (v, i) within the loop.

e N_VNewEmpty_OpenMP () and N_VMake_OpenMP () set the field own_data to SUNFALSE. The implementation
of N_VDestroy () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.6.3 NVECTOR_OPENMP Fortran Interface

The NVECTOR_OPENMP module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_openmp_mod Fortran module defines interfaces to all NVECTOR_OPENMP C functions using the
intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted in the
C function descriptions above, the interface functions are named after the corresponding C function, but with a leading
F. For example, the function N_VNew_OpenMP is interfaced as FN_VNew_OpenMP.

The Fortran 2003 NVECTOR_OPENMP interface module can be accessed with the use statement, i.e. use fnvec-
tor_openmp_mod, and linking to the library 1ibsundials_fnvectoropenmp_mod.1ib in addition to the C library.
For details on where the library and module file fnvector_openmp_mod.mod are installed see §11.

6.6. The NVECTOR_OPENMP Module 239

User Documentation for CVODES, v7.3.0

6.7 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using POSIX threads (Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
sunbooleantype own_data;
sunrealtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_pthreads.h. The installed module library to link
tois libsundials_nvecpthreads.lib where .1ib is typically . so for shared libraries and . a for static libraries.

6.7.1 NVECTOR_PTHREADS accessor macros

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

NV_CONTENT_PT (v)

This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector content
structure.

Implementation:

#define NV_CONTENT_PT(v) ((N_VectorContent_Pthreads) (v->content))

NV_OWN_DATA_PT(v)

Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) (NV_CONTENT_PT(v)->own_data)

NV_DATA_PT(v)

The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the data for
the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by storing
the pointer v_data.

Implementation:

#define NV_DATA_PT(v) (NV_CONTENT_PT(v)->data)

240 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

NV_LENGTH_PT (v)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) (NV_CONTENT_PT(v)->length)

NV_NUM_THREADS_PT (v)
Access the num_threads component of the Pthreads N_Vector v.

The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v. On
the other hand, the call NV_NUM_THREADS_PT (v) = num_threads_v sets the num_threads of v to be num_-
threads_v.

Implementation:

#define NV_NUM_THREADS_PT(v) (NV_CONTENT_PT(v)->num_threads)

NV_Ith_PT(v, i)

This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_PT(v,1i) sets r to be the value of the i-th component of v.
The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.
Here i ranges from O to n — 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) (NV_DATA_PT(v)[i])

6.7.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in §6.2, §6.2.2,
§6.2.3, and §6.2.4. Their names are obtained from those in those sections by appending the suffix _Pthreads (e.g.
N_VDestroy_Pthreads). All the standard vector operations listed in §6.2 are callable via the Fortran 2003 interface
by prepending an F’ (e.g. “'FN_VDestroy_Pthreads). The module NVECTOR_PTHREADS provides the following
additional user-callable routines:
N_Vector N_VNew_Pthreads (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.
N_Vector N_VNewEmpty_Pthreads (sunindextype vec_length, int num_threads, SUNContext sunctx)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.
N_Vector N_VMake_Pthreads (sunindextype vec_length, sunrealtype *v_data, int num_threads, SUNContext
sunctx)

This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.
(This function does not allocate memory for v_data itself.)

void N_VPrint_Pthreads (V_Vector v)
This function prints the content of a Pthreads vector to stdout.

6.7. The NVECTOR_PTHREADS Module 241

User Documentation for CVODES, v7.3.0

void N_VPrintFile_Pthreads (N Vector v, FILE *outfile)
This function prints the content of a Pthreads vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Pthreads(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VCIone (). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Pthreads () will have the default settings for the NVECTOR_PTHREADS module.
SUNErrCode N_VEnableFusedOps_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the Pthreads
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the Pthreads
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the Pthreads vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMulti_Pthreads(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
Pthreads vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableConstVectorArray_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the Pthreads
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormVectorArray_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
Pthreads vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormMaskVectorArray_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the Pthreads vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMultiVectorArray_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the Pthreads vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombinationVectorArray_Pthreads (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the Pthreads vector. The return value is a SUNErrCode.

Notes

242 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

* When looping over the components of an N_Vector v, it is more efficient to first obtain the component array
via v_data = N_VGetArrayPointer(v), or equivalently v_data = NV_DATA_PT(v) and then access v_-
data[i] within the loop than it is to use NV_Ith_S(v,i) within the loop.

e N_VNewEmpty_Pthreads () and N_VMake_Pthreads () set the field own_data to SUNFALSE. The implementa-
tion of N_VDestroy () will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE.
In such a case, it is the user’s responsibility to deallocate the data pointer.

» To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.7.3 NVECTOR_PTHREADS Fortran Interface

The NVECTOR_PTHREADS module provides a Fortran 2003 module for use from Fortran applications.

The fnvector_pthreads_mod Fortran module defines interfaces to all NVECTOR_PTHREADS C functions using
the intrinsic iso_c_binding module which provides a standardized mechanism for interoperating with C. As noted
in the C function descriptions above, the interface functions are named after the corresponding C function, but with a
leading F. For example, the function N_VNew_Pthreads is interfaced as FN_VNew_Pthreads.

The Fortran 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement, i.e. use fn-
vector_pthreads_mod, and linking to the library 1ibsundials_fnvectorpthreads_mod.1lib in addition to the
C library. For details on where the library and module file fnvector_pthreads_mod.mod are installed see §11.

6.8 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper around
HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implementation
defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicating ownership
of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
sunbooleantype own_parvector;
sunrealtype *data;
MPI_Comm comm;
hypre_ParVector *x;

};
The header file to be included when using this module is nvector_parhyp.h. The installed module library to link to
is 1ibsundials_nvecparhyp.lib where .1ib is typically . so for shared libraries and . a for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its member variables.
Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

6.8. The NVECTOR_PARHYP Module 243

User Documentation for CVODES, v7.3.0

6.8.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in §6.2 except for N_VSe-
tArrayPointer() and N_VGetArrayPointer () because accessing raw vector data is handled by low-level HYPRE
functions. As such, this vector is not available for use with SUNDIALS Fortran interfaces. When access to raw vector
data is needed, one should extract the HYPRE vector first, and then use HYPRE methods to access the data. Usage
examples of NVECTOR_PARHYP are provided in the cvAdvDiff_non_ph. c example programs for CVODE and the
ark_diurnal_kry_ph.c example program for ARKODE.

The names of parhyp methods are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_ParHyp (e.g. N_VDestroy_ParHyp). The module NVECTOR_PARHYP provides the following additional user-
callable routines:

N_Vector N_VNewEmpty_ParHyp (MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)
This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.

N_Vector N_VMake_ParHyp (hypre_ParVector *x, SUNContext sunctx)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

hypre_ParVector *N_VGetVector_ParHyp (N_Vector v)
This function returns a pointer to the underlying HYPRE vector.

void N_VPrint_ParHyp (V_Vector v)
This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp (N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VMake_ParHyp (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_ParHyp () will
have the default settings for the NVECTOR_PARHYP module.
SUNErrCode N_VEnableFusedOps_ParHyp (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parhyp
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_ParHyp (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parhyp
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_ParHyp (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parhyp vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMulti_ParHyp (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the parhyp
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_ParHyp (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

244 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

SUNErrCode N_VEnableScaleVectorArray_ParHyp (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_ParHyp (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parhyp
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_ParHyp (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_ParHyp(N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_ParHyp(N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parhyp vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_ParHyp (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the parhyp vector. The return value is a SUNErrCode.

Notes

¢ When there is a need to access components of an N_Vector_ParHyp v, itis recommended to extract the HYPRE
vector via x_vec = N_VGetVector_ParHyp(v) and then access components using appropriate HYPRE func-
tions.

* N_VNewEmpty_ParHyp(), and N_VMake_ParHyp () set the field
own_parvector to SUNFALSE. The implementation of N_VDestroy () will not attempt to delete an underly-
ing HYPRE vector for any N_Vector with own_parvector set to SUNFALSE. In such a case, it is the user’s
responsibility to delete the underlying vector.

* To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

6.9 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an MPI
communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
sunbooleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_petsc.h. The installed module library to link to
is libsundials_nvecpetsc.lib where .1ib is typically . so for shared libraries and .a for static libraries.

6.9. The NVECTOR_PETSC Module 245

User Documentation for CVODES, v7.3.0

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its member variables.
Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.

6.9.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in §6.2 except for N_VGe-
tArrayPointer() and N_VSetArrayPointer(). As such, this vector cannot be used with SUNDIALS Fortran
interfaces. When access to raw vector data is needed, it is recommended to extract the PETSc vector first, and then use
PETSc methods to access the data. Usage examples of NVECTOR_PETSC is provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffice
_Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the following additional user-callable
routines:

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length, sunindextype global_length,
SUNContext sunctx)
This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It is
used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great caution.
N_Vector N_VMake_Petsc(Vec *pvec, SUNContext sunctx)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.
Vec *N_VGetVector_Petsc(N_Vector v)
This function returns a pointer to the underlying PETSc vector.

void N_VPrint_Petsc(N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc(NN_Vector v, const char fname[])
This function prints the global content of a wrapped PETSc vector to fname.
By default all fused and vector array operations are disabled in the NVECTOR_PETSC module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VMake_Petsc(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VMake_Petsc () will
have the default settings for the NVECTOR_PETSC module.
SUNErrCode N_VEnableFusedOps_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the PETSc
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the PETSc
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the PETSc vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMulti_Petsc(N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the PETSc
vector. The return value is a SUNErrCode.

246 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

SUNErrCode N_VEnableLinearSumVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the PETSc
vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMultiVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the PETSc vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombinationVectorArray_Petsc(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the PETSc vector. The return value is a SUNErrCode.

Notes

* When there is a need to access components of an N_Vector_Petsc v, it is recommended to extract the PETSc
vector via x_vec = N_VGetVector_Petsc(v); and then access components using appropriate PETSc func-
tions.

e The functions N_VNewEmpty_Petsc() and N_VMake_Petsc(), set the field own_data to SUNFALSE. The im-
plementation of N_VDestroy () will not attempt to free the pointer pvec for any N_Vector with own_data set
to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the pvec pointer.

» To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.10 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an NVECTOR implementation in the CUDA language. The module allows for
SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are already familiar with
CUDA and GPU programming. Building this vector module requires a CUDA compiler and, by extension, a C++
compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda

{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;

(continues on next page)

6.10. The NVECTOR_CUDA Module 247

User Documentation for CVODES, v7.3.0

(continued from previous page)

SUNMemory device_data;
SUNCudaExecPolicy* stream_exec_policy;
SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;

void* priv; /* 'private' data */

};
typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in change of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, and a private data structure which holds additional members
that should not be accessed directly.

When instantiated with N_VNew_Cuda (), the underlying data will be allocated on both the host and the device. Al-
ternatively, a user can provide host and device data arrays by using the N_VMake_Cuda () constructor. To use CUDA
managed memory, the constructors N_VNewManaged_Cuda () and N_VMakelManaged_Cuda () are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewl/i th-
MemHelp_Cuda (). Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, include nvector_cuda.h and link to the library 1ibsundials_nveccuda.
1ib. The extension, .1lib, is typically .so for shared libraries and .a for static libraries.

6.10.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, the NVECTOR_CUDA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:
sunrealtype *N_VGetHostArrayPointer_Cuda(N_Vector v)

This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v)

This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Cuda(N_Vector v)

This function returns a boolean flag indicating if the vector data array is in managed memory or not.

The NVECTOR_CUDA module defines implementations of all standard vector operations defined in §6.2, §6.2.2,
§6.2.3, and §6.2.4, except for N_VSetArrayPointer (), and, if using unmanaged memory, N_VGetArrayPointer ().
As such, this vector can only be used with SUNDIALS direct solvers and preconditioners when using managed mem-
ory. The NVECTOR_CUDA module provides separate functions to access data on the host and on the device for the
unmanaged memory use case. It also provides methods for copying from the host to the device and vice versa. Usage
examples of NVECTOR_CUDA are provided in example programs for CVODE [43].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix
_Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following additional user-callable
routines:

N_Vector N_VNew_Cuda (sunindextype length, SUNContext sunctx)

This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated on both
the host and device.

248 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

N_Vector N_VNewManaged_Cuda (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Cuda (sunindextype length, sunbooleantype use_managed_mem,

SUNMemoryHelper helper, SUNContext sunctx)

This function creates a new CUDA N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing
memory.

N_Vector N_VNewEmpty_Cuda (sunindextype vec_length, SUNContext sunctx)
This function creates a new CUDA N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Cuda (sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext

sunctx)

This function creates a CUDA N_Vector with user-supplied vector data arrays for the host and the device.

N_Vector N_VMakeManaged_Cuda (sunindextype vec_length, sunrealtype *vdata, SUNContext sunctx)
This function creates a CUDA N_Vector with a user-supplied managed memory data array.
N_Vector N_VMakeWithManagedAllocator_Cuda (sunindextype length, void *(*allocfn)(size_t size), void
(*freefn)(void *ptr))

This function creates a CUDA N_Vector with a user-supplied memory allocator. It requires the user to provide
a corresponding free function as well. The memory allocated by the allocator function must behave like CUDA
managed memory.

The module NVECTOR_CUDA also provides the following user-callable routines:
void N_VSetKernelExecPolicy_Cuda(/N_Vector v, SUNCudaExecPolicy *stream_exec_policy,
SUNCudaExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction CUDA kernels. By default the vector is setup to use the SUNCudaThreadDirectExecPolicy
and SUNCudaBlockReduceAtomicExecPolicy. Any custom execution policy for reductions must ensure that
the grid dimensions (number of thread blocks) is a multiple of the CUDA warp size (32). See §6.10.2 below
for more information about the SUNCudaExecPolicy class. Providing NULL for an argument will result in the
default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy.
It is strongly recommended that this function is called immediately after constructing the vector, and any
subsequent vector be created by cloning to ensure consistent execution policies across vectors

sunrealtype *N_VCopyToDevice_Cuda(N_Vector v)
This function copies host vector data to the device.

sunrealtype *N_VCopyFromDevice_Cuda(N_Vector v)

This function copies vector data from the device to the host.

void N_VPrint_Cuda (N_Vector v)
This function prints the content of a CUDA vector to stdout.

6.10. The NVECTOR_CUDA Module 249

User Documentation for CVODES, v7.3.0

void N_VPrintFile_Cuda (/N _Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_CUDA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Cuda (), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone (). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Cuda () will
have the default settings for the NVECTOR_CUDA module.
SUNErrCode N_VEnableFusedOps_Cuda (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the CUDA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the CUDA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_Cuda(/N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the CUDA vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMulti_Cuda (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the CUDA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableConstVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the CUDA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormVectorArray_Cuda(/N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
CUDA vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormMaskVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the CUDA vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the CUDA vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the CUDA vector. The return value is a SUNErrCode.

Notes

250 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

e When there is a need to access components of an N_Vector_Cuda, v, it is recommended to use functions N_-
VGetDeviceArrayPointer_Cuda() or N_VGetHostArrayPointer_Cuda (). However, when using managed
memory, the function N_VGetArrayPointer () may also be used.

* To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.10.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: : cuda: : ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNCudaExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNCudaExecPolicy class is defined as

typedef sundials::cuda::ExecPolicy SUNCudaExecPolicy

where the sundials: :cuda: :ExecPolicy class is defined in the header file sundials_cuda_policies.hpp, as
follows:

class sundials: :cuda: :ExecPolicy
ExecPolicy(cudaStream_t stream = 0)
virtual size_t gridSize (size_t numWorkUnits = 0, size_t blockDim = 0)
virtual size_t blockSize (size_t numWorkUnits = 0, size_t gridDim = 0)
virtual const cudaStream_t *stream() const
virtual ExecPolicy *clone() const
ExecPolicy *clone_new_stream(cudaStream_t stream) const
virtual bool atomic() const
virtual ~ExecPolicy()

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :cuda: : ThreadDirectExecPolicy (aka in the global
namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, cudaStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)
{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)
{3

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{

(continues on next page)

6.10. The NVECTOR_CUDA Module 251

User Documentation for CVODES, v7.3.0

(continued from previous page)
/* ceil(n/m) = floor((n + m - 1) / m) */
return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t /*numliorkUnits*/ = 0, size_t /*gridDim*/ = Q) const
{

return blockDim_;

}
virtual ExecPolicy* clone() const
! return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:

const size_t blockDim_;
3

In total, SUNDIALS provides 3 execution policies:

SUNCudaThreadDirectExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Maps each CUDA thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a CUDA stream is provided, it will be used to execute the kernel.

SUNCudaGridStrideExecPolicy (const size_t blockDim, const size_t gridDim, const cudaStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a CUDA stream is provided, it
will be used to execute the kernel.

SUNCudaBlockReduceExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Is for kernels performing a reduction across individual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the CUDA warp size. The grid size (gridDim)
can be set to any value greater than 0. If it is set to O, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a CUDA stream is provided, it will be used to execute
the kernel.

SUNCudaBlockReduceAtomicExecPolicy (const size_t blockDim, const cudaStream_t stream = 0)

Is for kernels performing a reduction across individual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a CUDA stream is provided,
it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

cudaStream_t stream;
cudaStreamCreate (&stream) ;
SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

252 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

6.11 The NVECTOR_HIP Module

The NVECTOR_HIP module is an NVECTOR implementation using the AMD ROCm HIP library [2]. The module
allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU devices. It is intended for users who are already
familiar with HIP and GPU programming. Building this vector module requires the HIP-clang compiler. The vector
content layout is as follows:

struct _N_VectorContent_Hip

{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNHipExecPolicy* stream_exec_policy;
SUNHipExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
void* priv; /* 'private' data */
};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e. itis in charge
of freeing the data), pointers to vector data on the host and the device, pointers to SUNHipExecPolicy implementations
that control how the HIP kernels are launched for streaming and reduction vector kernels, and a private data structure
which holds additional members that should not be accessed directly.

When instantiated with N_VNew_Hip (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Hip () constructor. To use managed
memory, the constructors N_VNewlManaged_Hip() and N_VMakelManaged_Hip () are provided. Additionally, a user-
defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewlVi thMemHelp_-
Hip (). Details on each of these constructors are provided below.

To use the NVECTOR_HIP module, include nvector_hip.h and link to the library libsundials_nvechip.1lib.
The extension, .1ib, is typically . so for shared libraries and .a for static libraries.

6.11.1 NVECTOR_HIP functions

Unlike other native SUNDIALS vector types, the NVECTOR_HIP module does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:
sunrealtype *N_VGetHostArrayPointer_Hip(N_Vector v)

This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Hip(N_Vector v)

This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Hip (N_Vector v)

This function returns a boolean flag indicating if the vector data array is in managed memory or not.
The NVECTOR_HIP module defines implementations of all standard vector operations defined in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VSetArrayPointer (). The names of vector operations are obtained from those in §6.2,

§6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Hip (e.g. N_VDestroy_Hip). The module NVECTOR_HIP pro-
vides the following additional user-callable routines:

6.11. The NVECTOR_HIP Module 253

User Documentation for CVODES, v7.3.0

N_Vector N_VNew_Hip (sunindextype length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated on both the
host and device.

N_Vector N_VNewManaged_Hip (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a HIP N_Vector. The vector data array is allocated in managed
memory.

N_Vector N_VNewWithMemHelp_Hip (sunindextype length, sunbooleantype use_managed_mem,

SUNMemoryHelper helper, SUNContext sunctx)

This function creates a new HIP N_Vector with a user-supplied SUNMemoryHelper for allocating/freeing mem-
ory.

N_Vector N_VNewEmpty_Hip (sunindextype vec_length, SUNContext sunctx)

This function creates a new HIP N_Vector where the members of the content structure have not been allocated.
This utility function is used by the other constructors to create a new vector.

N_Vector N_VMake_Hip (sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext
sunctx)
This function creates a HIP N_Vector with user-supplied vector data arrays for the host and the device.
N_Vector N_VMakeManaged_Hip (sunindextype vec_length, sunrealtype *vdata, SUNContext sunctx)
This function creates a HIP N_Vector with a user-supplied managed memory data array.
The module NVECTOR_HIP also provides the following user-callable routines:
void N_VSetKernelExecPolicy_ Hip(/N_Vector v, SUNHipExecPolicy *stream_exec_policy, SUNHipExecPolicy
*reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction HIP kernels. By default the vector is setup to use the SUNHipThreadDirectExecPolicy ()
and SUNHipBlockReduceExecPolicy (). Any custom execution policy for reductions must ensure that the grid
dimensions (number of thread blocks) is a multiple of the HIP warp size (32 for NVIDIA GPUs, 64 for AMD
GPUs). See §6.11.2 below for more information about the SUNHipExecPolicy class. Providing NULL for an
argument will result in the default policy being restored.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

Note: All vectors used in a single instance of a SUNDIALS package must use the same execution policy.
It is strongly recommended that this function is called immediately after constructing the vector, and any
subsequent vector be created by cloning to ensure consistent execution policies across vectors*

sunrealtype *N_VCopyToDevice_Hip (N_Vector v)

This function copies host vector data to the device.
sunrealtype *N_VCopyFromDevice_Hip (N_Vector v)

This function copies vector data from the device to the host.
void N_VPrint_Hip(N_Vecror v)

This function prints the content of a HIP vector to stdout.
void N_VPrintFile_Hip(N_Vector v, FILE *outfile)

This function prints the content of a HIP vector to outfile.

254 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

By default all fused and vector array operations are disabled in the NVECTOR_HIP module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Hip (), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Hip () will have
the default settings for the NVECTOR_HIP module.
SUNErrCode N_VEnableFusedOps_Hip (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the HIP vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_Hip (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the HIP
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the HIP vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMulti_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the HIP
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the HIP
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the HIP vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableConstVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the HIP vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormVectorArray_Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the HIP
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormMaskVectorArray_Hip (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the HIP vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMultiVectorArray_ Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the HIP vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombinationVectorArray_ Hip(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the HIP vector. The return value is a SUNErrCode.
Notes

e When there is a need to access components of an N_Vector_Hip, v, it is recommended to use functions N_-
VGetDeviceArrayPointer_Hip() or N_VGetHostArrayPointer_Hip(). However, when using managed
memory, the function N_VGetArrayPointer () may also be used.

6.11. The NVECTOR_HIP Module 255

User Documentation for CVODES, v7.3.0

» To maximize efficiency, vector operations in the NVECTOR_HIP implementation that have more than one N_-
Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.11.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: :hip: :ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNHipExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNHipExecPolicy class is defined as

typedef sundials::hip::ExecPolicy SUNHipExecPolicy

where the sundials: :hip: :ExecPolicy class is defined in the header file sundials_hip_policies.hpp, as fol-
lows:

class sundials: :hip: :ExecPolicy
ExecPolicy (hipStream_t stream = 0)
virtual size_t gridSize (size_t numWorkUnits = 0, size_t blockDim = 0)
virtual size_t blockSize (size_t numWorkUnits = 0, size_t gridDim = 0)
virtual const hipStream_t *stream() const
virtual ExecPolicy *clone() const
ExecPolicy *clone_new_streamChipStream_t stream) const
virtual bool atomic () const
virtual ~ExecPolicy()

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :hip: :ThreadDirectExecPolicy (aka in the global
namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy
{
public:
ThreadDirectExecPolicy(const size_t blockDim, hipStream_t stream = 0)
: blockDim_(blockDim), ExecPolicy(stream)
{}

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), ExecPolicy(ex.stream_)
{3}

virtual size_t gridSize(size_t numWorkUnits = 0, size_t /*blockDim*/ = 0) const
{

/* ceil(n/m) = floor((n + m - 1) / m) */

return (numWorkUnits + blockSize() - 1) / blockSize();

(continues on next page)

256 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

(continued from previous page)

virtual size_t blockSize(size_t /*numliorkUnits*/ = 0, size_t /*gridDim*/ = Q) const
{

return blockDim_;

}
virtual ExecPolicy* clone() const
' return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:

const size_t blockDim_;

};

In total, SUNDIALS provides 4 execution policies:

SUNHipThreadDirectExecPolicy (const size_t blockDim, const hipStream_t stream = 0)

Maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set to
anything. The grid size will be calculated so that there are enough threads for one thread per element.
If a HIP stream is provided, it will be used to execute the kernel.

SUNHipGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const hipStream_t
stream = 0)

Is for kernels that use grid stride loops. The number of threads per block (blockDim) can be set to
anything. The number of blocks (gridDim) can be set to anything. If a HIP stream is provided, it will
be used to execute the kernel.

SUNHipBlockReduceExecPolicy (const size_t blockDim, const hipStream_t stream = 0)

Is for kernels performing a reduction across individual thread blocks. The number of threads per
block (blockDim) can be set to any valid multiple of the HIP warp size. The grid size (gridDim) can
be set to any value greater than 0. If it is set to O, then the grid size will be chosen so that there is
enough threads for one thread per work unit. If a HIP stream is provided, it will be used to execute
the kernel.

SUNHipBlockReduceAtomicExecPolicy(const size_t blockDim, const hipStream_t stream = 0)

Is for kernels performing a reduction across individual thread blocks using atomic operations. The
number of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size will be
chosen so that there is enough threads for one thread per work unit. If a HIP stream is provided, it
will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created like so:

hipStream_t stream;
hipStreamCreate(&streanm) ;
SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.11. The NVECTOR_HIP Module 257

User Documentation for CVODES, v7.3.0

6.12 The NVECTOR_SYCL Module

The NVECTOR_SYCL module is an experimental NVECTOR implementation using the SYCL abstraction layer. At
present the only supported SYCL compiler is the DPC++ (Intel one API) compiler. This module allows for SUNDIALS
vector kernels to run on Intel GPU devices. The module is intended for users who are already familiar with SYCL and
GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl

{
sunindextype length;
sunbooleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNSyclExecPolicy* stream_exec_policy;
SUNSyclExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
sycl: :queue*® queue;
void* priv; /* 'private' data */
3

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the execution policies
and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory objects for the vector data on
the host and device, pointers to execution policies that control how streaming and reduction kernels are launched, a
SUNMemoryHelper for performing memory operations, the SYCL queue, and a private data structure which holds
additional members that should not be accessed directly.

When instantiated with N_VNew_Syc1 (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Sycl () constructor. To use managed
(shared) memory, the constructors N_VNewManaged_Sycl () and N_VMakeManaged_Sycl () are provided. Addition-
ally, a user-defined SUNMemoryHelper for allocating/freeing data can be provided with the constructor N_VNewl/i th-
MemHelp_Sycl(). Details on each of these constructors are provided below.

The header file to include when using this is nvector_sycl.h. The installed module library to link to is 1ibsundi-
als_nvecsycl.lib. The extension .1ib is typically . so for shared libraries .a for static libraries.

6.12.1 NVECTOR_SYCL functions

The NVECTOR_SYCL module implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and §6.2.4,
except for N_VDotProdMulti(), N_ViirmsNormVectorArray (), N_VWirmsNormMaskVectorArray () as support for
arrays of reduction vectors is not yet supported. These functions will be added to the NVECTOR_SYCL implementa-
tion in the future. The names of vector operations are obtained from those in the aforementioned sections by appending
the suffix _Sycl (e.g., N_VDestroy_Sycl).

Additionally, the NVECTOR_SYCL module provides the following user-callable constructors for creating a new
NVECTOR_SYCL:
N_Vector N_VNew_Sycl (sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)

This function creates and allocates memory for an NVECTOR_SYCL. Vector data arrays are allocated on both
the host and the device associated with the input queue. All operation are launched in the provided queue.

258 Chapter 6. Vector Data Structures

https://www.khronos.org/sycl/

User Documentation for CVODES, v7.3.0

N_Vector N_VNewManaged_Sycl (sunindextype vec_length, sycl::queue *Q, SUNContext sunctx)

This function creates and allocates memory for a NVECTOR_SYCL. The vector data array is allocated in man-
aged (shared) memory using the input queue. All operation are launched in the provided queue.

N_Vector N_VMake_Sycl (sunindextype length, sunrealtype *h_vdata, sunrealtype *d_vdata, sycl::queue *Q,

SUNContext sunctx)
This function creates an NVECTOR_SYCL with user-supplied host and device data arrays. This function does
not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VMakeManaged_Sycl (sunindextype length, sunrealtype *vdata, sycl::queue *Q, SUNContext sunctx)
This function creates an NVECTOR_SYCL with a user-supplied managed (shared) data array. This function
does not allocate memory for data itself. All operation are launched in the provided queue.

N_Vector N_VNewWithMemHelp_Sycl (sunindextype length, sunbooleantype use_managed_mem,

SUNMemoryHelper helper, sycl::queue *Q, SUNContext sunctx)
This function creates an NVECTOR_SYCL with a user-supplied SUNMemoryHelper for allocating/freeing
memory. All operation are launched in the provided queue.

N_Vector N_VNewEmpty_Sycl ()

This function creates a new N_Vector where the members of the content structure have not been allocated. This

utility function is used by the other constructors to create a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host and device and
copying data between the two memory spaces. Note the generic NVECTOR operations N_VGetArrayPointer () and
N_VSetArrayPointer () are mapped to the corresponding HostArray functions given below. To ensure memory
coherency, a user will need to call the CopyTo or CopyFrom functions as necessary to transfer data between the host
and device, unless managed (shared) memory is used.

sunrealtype *N_VGetHostArrayPointer_Sycl (N_Vector v)
This function returns a pointer to the vector host data array.
sunrealtype *N_VGetDeviceArrayPointer_Sycl (N_Vector v)
This function returns a pointer to the vector device data array.
void N_VSetHostArrayPointer_Sycl (sunrealtype *h_vdata, N_Vector v)
This function sets the host array pointer in the vector v.
void N_VSetDeviceArrayPointer_Sycl (sunrealtype *d_vdata, N_Vector v)
This function sets the device array pointer in the vector v.
void N_VCopyToDevice_Sycl (N_Vector v)
This function copies host vector data to the device.
void N_VCopyFromDevice_Sycl (N_Vector v)
This function copies vector data from the device to the host.
sunbooleantype N_VIsManagedMemory_Sycl (N_Vector v)

This function returns SUNTRUE if the vector data is allocated as managed (shared) memory otherwise it returns
SUNFALSE.

The following user-callable function is provided to set the execution policies for how SYCL kernels are launched on a
device.

SUNErrCode N_VSetKernelExecPolicy_Sycl (N_Vector v, SUNSyclExecPolicy *stream_exec_policy,
SUNSyclExecPolicy *reduce_exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the stream-
ing and reduction kernels. By default the vector is setup to use the SUNSyclThreadDirectExecPolicy () and

6.12. The NVECTOR_SYCL Module 259

User Documentation for CVODES, v7.3.0

SUNSyclBlockReduceExecPolicy (). See §6.12.2 below for more information about the SUNSyclExecPol-
icy class.

The input execution policies are cloned and, as such, may be freed after being attached to the desired vectors. A
NULL input policy will reset the execution policy to the default setting.

Note

All vectors used in a single instance of a SUNDIALS package must use the same execution policy. It is
strongly recommended that this function is called immediately after constructing the vector, and any sub-
sequent vector be created by cloning to ensure consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless managed memory is used,
a user may need to call N_VCopyFromDevice_Sycl () to ensure consistency between the host and device array.
void N_VPrint_Sycl (N_Vector v)

This function prints the host data array to stdout.

void N_VPrintFile_Sycl (N_Vector v, FILE *outfile)
This function prints the host data array to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_SYCL module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To ensure
consistency across vectors it is recommended to first create a vector with one of the above constructors, enable/disable
the desired operations on that vector with the functions below, and then use this vector in conjunction with N_VClone ()
to create any additional vectors. This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created by any
of the constructors above will have the default settings for the NVECTOR_SYCL module.
SUNErrCode N_VEnableFusedOps_Sycl (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the SYCL
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_Sycl (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the SYCL
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_Sycl (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the SYCL vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_Sycl (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the SYCL
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_Sycl (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the SYCL vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableConstVectorArray_Sycl (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the SYCL vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMultiVectorArray_Sycl (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the SYCL vector. The return value is a SUNErrCode.

260 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

SUNErrCode N_VEnableLinearCombinationVectorArray_Sycl (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the SYCL vector. The return value is a SUNErrCode.

Notes

* When there is a need to access components of an NVECTOR_SYCL, v, it is recommended to use N_VGetDe-
viceArrayPointer () to access the device array or N_VGetArrayPointer () for the host array. When using
managed (shared) memory, either function may be used. To ensure memory coherency, a user may need to call
the CopyTo or CopyFrom functions as necessary to transfer data between the host and device, unless managed
(shared) memory is used.

* To maximize efficiency, vector operations in the NVECTOR_SYCL implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the SYCL kernel execution parameters used by kernels within SUN-
DIALS are defined by objects of the sundials: :sycl: :ExecPolicy abstract class type (this class can be accessed in
the global namespace as SUNSyclExecPolicy). Thus, users may provide custom execution policies that fit the needs
of their problem. The SUNSyclExecPolicy class is defined as

typedef sundials::sycl::ExecPolicy SUNSyclExecPolicy

where the sundials: :sycl::ExecPolicy class is defined in the header file sundials_sycl_policies.hpp, as
follows:

class sundials: :sycl: :ExecPolicy
virtual size_t gridSize (size_t numWorkUnits = 0, size_t blockDim = 0)
virtual size_t blockSize (size_t numWorkUnits = 0, size_t gridDim = 0)
virtual ExecPolicy *clone() const
virtual ~ExecPolicy()

For consistency the function names and behavior mirror the execution policies for the CUDA and HIP vectors. In
the SYCL case the blockSize is the local work-group range in a one-dimensional nd_range (threads per group).
The gridSize is the number of local work groups so the global work-group range in a one-dimensional nd_range is
blockSize * gridSize (total number of threads). All vector kernels are written with a many-to-one mapping where
work units (vector elements) are mapped in a round-robin manner across the global range. As such, the blockSize
and gridSize can be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the abstract class and im-
plements the methods. The SUNDIALS provided sundials: :sycl: :ThreadDirectExecPolicy (aka in the global
namespace as SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class ThreadDirectExecPolicy : public ExecPolicy

{
public:
ThreadDirectExecPolicy(const size_t blockDim)
: blockDim_(blockDim)
{3

(continues on next page)

6.12. The NVECTOR_SYCL Module 261

User Documentation for CVODES, v7.3.0

(continued from previous page)

ThreadDirectExecPolicy(const ThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_)
{3

virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const

{
return (numWorkUnits + blockSize() - 1) / blockSize();

}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{

return blockDim_;

}
virtual ExecPolicy* clone() const
{
return static_cast<ExecPolicy*>(new ThreadDirectExecPolicy(*this));
}
private:
const size_t blockDim_;

e

SUNDIALS provides the following execution policies:
SUNSyclThreadDirectExecPolicy (const size_t blockDim)

Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread). Based on the local work-group range (number of threads per group, blockSize) the
number of local work-groups (gridSize) is computed so there are enough work-items in the global
work-group range (total number of threads, blockSize * gridSize) for one work unit per work-
item (thread).

SUNSyclGridStrideExecPolicy (const size_t blockDim, const size_t gridDim)

Is for kernels performing streaming operations and maps each work unit (vector element) to a work-
item (thread) in a round-robin manner so the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value. In
this case the global work-group range (total number of threads, blockSize * gridSize) may be
less than the number of work units (vector elements).

SUNSyclBlockReduceExecPolicy (const size_t blockDim)

Is for kernels performing a reduction, the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value or the
gridSize may be set to 0 in which case the global range is chosen so that there are enough threads
for at most two work units per work-item.

By default the NVECTOR_SYCL module uses the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduce-
ExecPolicy where the default blockDim is determined by querying the device for the max_work_group_size. User
may specify different policies by constructing a new SyclExecPolicy and attaching it with N_VSetKernelExecPol-
icy_Sycl(). For example, a policy that uses 128 work-items (threads) per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length, SUNContext sunctx);
SUNSyclThreadDirectExecPolicy thread_direct(128);

(continues on next page)

262 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

(continued from previous page)

SUNSyclBlockReduceExecPolicy block_reduce(128);
flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix and an N_-
Vector) since they do not hold any modifiable state information.

6.13 The NVECTOR_RAJA Module

The NVECTOR_RAIJA module is an experimental NVECTOR implementation using the RAJA hardware abstraction
layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on AMD, NVIDIA, or Intel GPU
devices. The module is intended for users who are already familiar with RAJA and GPU programming. Building this
vector module requires a C++11 compliant compiler and either the NVIDIA CUDA programming environment, the
AMD ROCm HIP programming environment, or a compiler that supports the SYCL abstraction layer. When using the
AMD ROCm HIP environment, the HIP-clang compiler must be utilized. Users can select which backend to compile
with by setting the SUNDTALS_RAJA_BACKENDS CMake variable to either CUDA, HIP, or SYCL. Besides the CUDA,
HIP, and SYCL backends, RAJA has other backends such as serial, OpenMP, and OpenACC. These backends are not
used in this SUNDIALS release.

The vector content layout is as follows:

struct _N_VectorContent_Raja

{
sunindextype length;
sunbooleantype own_data;
sunrealtype” host_data;
sunrealtype*® device_data;
void* priv; /* 'private' data */
3

The content members are the vector length (size), a boolean flag that signals if the vector owns the data (i.e., it is in
charge of freeing the data), pointers to vector data on the host and the device, and a private data structure which holds
the memory management type, which should not be accessed directly.

When instantiated with N_VNew_Raja (), the underlying data will be allocated on both the host and the device. Alter-
natively, a user can provide host and device data arrays by using the N_VMake_Raja () constructor. To use managed
memory, the constructors N_VNewManaged_Raja() and N_VMakeManaged_Raja() are provided. Details on each of
these constructors are provided below.

The header file to include when using this is nvector_raja.h. The installed module library to link to is 1ibsun-
dials_nveccudaraja.lib when using the CUDA backend, libsundials_nvechipraja.lib when using the HIP
backend, and libsundials_nvecsyclraja.lib when using the SYCL backend. The extension .1lib is typically
. so for shared libraries . a for static libraries.

6.13. The NVECTOR_RAJA Module 263

https://software.llnl.gov/RAJA/

User Documentation for CVODES, v7.3.0

6.13.1 NVECTOR_RAJA functions

Unlike other native SUNDIALS vector types, the NVECTOR_RAJA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:
sunrealtype *N_VGetHostArrayPointer_Raja(N_Vector v)

This function returns pointer to the vector data on the host.

sunrealtype *N_VGetDeviceArrayPointer_Raja(N_Vector v)

This function returns pointer to the vector data on the device.

sunbooleantype N_VIsManagedMemory_Raja(N_Vector v)
This function returns a boolean flag indicating if the vector data is allocated in managed memory or not.

The NVECTOR_RAIJA module defines the implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3, and
§6.2.4, except for N_VDotProdMulti (), N_VWrmsNormVectorArray (), and N_VWrmsNormMaskVectorArray () as
support for arrays of reduction vectors is not yet supported in RAJA. These functions will be added to the NVEC-
TOR_RAJA implementation in the future. Additionally, the operations N_VGetArrayPointer () and N_VSetArray-
Pointer() are not implemented by the RAJA vector. As such, this vector cannot be used with SUNDIALS direct
solvers and preconditioners. The NVECTOR_RAJA module provides separate functions to access data on the host and

on the device. It also provides methods for copying from the host to the device and vice versa. Usage examples of
NVECTOR_RAIJA are provided in some example programs for CVODE [43].

The names of vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suffix _Raja
(e.g. N_VDestroy_Raja). The module NVECTOR_RAIJA provides the following additional user-callable routines:
N_Vector N_VNew_Raja (sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.
N_Vector N_VNewManaged_Raja(sunindextype vec_length, SUNContext sunctx)
This function creates and allocates memory for a RAJA N_Vector. The vector data array is allocated in managed
memory.
N_Vector N_VMake_Raja(sunindextype length, sunrealtype *h_data, sunrealtype *v_data, SUNContext sunctx)
This function creates an NVECTOR_RAIJA with user-supplied host and device data arrays. This function does
not allocate memory for data itself.
N_Vector N_VMakeManaged_Raja(sunindextype length, sunrealtype *vdata, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied managed memory data array. This function
does not allocate memory for data itself.
N_Vector N_VNewWithMemHelp_Raja (sunindextype length, sunbooleantype use_managed_mem,
SUNMemoryHelper helper, SUNContext sunctx)
This function creates an NVECTOR_RAJA with a user-supplied SUNMemoryHelper for allocating/freeing
memory.
N_Vector N_VNewEmpty_Raja()
This function creates a new N_Vector where the members of the content structure have not been allocated. This
utility function is used by the other constructors to create a new vector.
void N_VCopyToDevice_Raja(N_Vector v)

This function copies host vector data to the device.

void N_VCopyFromDevice_Raja(N_Vector v)

This function copies vector data from the device to the host.

264 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

void N_VPrint_Raja(N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja(N_Vecror v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.
By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The following additional
user-callable routines are provided to enable or disable fused and vector array operations for a specific vector. To
ensure consistency across vectors it is recommended to first create a vector with N_VNew_Raja (), enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from that vector using N_-
VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Raja() will
have the default settings for the NVECTOR_RAIJA module.
SUNErrCode N_VEnableFusedOps_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the RAJA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the RAJA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the RAJA vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the RAJA
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the RAJA vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableConstVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the RAJA vector.
The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMultiVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the RAJA vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombinationVectorArray_Raja(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the RAJA vector. The return value is a SUNErrCode.
Notes

e When there is a need to access components of an NVECTOR_RAIJA vector, it is recommended to use func-
tions N_VGetDeviceArrayPointer_Raja() or N_VGetHostArrayPointer_Raja(). However, when using
managed memory, the function N_VGetArrayPointer () may also be used.

* To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s respon-
sibility to ensure that such routines are called with N_Vector arguments that were all created with the same
internal representations.

6.13. The NVECTOR_RAJA Module 265

User Documentation for CVODES, v7.3.0

6.14 The NVECTOR_KOKKOS Module

Added in version 6.4.0.

The NVECTOR_KOKKOS N_Vector implementation provides a vector data structure using Kokkos [29, 66] to sup-
port a variety of backends including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library,
the module is also written in modern C++ (it requires C++14) as a header only library. To utilize this N_Vector
users will need to include nvector/nvector_kokkos.hpp. More instructions on building SUNDIALS with Kokkos
enabled are given in §11.3.22. For instructions on building and using Kokkos, refer to the Kokkos documentation.

6.14.1 Using NVECTOR_KOKKOS

The NVECTOR_KOKKOS module is defined by the Vector templated class in the sundials: :kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>
class Vector : public sundials::impl::BaseNVector,
public sundials::ConvertibleTo<N_Vector>

To use the NVECTOR_KOKKOS module, we construct an instance of the Vector class e.g.,

// Vector with extent length using the default execution space
sundials: :kokkos: :Vector<> x{length, sunctx};

// Vector with extent length using the Cuda execution space
sundials: :kokkos: :Vector<Kokkos: :Cuda> x{length, sunctx};

// Vector based on an existing Kokkos::View
Kokkos: :View<> view{"a view", length};
sundials: :kokkos: :Vector<> x{view, sunctx};

// Vector based on an existing Kokkos::View for device and host

Kokkos: :View<Kokkos: :Cuda> device_view{"a view", length};

Kokkos: :View<Kokkos: :HostMirror> host_view{Kokkos: :create_mirror_view(device_view)};
sundials: :kokkos: :Vector<> x{device_view, host_view, sunctx};

Instances of the Vector class are implicitly or explicitly (using the Convert () method) convertible to a N_Vector
e.g.,

sundials: :kokkos: :Vector<> x{length, sunctx};
N_Vector x2 = X; // implicit conversion to N_Vector
N_Vector x3 = x.Convert(); // explicit conversion to N_Vector

No further interaction with a Vector is required from this point, and it is possible to use the N_Vector API to operate
on X2 or x3.

Warning

N_VDestroy() should never be called on a N_Vector that was created via conversion from a sundi-
als::kokkos: :Vector. Doing so may result in a double free.

The underlying Vector can be extracted from a N_Vector using GetVec() e.g.,

266 Chapter 6. Vector Data Structures

https://kokkos.github.io/kokkos-core-wiki/index.html

User Documentation for CVODES, v7.3.0

auto x_vec = GetVec<>(x3);

6.14.2 NVECTOR_KOKKOS API

In this section we list the public API of the sundials: :kokkos: : Vector class.

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = class
ExecutionSpace::memory_space>
class Vector : public sundials::impl::BaseN Vector, public sundials::ConvertibleTo<N_Vector>

using view_type = Kokkos::View<sunrealtype*, MemorySpace>;
using size_type = typename view_type::size_type;

using host_view_type = typename view_type::HostMirror;
using memory_space = MemorySpace;

using exec_space = typename MemorySpace::execution_space;
using range_policy = Kokkos::RangePolicy<exec_space>;
Vector () = default

Default constructor — the vector must be copied or moved to.

Vector (size_type length, SUNContext sunctx)

Constructs a single Vector which is based on a 1D Kokkos: : View with the ExecutionSpace and Memo-
rySpace provided as template arguments.

Parameters
¢ length — length of the vector (i.e., the extent of the View)
» sunctx — the SUNDIALS simulation context object (SUNContext)

Vector (view_type view, SUNContext sunctx)

Constructs a single Vector from an existing Kokkos: :View. The View ExecutionSpace and MemoryS-
pace must match the ExecutionSpace and MemorySpace provided as template arguments.

Parameters
e view— A 1D Kokkos: :View
» sunctx — the SUNDIALS simulation context object (SUNContext)

Vector (view_type view, host_view_type host_view, SUNContext sunctx)

Constructs a single Vector from an existing Kokkos: :View for the device and the host. The Execution-
Space and MemorySpace of the device View must match the ExecutionSpace and MemorySpace provided
as template arguments.

Parameters
e view — A 1D Kokkos: :View for the device
* host_view — A 1D Kokkos: :View that is a Kokkos: :HostMirrror for the device view
e sunctx — the SUNDIALS simulation context object (SUNContext)

Vector (Vector &&that_vector) noexcept
Move constructor.

6.14. The NVECTOR_KOKKOS Module 267

User Documentation for CVODES, v7.3.0

Vector (const Vector &that_vector)
Copy constructor. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,
such as length, but it does not copy the data.

Vector &operator=(Vector &&rhs) noexcept
Move assignment.

Vector &operator=_const Vector &rhs)

Copy assignment. This creates a clone of the Vector, i.e., it creates a new Vector with the same properties,

such as length, but it does not copy the data.
virtual ~Vector () = default;

Default destructor.
size_type Length ()

Get the vector length i.e., extent (0).
view_type View()

Get the underlying Kokkos : View for the device.
host_view_type HostView()

Get the underlying Kokkos : View for the host.

operator N_Vector() override
Implicit conversion to a N_Vector.

operator N_Vector() const override
Implicit conversion to a N_Vector.

N_Vector Convert () override

Explicit conversion to a N_Vector.

N_Vector Convert () const override
Explicit conversion to a N_Vector.
template<class VectorType>
inline VectorType *GetVec (N_Vector v)
Get the Vector wrapped by a N_Vector.
void CopyToDevice (N_Vector v)
Copy the data from the host view to the device view with Kokkos: :deep_copy.

void CopyFromDevice (N_Vector v)

Copy the data to the host view from the device view with Kokkos: :deep_copy.
template<class VectorType>
void CopyToDevice (VectorType &v)

Copy the data from the host view to the device view with Kokkos: : deep_copy.
template<class VectorType>
void CopyFromDevice (VectorType &v)

Copy the data to the host view from the device view with Kokkos: : deep_copy.

268 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

6.15 The NVECTOR_OPENMPDEY Module

In situations where a user has access to a device such as a GPU for offloading computation, SUNDIALS provides an
NVECTOR implementation using OpenMP device offloading, called NVECTOR_OPENMPDEV.

The NVECTOR_OPENMPDEYV implementation defines the content field of the N_Vector to be a structure containing
the length of the vector, a pointer to the beginning of a contiguousdata array on the host, a pointer to the beginning of
a contiguous data array on the device, and a boolean flag own_data which specifies the ownership of host and device
data arrays.

struct _N_VectorContent_OpenMPDEV
{
sunindextype length;
sunbooleantype own_data;
sunrealtype *host_data;
sunrealtype *dev_data;

e

The header file to include when using this module is nvector_openmpdev.h. The installed module library to link to
is libsundials_nvecopenmpdev.1lib where .1ib is typically . so for shared libraries and .a for static libraries.

6.15.1 NVECTOR_OPENMPDEY accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMPDEYV vector.

NV_CONTENT_OMPDEV (v)
This macro gives access to the contents of the NVECTOR_OPENMPDEV N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the NVECTOR_OPENMPDEV
content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ((N_VectorContent_OpenMPDEV) (v->content))

NV_OWN_DATA_OMPDEV (v)
Access the own_data component of the OpenMPDEV N_Vector v.

The assignment v_data = NV_DATA_HOST_OMPDEV(v) sets v_data to be a pointer to the first component of
the data on the host for the N_Vector v.

Implementation:
#define NV_OWN_DATA_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->own_data)

NV_DATA_HOST_OMPDEV (v)

The assignment NV_DATA_HOST_OMPDEV(v) = v_data sets the host component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_HOST_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->host_data)

6.15. The NVECTOR_OPENMPDEYV Module 269

User Documentation for CVODES, v7.3.0

NV_DATA_DEV_OMPDEV (v)

The assignment v_dev_data = NV_DATA_DEV_OMPDEV(v) sets v_dev_data to be a pointer to the first compo-
nent of the data on the device for the N_Vector v. The assignment NV_DATA_DEV_OMPDEV(v) = v_dev_data
sets the device component array of v to be v_dev_data by storing the pointer v_dev_data.

Implementation:

#define NV_DATA_DEV_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->dev_data)

NV_LENGTH_OMPDEV (V)
Access the length component of the OpenMPDEV N_Vector v.

The assignment v_len = NV_LENGTH_OMPDEV (v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_OMPDEV(v) = len_v sets the length of v to be len_v.

#define NV_LENGTH_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->length)

6.15.2 NVECTOR_OPENMPDEY functions

The NVECTOR_OPENMPDEV module defines OpenMP device offloading implementations of all vector operations
listed in §6.2, §6.2.2, §6.2.3, and §6.2.4, except for N_VSetArrayPointer (). As such, this vector cannot be used with
the SUNDIALS direct solvers and preconditioners. It also provides methods for copying from the host to the device
and vice versa.

The names of the vector operations are obtained from those in §6.2, §6.2.2, §6.2.3, and §6.2.4 by appending the suf-
fix _OpenMPDEV (e.g. N_VDestroy_OpenMPDEV). The module NVECTOR_OPENMPDEYV provides the following
additional user-callable routines:
N_Vector N_VNew_OpenMPDEV (sunindextype vec_length, SUNContext sunctx)

This function creates and allocates memory for an NVECTOR_OPENMPDEV N_Vector.
N_Vector N_VNewEmpty_OpenMPDEV (sunindextype vec_length, SUNContext sunctx)

This function creates a new NVECTOR_OPENMPDEYV N_Vector with an empty (NULL) data array.
N_Vector N_VMake_OpenMPDEV (sunindextype vec_length, sunrealtype *h_vdata, sunrealtype *d_vdata, SUNContext

sunctx)

This function creates an NVECTOR_OPENMPDEYV vector with user-supplied vector data arrays h_vdata and
d_vdata. This function does not allocate memory for data itself.

sunrealtype *N_VGetHostArrayPointer_OpenMPDEV(N_Vector v)

This function returns a pointer to the host data array.
sunrealtype *N_VGetDeviceArrayPointer_OpenMPDEV(N_Vector v)

This function returns a pointer to the device data array.
void N_VPrint_OpenMPDEV (N_Vector v)

This function prints the content of an NVECTOR_OPENMPDEYV vector to stdout.
void N_VPrintFile_OpenMPDEV(N_Vector v, FILE *outfile)

This function prints the content of an NVECTOR_OPENMPDEYV vector to outfile.
void N_VCopyToDevice_OpenMPDEV(N_Vector v)

This function copies the content of an NVECTOR_OPENMPDEYV vector’s host data array to the device data
array.

270 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

void N_VCopyFromDevice_OpenMPDEV(N_Vector v)
This function copies the content of an NVECTOR_OPENMPDEYV vector’s device data array to the host data
array.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMPDEYV module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMPDEV, enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone. This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors inherit
the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMPDEV will
have the default settings for the NVECTOR_OPENMPDEYV module.
SUNErrCode N_VEnableFusedOps_OpenMPDEV (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the NVEC-
TOR_OPENMPDEYV vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_OpenMPDEV (N _Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the NVEC-
TOR_OPENMPDEYV vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the NVECTOR_OPENMPDEY vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMul ti_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the NVEC-
TOR_OPENMPDEYV vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_OpenMPDEV (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the NVEC-
TOR_OPENMPDEY vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_OpenMPDEV (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the NVECTOR _-
OPENMPDEV vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableConstVectorArray_OpenMPDEV (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the NVEC-
TOR_OPENMPDEYV vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
NVECTOR_OPENMPDEY vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormMaskVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the NVECTOR_OPENMPDEYV vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMultiVectorArray_OpenMPDEV (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the NVECTOR_OPENMPDEYV vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombinationVectorArray_OpenMPDEV(N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays in
the NVECTOR_OPENMPDEY vector. The return value is a SUNErrCode.

Notes

6.15. The NVECTOR_OPENMPDEYV Module 271

User Documentation for CVODES, v7.3.0

* When looping over the components of an N_Vector v, it is most efficient to first obtain the component array via
h_data = N_VGetArrayPointer(v) for the host array or v_data = N_VGetDeviceArrayPointer(v) for
the device array, or equivalently to use the macros h_data = NV_DATA_HOST_OMPDEV(v) for the host array or
v_data = NV_DATA_DEV_OMPDEV(v) for the device array, and then access h_data[i] or v_data[i] within
the loop.

* When accessing individual components of an N_Vector v on the host remember to first copy the array back
from the device with N_VCopyFromDevice_OpenMPDEV(v) to ensure the array is up to date.

e N_VNewEmpty_OpenMPDEV() and N_VMake_OpenMPDEV() set the field own_data to SUNFALSE. The imple-
mentation of N_VDestroy () will not attempt to free the pointer data for any N_Vector with own_data set to
SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointers.

* To maximize efficiency, vector operations in the NVECTOR_OPENMPDEV implementation that have more
than one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

6.16 The NVECTOR_TRILINOS Module

The NVECTOR_TRILINOS module is an NVECTOR wrapper around the Trilinos Tpetra vector. The interface to
Tpetra is implemented in the sundials::trilinos::nvector_tpetra::TpetraVectorInterface class. This
class simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the NVECTOR C code. A pointer to an instance of this class is kept in the content field
of the N_Vector object, to ensure that the Tpetra vector is not deleted for as long as the N_Vector object exists.

The Tpetra vector type in the sundials::trilinos: :nvector_tpetra: :TpetraVectorInterface class is de-
fined as:

typedef Tpetra::Vector<sunrealtype, int, sunindextype> vector_type;

The Tpetra vector will use the SUNDIALS-specified sunrealtype as its scalar type, int as the local ordinal type, and
sunindextype as the global ordinal type. This type definition will use Tpetra’s default node type. Available Kokkos
node types as of the Trilinos 12.14 release are serial (single thread), OpenMP, Pthread, and CUDA. The default node
type is selected when building the Kokkos package. For example, the Tpetra vector will use a CUDA node if Tpetra
was built with CUDA support and the CUDA node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector_trilinos.h. The installed module library to link to
is libsundials_nvectrilinos.lib where .1ib is typically . so for shared libraries and . a for static libraries.

6.16.1 NVECTOR_TRILINOS functions

The NVECTOR_TRILINOS module defines implementations of all vector operations listed in §6.2, §6.2.2, §6.2.3,
and §6.2.4, except for N_VGetArrayPointer() and N_VSetArrayPointer (). As such, this vector cannot be used
with the SUNDIALS direct solvers and preconditioners. When access to raw vector data is needed, it is recommended
to extract the Trilinos Tpetra vector first, and then use Tpetra vector methods to access the data. Usage examples of
NVECTOR_TRILINOS are provided in example programs for IDA.

The names of vector operations are obtained from those in §6.2 by appending the suffice _Trilinos (e.g. N_VDe-
stroy_Trilinos). Vector operations call existing Tpetra: : Vector methods when available. Vector operations spe-
cific to SUNDIALS are implemented as standalone functions in the namespace sundials: :trilinos: :nvector_-
tpetra: :TpetraVector, located in the file SundialsTpetraVectorKernels.hpp. The module NVECTOR_-
TRILINOS provides the following additional user-callable routines:

272 Chapter 6. Vector Data Structures

https://github.com/trilinos/Trilinos

User Documentation for CVODES, v7.3.0

Teuchos::RCP<vector_type> N_VGetVector_Trilinos (N_Vector v)

This C++ function takes an N_Vector as the argument and returns a reference counting pointer to the underlying
Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos (Teuchos::RCP<vector_type> v)

This C++ function creates and allocates memory for an NVECTOR_TRILINOS wrapper around a user-provided
Tpetra vector. This is a standalone function defined in the global namespace.

Notes

* The template parameter vector_type should be set as:

typedef sundials::trilinos::nvector_tpetra::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in SUNDIALS.

* When there is a need to access components of an N_Vector_Trilinos v, it is recommended to extract the
Trilinos vector object via x_vec = N_VGetVector_Trilinos(v) and then access components using the ap-
propriate Trilinos functions.

 The function N_VDestroy_Trilinos only deletes the N_Vector wrapper. The underlying Tpetra vector object
will exist for as long as there is at least one reference to it.

6.17 The NVECTOR_MANY VECTOR Module

The NVECTOR_MANY VECTOR module is designed to facilitate problems with an inherent data partitioning within a
computational node for the solution vector. These data partitions are entirely user-defined, through construction of dis-
tinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MANY VEC-
TOR. Two potential use cases for this flexibility include:

A. Heterogeneous computational architectures: for data partitioning between different computing resources on
a node, architecture-specific subvectors may be created for each partition. For example, a user could create
one GPU-accelerated component based on NVECTOR_CUDA, and another CPU threaded component based on
NVECTOR_OPENMP.

B. Structure of arrays (SOA) data layouts: for problems that require separate subvectors for each solution compo-
nent. For example, in an incompressible Navier-Stokes simulation, separate subvectors may be used for velocities
and pressure, which are combined together into a single NVECTOR_MANY VECTOR for the overall “solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANYVECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MANYVECTOR implementation is designed to work with any NVECTOR subvectors that imple-
ment the minimum “standard” set of operations in §6.2.1. Additionally, NVECTOR_MANYVECTOR sets no limit
on the number of subvectors that may be attached (aside from the limitations of using sunindextype for indexing,
and standard per-node memory limitations). However, while this ostensibly supports subvectors with one entry each
(i.e., one subvector for each solution entry), we anticipate that this extreme situation will hinder performance due to
non-stride-one memory accesses and increased function call overhead. We therefore recommend a relatively coarse
partitioning of the problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MANY VECTOR. However, even at present we antici-
pate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.

6.17. The NVECTOR_MANYVECTOR Module 273

User Documentation for CVODES, v7.3.0

6.17.1 NVECTOR_MANYVECTOR structure

The NVECTOR_MANYVECTOR implementation defines the content field of N_Vector to be a structure containing
the number of subvectors comprising the Many Vector, the global length of the Many Vector (including all subvectors), a
pointer to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors
that populate subvec_array.

struct _N_VectorContent_ManyVector {

sunindextype num_subvectors; /¥ number of vectors attached /
sunindextype global_length; /* overall manyvector length 74
N_Vector* subvec_array; /* pointer to N_Vector array &/
sunbooleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector_manyvector.h. The installed module library to link
against is libsundials_nvecmanyvector.lib where .1lib is typically .so for shared libraries and .a for static
libraries.

6.17.2 NVECTOR_MANYVECTOR functions

The NVECTOR_MANY VECTOR module implements all vector operations listed in §6.2 except for N_VGetArray-
Pointer(), N_VSetArrayPointer (), N_VScaleAddMultiVectorArray(), and N_VLinearCombinationVec-
torArray (). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. Instead, the
NVECTOR_MANYVECTOR module provides functions to access subvectors, whose data may in turn be accessed
according to their NVECTOR implementations.

The names of vector operations are obtained from those in §6.2 by appending the suffix _ManyVector (e.g. N_-
VDestroy_ManyVector). The module NVECTOR_MANYVECTOR provides the following additional user-callable
routines:
N_Vector N_VNew_ManyVector (sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)

This function creates a Many Vector from a set of existing NVECTOR objects.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer

array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the Many Vector that contains them.

Upon successful completion, the new Many Vector is returned; otherwise this routine returns NULL (e.g., a mem-
ory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray (), and N_VSetVecAtIndexVectorArray () to create the N_Vector* argument. This
is further explained in §4.7.2.5, and the functions are documented in §6.1.1.

N_Vector N_VGetSubvector_ManyVector (N_Vector v, sunindextype vec_num)
This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_ManyVector (N _Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:
local_length = N_VGetSubvectorLocalLength ManyVector(v, 0);

sunrealtype *N_VGetSubvectorArrayPointer_ManyVector (N_Vector v, sunindextype vec_num)
This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

274 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

SUNErrCode N_VSetSubvectorArrayPointer_ManyVector (sunrealtype *v_data, N_Vector v, sunindextype
vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.
The function returns a SUNErrCode.

sunindextype N_VGetNumSubvectors_ManyVector (N_Vector v)
This function returns the overall number of subvectors in the Many Vector object.
By default all fused and vector array operations are disabled in the NVECTOR_MANYVECTOR module, except for
N_VWirmsNormVectorArray () and N_VWrmsNormMaskVectorArray (), that are enabled by default. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_MNanyVector(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VCIlone (). This guarantees that the new vectors will have the same operations enabled/disabled,
since cloned vectors inherit those configuration options from the vector they are cloned from, while vectors created
with N_VNew_ManyVector () will have the default settings for the NVECTOR_MANYVECTOR module. We note
that these routines do not call the corresponding routines on subvectors, so those should be set up as desired before
attaching them to the ManyVector in N_VNew_ManyVector().
SUNErrCode N_VEnableFusedOps_ManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the manyvector
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearCombination_ManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the manyvec-
tor vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleAddMulti_ManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the manyvector vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableDotProdMul ti_ManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
manyvector vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableLinearSumVectorArray_ManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
manyvector vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableScaleVectorArray_ManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the manyvector
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableConstVectorArray_ManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the manyvector
vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormVectorArray_ManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
manyvector vector. The return value is a SUNErrCode.
SUNErrCode N_VEnableWrmsNormMaskVectorArray_ManyVector (N_Vector v, sunbooleantype tf)

This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the manyvector vector. The return value is a SUNErrCode.

6.17. The NVECTOR_MANYVECTOR Module 275

User Documentation for CVODES, v7.3.0

Notes

e N_VNew_ManyVector() sets the field own_data = SUNFALSE. The ManyVector implementation of N_VDe-
stroy () will not attempt to call N_VDestroy() on any subvectors contained in the subvector array for any
N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the sub-
vectors.

» To maximize efficiency, arithmetic vector operations in the NVECTOR_MANY VECTOR implementation that
have more than one N_Vector argument do not check for consistent internal representation of these vectors. It
is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

6.18 The NVECTOR_MPIMANY VECTOR Module

The NVECTOR_MPIMANY VECTOR module is designed to facilitate problems with an inherent data partitioning
for the solution vector, and when using distributed-memory parallel architectures. As such, this implementation sup-
ports all use cases allowed by the MPI-unaware NVECTOR_MANY VECTOR implementation, as well as partitioning
data between nodes in a parallel environment. These data partitions are entirely user-defined, through construction
of distinct NVECTOR modules for each component, that are then combined together to form the NVECTOR_MPI-
MANYVECTOR. Three potential use cases for this module include:

A. Heterogeneous computational architectures (single-node or multi-node): for data partitioning between different
computing resources on a node, architecture-specific subvectors may be created for each partition. For example,
a user could create one MPI-parallel component based on NVECTOR_PARALLEL, another GPU-accelerated
component based on NVECTOR_CUDA.

B. Process-based multiphysics decompositions (multi-node): for computations that combine separate MPI-based
simulations together, each subvector may reside on a different MPI communicator, and the MPIMany Vector
combines these via an MPI intercommunicator that connects these distinct simulations together.

C. Structure of arrays (SOA) data layouts (single-node or multi-node): for problems that require separate subvectors
for each solution component. For example, in an incompressible Navier-Stokes simulation, separate subvectors
may be used for velocities and pressure, which are combined together into a single MPIMany Vector for the overall
“solution”.

The above use cases are neither exhaustive nor mutually exclusive, and the NVECTOR_MANY VECTOR implemen-
tation should support arbitrary combinations of these cases.

The NVECTOR_MPIMANY VECTOR implementation is designed to work with any NVECTOR subvectors that im-
plement the minimum “standard” set of operations in §6.2.1, however significant performance benefits may be obtained
when subvectors additionally implement the optional local reduction operations listed in §6.2.4.

Additionally, NVECTOR_MPIMANY VECTOR sets no limit on the number of subvectors that may be attached (aside
from the limitations of using sunindextype for indexing, and standard per-node memory limitations). However, while
this ostensibly supports subvectors with one entry each (i.e., one subvector for each solution entry), we anticipate that
this extreme situation will hinder performance due to non-stride-one memory accesses and increased function call
overhead. We therefore recommend a relatively coarse partitioning of the problem, although actual performance will
likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time integration modules that
will leverage the problem partitioning enabled by NVECTOR_MPIMANY VECTOR. However, even at present we an-
ticipate that users will be able to leverage such data partitioning in their problem-defining ODE right-hand side function,
DAE or nonlinear solver residual function, preconditioners, or custom SUNLinearSolver or SUNNonlinearSolver
modules.

276 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

6.18.1 NVECTOR_MPIMANYVECTOR structure

The NVECTOR_MPIMANY VECTOR implementation defines the content field of N_Vector to be a structure con-
taining the MPI communicator (or MPI_COMM_NULL if running on a single-node), the number of subvectors comprising
the MPIMany Vector, the global length of the MPIMany Vector (including all subvectors on all MPI ranks), a pointer
to the beginning of the array of subvectors, and a boolean flag own_data indicating ownership of the subvectors that
populate subvec_array.

struct _N_VectorContent_MPIManyVector {

MPI_Comm comm; /* overall MPI communicator 4
sunindextype num_subvectors; /* number of vectors attached B
sunindextype global_length; /* overall mpimanyvector length */
N_Vector™ subvec_array; /* pointer to N_Vector array %/
sunbooleantype own_data; /* flag indicating data ownership */

e

The header file to include when using this module is nvector_mpimanyvector.h. The installed module library to
link against is libsundials_nvecmpimanyvector.lib where .1ib is typically .so for shared libraries and .a for
static libraries.

Note

If SUNDIALS is configured with MPI disabled, then the MPIMany Vector library will not be built. Furthermore, any
user codes that include nvector_mpimanyvector.h must be compiled using an MPI-aware compiler (whether the
specific user code utilizes MPI or not). We note that the NVECTOR_MANY VECTOR implementation is designed
for Many Vector use cases in an MPI-unaware environment.

6.18.2 NVECTOR_MPIMANYVECTOR functions

The NVECTOR_MPIMANY VECTOR module implements all vector operations listed in §6.2, except for N_VGetAr-
rayPointer(), N_VSetArrayPointer (), N_VScaleAddMultiVectorArray(), and N_VLinearCombination-
VectorArray (). As such, this vector cannot be used with the SUNDIALS direct solvers and preconditioners. In-
stead, the NVECTOR_MPIMANY VECTOR module provides functions to access subvectors, whose data may in turn
be accessed according to their NVECTOR implementations.

The names of vector operations are obtained from those in §6.2 by appending the suffix _MPIManyVector (e.g. N_-
VDestroy_MPIManyVector). The module NVECTOR_MPIMANY VECTOR provides the following additional user-
callable routines:

N_Vector N_VNew_MPIManyVector (sunindextype num_subvectors, N_Vector *vec_array, SUNContext sunctx)

This function creates a MPIMany Vector from a set of existing NVECTOR objects, under the requirement that
all MPI-aware subvectors use the same MPI communicator (this is checked internally). If none of the subvectors
are MPI-aware, then this may equivalently be used to describe data partitioning within a single node. We note
that this routine is designed to support use cases A and C above.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIMany Vector that contains them.

Upon successful completion, the new MPIMany Vector is returned; otherwise this routine returns NULL (e.g., if
two MPI-aware subvectors use different MPI communicators).

Users of the Fortran 2003 interface to this function will first need to use the generic N_Vector utility functions
N_VNewVectorArray(), and N_VSetVecAtIndexVectorArray() to create the N_Vector* argument. This
is further explained in §4.7.2.5, and the functions are documented in §6.1.1.

6.18. The NVECTOR_MPIMANYVECTOR Module 277

User Documentation for CVODES, v7.3.0

N_Vector N_VMake_MPIManyVector (MPI_Comm comm, sunindextype num_subvectors, N_Vector *vec_array,
SUNContext sunctx)
This function creates a MPIMany Vector from a set of existing NVECTOR objects, and a user-created MPI com-
municator that “connects” these subvectors. Any MPI-aware subvectors may use different MPI communicators
than the input comm. We note that this routine is designed to support any combination of the use cases above.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIManyVector().

If all subvectors are MPI-unaware, then the input comm argument should be MPI_COMM_NULL, although in this
case, it would be simpler to call N_VNew_MPIManyVector () instead, or to just use the NVECTOR_MANY VEC-
TOR module.

This routine will copy all N_Vector pointers from the input vec_array, so the user may modify/free that pointer
array after calling this function. However, this routine does not allocate any new subvectors, so the underlying
NVECTOR objects themselves should not be destroyed before the MPIMany Vector that contains them.

Upon successful completion, the new MPIMany Vector is returned; otherwise this routine returns NULL (e.g., if
the input vec_array is NULL).
N_Vector N_VGetSubvector_MPIManyVector (N_Vector v, sunindextype vec_num)

This function returns the vec_num subvector from the NVECTOR array.

sunindextype N_VGetSubvectorLocalLength_MPIManyVector (N_Vector v, sunindextype vec_num)
This function returns the local length of the vec_num subvector from the NVECTOR array.

Usage:

local_length = N_VGetSubvectorLocalLength_MPIManyVector(v, 0);

sunrealtype *N_VGetSubvectorArrayPointer_MPIManyVector (N_Vector v, sunindextype vec_num)

This function returns the data array pointer for the vec_num subvector from the NVECTOR array.

If the input vec_num is invalid, or if the subvector does not support the N_VGetArrayPointer operation, then
NULL is returned.

SUNErrCode N_VSetSubvectorArrayPointer_MPIManyVector (sunrealtype *v_data, N_Vector v, sunindextype
vec_num)

This function sets the data array pointer for the vec_num subvector from the NVECTOR array.
The function returns a SUNErrCode.

sunindextype N_VGetNumSubvectors_MPIManyVector (N_Vector v)

This function returns the overall number of subvectors in the MPIMany Vector object.

By default all fused and vector array operations are disabled in the NVECTOR_MPIMANY VECTOR module, except
for N_VWirmsNormVectorArray () and N_ViWirmsNormMaskVectorArray (), that are enabled by default. The follow-
ing additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_MPIManyVec-
tor() or N_VMake_MPIManyVector (), enable/disable the desired operations for that vector with the functions below,
and create any additional vectors from that vector using N_VCIone (). This guarantees that the new vectors will have
the same operations enabled/disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N_VNew_MPIManyVector () and N_VMake_MPIManyVector () will have the
default settings for the NVECTOR_MPIMANY VECTOR module. We note that these routines do not call the corre-
sponding routines on subvectors, so those should be set up as desired before attaching them to the MPIMany Vector in
N_VNew_MPIManyVector () or N_VMake_MPIManyVector().

278 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

SUNErrCode N_VEnableFusedOps_MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the MPI-
Many Vector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearCombination_MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the MPI-
Many Vector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleAddMulti_MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the MPIMany Vector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableDotProdMulti_MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the MPI-
Many Vector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableLinearSumVectorArray_MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the MPI-
Many Vector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableScaleVectorArray_MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the MPI-
Many Vector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableConstVectorArray_MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the MPI-
Many Vector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormVectorArray_ MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
MPIMany Vector vector. The return value is a SUNErrCode.

SUNErrCode N_VEnableWrmsNormMaskVectorArray_MPIManyVector (N_Vector v, sunbooleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector arrays
in the MPIMany Vector vector. The return value is a SUNErrCode.

Notes

e N_VNew_MPIManyVector() and N_VMake_MPIManyVector () setthe field own_data = SUNFALSE. The MPI-
Many Vector implementation of N_VDestroy () will not attempt to call N_VDestroy () on any subvectors con-
tained in the subvector array for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s
responsibility to deallocate the subvectors.

» To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIMANY VECTOR implementation
that have more than one N_Vector argument do not check for consistent internal representation of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same subvector representations.

6.18. The NVECTOR_MPIMANYVECTOR Module 279

User Documentation for CVODES, v7.3.0

6.19 The NVECTOR_MPIPLUSX Module

The NVECTOR_MPIPLUSX module is designed to facilitate the MPI+X paradigm, where X is some form of on-
node (local) parallelism (e.g. OpenMP, CUDA). This paradigm is becoming increasingly popular with the rise of
heterogeneous computing architectures.

The NVECTOR_MPIPLUSX implementation is designed to work with any NVECTOR that implements the minimum
“standard” set of operations in §6.2.1. However, it is not recommended to use the NVECTOR_PARALLEL, NVEC-
TOR_PARHYP, NVECTOR_PETSC, or NVECTOR_TRILINOS implementations underneath the NVECTOR_MPI-
PLUSX module since they already provide MPI capabilities.

6.19.1 NVECTOR_MPIPLUSX structure

The NVECTOR_MPIPLUSX implementation is a thin wrapper around the NVECTOR_MPIMANY VECTOR. Ac-
cordingly, it adopts the same content structure as defined in §6.18.1.

The header file to include when using this module is nvector_mpiplusx.h. The installed module library to link
against is 1libsundials_nvecmpiplusx.lib where .1ib is typically .so for shared libraries and .a for static li-
braries.

Note

If SUNDIALS is configured with MPI disabled, then the mpiplusx library will not be built. Furthermore, any user
codes that include nvector_mpiplusx.h must be compiled using an MPI-aware compiler.

6.19.2 NVECTOR_MPIPLUSX functions

The NVECTOR_MPIPLUSX module adopts all vector operations listed in §6.2, from the NVECTOR_MPI-
MANYVECTOR (see §6.18) except for N_VGetArrayPointer(), and N_VSetArrayPointer(); the module pro-
vides its own implementation of these functions that call the local vector implementations. Therefore, the NVECTOR_-
MPIPLUSX module implements all of the operations listed in the referenced sections except for N_VScaleAddMul -
tiVectorArray(),and N_VLinearCombinationVectorArray (). Accordingly, it’s compatibility with the SUNDI-
ALS direct solvers and preconditioners depends on the local vector implementation.

The module NVECTOR_MPIPLUSX provides the following additional user-callable routines:

N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector *local_vector, SUNContext sunctx)
This function creates a MPIPlusX vector from an existing local (i.e. on node) NVECTOR object, and a user-
created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will internally call MPI_Comm_dup
to create a copy of the input comm, so the user-supplied comm argument need not be retained after the call to
N_VMake_MPIPIlusX().

This routine will copy the NVECTOR pointer to the input local_vector, so the underlying local NVECTOR
object should not be destroyed before the mpiplusx that contains it.

Upon successful completion, the new MPIPlusX is returned; otherwise this routine returns NULL (e.g., if the
input local_vector is NULL).

N_Vector N_VGetLocalVector_MPIPlusX(N Vector v)
This function returns the local vector underneath the MPIPlusX NVECTOR.

280 Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

sunindextype N_VGetLocalLength_MPIPlusX(N_Vector v)
This function returns the local length of the vector underneath the MPIPlusX NVECTOR.

Usage:

local_length = N_VGetLocalLength MPIPlusX(Vv);

sunrealtype *N_VGetArrayPointer_MPIPlusX(N_Vector v)

This function returns the data array pointer for the local vector.
If the local vector does not support the N_VGetArrayPointer () operation, then NULL is returned.

void N_VSetArrayPointer_MPIPlusX(sunrealtype *v_data, N_Vector v)

This function sets the data array pointer for the local vector if the local vector implements the N_VSetArray-
Pointer () operation.

The NVECTOR_MPIPLUSX module does not implement any fused or vector array operations. Instead users should
enable/disable fused operations on the local vector.

Notes

e N_VMake_MPIPIlusX() sets the field own_data = SUNFALSE and the MPIPlusX implementation of N_VDe-
stroy () will not call N_VDestroy () on the local vector. In this a case, it is the user’s responsibility to deallocate
the local vector.

» To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIPLUSX implementation that have
more than one N_Vector argument do not check for consistent internal representation of these vectors. It is the
user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created with
the same subvector representations.

6.20 NVECTOR Examples

There are NVECTOR examples that may be installed for eac himplementation. Each implementation makes use of the
functions in test_nvector.c. These example functions show simple usage of the NVECTOR family of functions.
The input to the examples are the vector length, number of threads (if threaded implementation), and a print timing
flag.

The following is a list of the example functions in test_nvector.c:
* Test_N_VClone: Creates clone of vector and checks validity of clone.
e Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.
* Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.
* Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned array.
* Test_N_VGetArrayPointer: Get array pointer.
* Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check values.
e Test_N_VGetLength: Compares self-reported length to calculated length.

e Test_N_VGetCommunicator: Compares self-reported communicator to the one used in constructor; or for
MPI-unaware vectors it ensures that NULL is reported.

* Test_N_VLinearSum Case la: Testy=x+y
* Test_N_VLinearSum Case 1b: Testy =-x +y

e Test_N_VLinearSum Case lc: Testy=ax +y

6.20. NVECTOR Examples 281

User Documentation for CVODES, v7.3.0

Test_N_VLinearSum Case 2a: Testx =x +y
Test_N_VLinearSum Case 2b: Testx =x -y
Test_N_VLinearSum Case 2c: Test X = X + by
Test_N_VLinearSum Case 3: Testz=Xx +y
Test_N_VLinearSum Case 4a: Testz=X -y
Test_N_VLinearSum Case 4b: Testz=-x +y
Test_N_VLinearSum Case 5a: Test z = X + by
Test_N_VLinearSum Case 5b: Testz = ax +y
Test_N_VLinearSum Case 6a: Test z = -x + by
Test_N_VLinearSum Case 6b: Testz=ax -y
Test_N_VLinearSum Case 7: Test z = a(x +y)
Test_N_VLinearSum Case 8: Test z = a(x - y)
Test_N_VLinearSum Case 9: Test z = ax + by
Test_N_VConst: Fill vector with constant and check result.
Test_N_VProd: Test vector multiply: z=x *y
Test_N_VDiv: Test vector division: z=x/y
Test_N_VScale: Case 1: scale: x = cx
Test_N_VScale: Case 2: copy: z =X
Test_N_VScale: Case 3: negate: z = -x
Test_N_VScale: Case 4: combination: z = cx
Test_N_VAbs: Create absolute value of vector.

Test_N_VInv: Compute z[i] = 1/ x[i]

** Test_N_VAddConst: add constant vector: z =c + X

Test_N_VDotProd: Calculate dot product of two vectors.
Test_N_VMaxNorm: Create vector with known values, find and validate the max norm.
Test_N_VWrmsNorm: Create vector of known values, find and validate the weighted root mean square.

Test_N_VWrmsNormMask: Create vector of known values, find and validate the weighted root mean square using
all elements except one.

Test_N_VMin: Create vector, find and validate the min.

Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.
Test_N_VL1Norm: Create vector, find and validate the L1 norm.

Test_N_VCompare: Compare vector with constant returning and validating comparison vector.
Test_N_VInvTest: Test z[i] = 1 / x[i]

Test_N_VConstrMask: Test mask of vector x with vector c.

Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum quotient.

Test_N_VLinearCombination: Case la: Test x =ax

282

Chapter 6. Vector Data Structures

User Documentation for CVODES, v7.3.0

Test_N_VLinearCombination:
Test_N_VLinearCombination:
Test_N_VLinearCombination:

Test_N_VLinearCombination:

Case 1b: Testz=ax
Case2a: Testx=ax+by
Case2b: Testz=ax+by

Case3a: Testx=x+ay+bz

Test_N_VLinearCombination: Case 3b: Testx=ax+by+cz
Test_N_VLinearCombination: Case 3c: Testw=ax+by+cz
Test_N_VScaleAddMulti: Case la: y=ax+y
Test_N_VScaleAddMulti: Case lb: z=ax+y
Test_N_VScaleAddMulti: Case 2a: Y[i] =c[i] x + Y[i],i=1,2,3
Test_N_VScaleAddMulti: Case 2b: Z[i] = c[i] x + Y[i],i=1,2,3
Test_N_VDotProdMulti: Case 1: Calculate the dot product of two vectors

Test_N_VDotProdMulti: Case 2: Calculate the dot product of one vector with three other vectors in a vector
array.

Test_N_VLinearSumVectorArray: Case l: z=ax+by
Test_N_VLinearSumVectorArray: Case 2a: Z[i] = a X[i] + b Y[i]
Test_N_VLinearSumVectorArray: Case 2b: X[i] = a X[i] + b Y[i]
Test_N_VLinearSumVectorArray: Case 2c: Y[i] = a X[i] + b Y[i]
Test_N_VScaleVectorArray: Case la:y=cy
Test_N_VScaleVectorArray: Case lb: z=cy
Test_N_VScaleVectorArray: Case 2a: Y[i] = c[i] Y[i]
Test_N_VScaleVectorArray: Case 2b: Z[i] = c[i] Y[i]
Test_N_VConstVectorArray: Case la: z=c
Test_N_VConstVectorArray: Case 1b: Z[i] = ¢

Test_N_VWrmsNormVectorArray: Case la: Create a vector of know values, find and validate the weighted
root mean square norm.

Test_N_VWrmsNormVectorArray: Case 1b: Create a vector array of three vectors of know values, find and
validate the weighted root mean square norm of each.

Test_N_VWrmsNormMaskVectorArray: Case la: Create a vector of know values, find and validate the weighted
root mean square norm using all elements except one.

Test_N_VWrmsNormMaskVectorArray: Case 1b: Create a vector array of three vectors of know values, find
and validate the weighted root mean square norm of each using all elements except one.

Test_N_VScaleAddMultiVectorArray: Case la:y=ax+y
Test_N_VScaleAddMultiVectorArray: Case lb: z=ax+y
Test_N_VScaleAddMultiVectorArray: Case 2a: Y[j][0] = a[j] X[O] + Y[j1[O]
Test_N_VScaleAddMultiVectorArray: Case 2b: Z[j][0] = a[j] X[O0] + Y[j][O]
Test_N_VScaleAddMultiVectorArray: Case 3a: Y[O][i] = a[0] X[i] + Y[O][i]
Test_N_VScaleAddMultiVectorArray: Case 3b: Z[0][i] = a[0] X[i] + Y[O][i]
Test_N_VScaleAddMultiVectorArray: Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

6.20.

NVECTOR Examples 283

User Documentation for CVODES, v7.3.0

Test_N_VScaleAddMultiVectorArray: Case 4b: Z[jl[i] = a[j] X[i] + Y[j][il
Test_N_VLinearCombinationVectorArray: Case la: x =ax
Test_N_VLinearCombinationVectorArray: Case lb: z=ax
Test_N_VLinearCombinationVectorArray: Case2a: x=ax+by
Test_N_VLinearCombinationVectorArray: Case 2b: z=ax+by
Test_N_VLinearCombinationVectorArray: Case 3a: x=ax+by+cz
Test_N_VLinearCombinationVectorArray: Case 3b: w=ax+by+cz
Test_N_VLinearCombinationVectorArray: Case 4a: X[0][i] = c[0] X[O][i]
Test_N_VLinearCombinationVectorArray: Case 4b: Z[i] = c[0] X[O0][i]
Test_N_VLinearCombinationVectorArray: Case 5a: X[0][i] = c[0] X[O][i] + c[1] X[1][i]
Test_N_VLinearCombinationVectorArray: Case 5b: Z[i] = c[0] X[O][i] + c[1] X[1][i]
Test_N_VLinearCombinationVectorArray: Case 6a: X[0][i] = X[O][i] + c[1] X[1][i] + c[2] X[2][i]
Test_N_VLinearCombinationVectorArray: Case 6b: X[0][i] = c[0] X[O][i] + c[1] X[1][i] + c[2] X[2][i]
Test_N_VLinearCombinationVectorArray: Case 6¢: Z[i] = c[0] X[O][i] + c[1] X[1][i] + c[2] X[2][i]
Test_N_VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

Test_N_VMaxNormLocal: Create vector with known values, find and validate the MPI task-local portion of the
max norm.

Test_N_VMinLocal: Create vector, find and validate the MPI task-local min.
Test_N_VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L1 norm.

Test_N_VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local portion of the
weighted squared sum of two vectors.

Test_N_VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-local portion of
the weighted squared sum of two vectors, using all elements except one.

Test_N_VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]
Test_N_VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector c.

Test_N_VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the MPI task-local
minimum quotient.

Test_N_VMBufSize: Tests for accuracy in the reported buffer size.
Test_N_VMBufPack: Tests for accuracy in the buffer packing routine.

Test_N_VMBufUnpack: Tests for accuracy in the buffer unpacking routine.

Chapter 6. Vector Data Structures

Chapter 7

Matrix Data Structures

The SUNDIALS library comes packaged with a variety of SUNMatrix implementations, designed for simulations
requiring direct linear solvers for problems in serial or shared-memory parallel environments. SUNDIALS additionally
provides a simple interface for generic matrices (akin to a C++ abstract base class). All of the major SUNDIALS
packages (CVODE(s), IDA(s), KINSOL, ARKODE)), are constructed to only depend on these generic matrix operations,
making them immediately extensible to new user-defined matrix objects. For each of the SUNDIALS-provided matrix
types, SUNDIALS also provides SUNLinearSolver implementations that factor these matrix objects and use them in
the solution of linear systems.

7.1 Description of the SUNMATRIX Modules

For problems that involve direct methods for solving linear systems, the SUNDIALS packages not only operate on
generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations defined by the particular
SUNMATRIX implementation. Users can provide their own specific implementation of the SUNMATRIX module,
particularly in cases where they provide their own N_Vector and/or linear solver modules, and require matrices that
are compatible with those implementations. The generic SUNMatrix operations are described below, and descriptions
of the SUNMATRIX implementations provided with SUNDIALS follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector type. Specif-
ically, a generic SUNMatrix is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the matrix, and an ops field pointing to a structure with generic matrix operations.

A SUNMatrix is a pointer to the _generic_SUNMatrix structure:
typedef struct _generic_SUNMatrix *SUNMatrix
struct _generic_SUNMatrix

The structure defining the SUNDIALS matrix class.

void *content

Pointer to matrix-specific member data

struct _generic_SUNMatrix_Ops *ops
A virtual table of matrix operations provided by a specific implementation

SUNContext sunctx
The SUNDIALS simulation context

The virtual table structure is defined as

285

User Documentation for CVODES, v7.3.0

struct _generic_SUNMatrix_Ops
The structure defining SUNMatrix operations.

SUNMatrix_ID (*getid)(SUNMatrix)
The function implementing SUNMatGetID()

SUNMatrix (*clone)(SUNMatrix)
The function implementing SUNMatClone ()

void (*destroy)(SUNMatrix)
The function implementing SUNMatDestroy ()

SUNErrCode (*zero)(SUNMatrix)
The function implementing SUNMatZero ()

SUNErrCode (*copy)(SUNMatrix, SUNMatrix)

The function implementing SUNMatCopy ()
SUNErrCode (*scaleadd)(sunrealtype, SUNMatrix, SUNMatrix)

The function implementing SUNMatScaleAdd()
SUNErrCode (*scaleaddi)(sunrealtype, SUNMatrix)

The function implementing SUNMatScaleAddI ()
SUNErrCode (*matvecsetup)(SUNMatrix)

The function implementing SUNMatMatvecSetup ()
SUNErrCode (*matvec)(SUNMatrix, N_Vector, N_Vector)

The function implementing SUNMatMatvec ()

SUNErrCode (*mathermitiantransposevec)(SUNMatrix, N_Vector, N_Vector)
The function implementing SUNMatHermitianTransposeVec ()

Added in version 7.3.0.

SUNErrCode (*space)(SUNMatrix, long int*, long int*)
The function implementing SUNMatSpace ()

The generic SUNMATRIX module defines and implements the matrix operations acting on a SUNMatrix. These
routines are nothing but wrappers for the matrix operations defined by a particular SUNMATRIX implementation,
which are accessed through the ops field of the SUNMatrix structure. To illustrate this point we show below the
implementation of a typical matrix operation from the generic SUNMATRIX module, namely SUNMatZero, which
sets all values of a matrix A to zero, returning a flag denoting a successful/failed operation:

SUNErrCode SUNMatZero(SUNMatrix A)
{

return(A->ops->zero(A));

3
§7.2 contains a complete list of all matrix operations defined by the generic SUNMATRIX module. A particular
implementation of the SUNMATRIX module must:

 Specify the content field of the SUNMatrix object.

* Define and implement a minimal subset of the matrix operations. See the documentation for each SUNDIALS
package and/or linear solver to determine which SUNMATRIX operations they require.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNMATRIX module (each with different SUNMatrix internal data representations) in the same code.

286 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

* Define and implement user-callable constructor and destructor routines to create and free a SUNMatrix with the
new content field and with ops pointing to the new matrix operations.

* Optionally, define and implement additional user-callable routines acting on the newly defined SUNMatrix (e.g.,
a routine to print the content for debugging purposes).

* Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined SUNMatrix.

To aid in the creation of custom SUNMATRIX modules the generic SUNMATRIX module provides three utility func-
tions SUNMatNewEmpty (), SUNMatCopyOps (), and SUNMatFreeEmpty (). When used in custom SUNMATRIX con-
structors and clone routines these functions will ease the introduction of any new optional matrix operations to the
SUNMATRIX API by ensuring only required operations need to be set and all operations are copied when cloning a
matrix.

SUNMatrix SUNMatNewEmpty (SUNContext sunctx)

This function allocates a new generic SUNMatrix object and initializes its content pointer and the function
pointers in the operations structure to NULL.

Return value:
If successful, this function returns a SUNMatrix object. If an error occurs when allocating the object, then
this routine will return NULL.

SUNErrCode SUNMatCopyOps (SUNMatrix A, SUNMatrix B)

This function copies the function pointers in the ops structure of A into the ops structure of B.
Arguments:
* A — the matrix to copy operations from.
* B — the matrix to copy operations to.
Return value:
* A SUNErrCode
void SUNMatFreeEmpty (SUNMatrix A)

This routine frees the generic SUNMatrix object, under the assumption that any implementation-specific data
that was allocated within the underlying content structure has already been freed. It will additionally test whether
the ops pointer is NULL, and, if it is not, it will free it as well.

Arguments:
* A —the SUNMatrix object to free

type SUNMatrix_ID

Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumeration and
shown in Table 7.1. Itis recommended that a user-supplied SUNMATRIX implementation use the SUNMATRIX_-
CUSTOMN identifier.

7.1. Description of the SUNMATRIX Modules 287

User Documentation for CVODES, v7.3.0

Table 7.1: Identifiers associated with matrix kernels supplied with SUN-

DIALS
Matrix ID Matrix type
SUNMATRIX_BAND Band M x M matrix
SUNMATRIX_CUSPARSE CUDA sparse CSR matrix
SUNMATRIX_CUSTOM User-provided custom matrix
SUNMATRIX_DENSE Dense M x N matrix
SUNMATRIX_GINKGO SUNMatrix wrapper for Ginkgo matrices

SUNMATRIX_MAGMADENSE Dense M x N matrix

SUNMATRIX ONEMKLDENSE oneMKL dense M x N matrix
SUNMATRIX_SLUNRLOC SUNMatrix wrapper for SuperLU_DIST SuperMatrix
SUNMATRIX_SPARSE Sparse (CSR or CSC) M x N matrix

7.2 Description of the SUNMATRIX operations

For each of the SUNMatrix operations, we give the name, usage of the function, and a description of its mathematical
operations below.

SUNMatrix_ID SUNMatGetID(SUNMatrix A)

Returns the type identifier for the matrix A. It is used to determine the matrix implementation type (e.g.
dense, banded, sparse,...) from the abstract SUNMatrix interface. This is used to assess compatibility with
SUNDIALS-provided linear solver implementations. Returned values are given in Table 7.1

Usage:

id = SUNMatGetID(A);

SUNMatrix SUNMatClone (SUNMatrix A)

Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops field. It does not copy the
matrix values, but rather allocates storage for the new matrix.

Usage:

B = SUNMatClone(A);

void SUNMatDestroy (SUNMatrix A)

Destroys the SUNMatrix A and frees memory allocated for its internal data.

Usage:

SUNMatDestroy(A) ;

SUNErrCode SUNMatSpace (SUNMatrix A, long int *Irw, long int *liw)

Returns the storage requirements for the matrix A. /rw contains the number of sunrealtype words and /iw contains
the number of integer words. The return value denotes success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied SUNMatrix module if that information is not of interest.

Usage:

288 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

retval = SUNMatSpace(A, &lrw, &liw);

Deprecated since version 7.3.0: Work space functions will be removed in version 8.0.0.

SUNErrCode SUNMatZero (SUNMatrix A)
Zeros all entries of the SUNMatrix A. The return value denotes the success/failure of the operation:

142’0‘207 1=1,....m, 5=1,...,n.
Usage:

retval = SUNMatZero(A);

SUNErrCode SUNMatCopy (SUNMatrix A, SUNMatrix B)

Performs the operation B gets A for all entries of the matrices A and B. The return value denotes the success/failure
of the operation:

Bi’j:Ain i=1,...,m7j:1,...,n.
Usage:

retval = SUNMatCopy(A,B);
SUNErrCode SUNMatScaleAdd (sunrealtype ¢, SUNMatrix A, SUNMatrix B)
Performs the operation A gets cA + B. The return value denotes the success/failure of the operation:
Aij=cAij+ B, i=1....m, j=1...,n
Usage:
retval = SUNMatScaleAdd(c, A, B);
SUNErrCode SUNMatScaleAddI (sunrealtype ¢, SUNMatrix A)
Performs the operation A gets cA + I. The return value denotes the success/failure of the operation:
Aij=cAij+64 4,j=1,...,n
Usage:
retval = SUNMatScaleAddI(c, A);

SUNErrCode SUNMatMatvecSetup (SUNMatrix A)

Performs any setup necessary to perform a matrix-vector product. The return value denotes the success/failure
of the operation. It is useful for SUNMatrix implementations which need to prepare the matrix itself, or com-
munication structures before performing the matrix-vector product.

Usage:
retval = SUNMatMatvecSetup(A);

SUNErrCode SUNMatMatvec (SUNMatrix A, N_Vector X, N_Vector y)

Performs the matrix-vector product y <— Ax. It should only be called with vectors = and y that are compatible
with the matrix A — both in storage type and dimensions. The return value denotes the success/failure of the
operation:

n
Yi = E Ai’jfﬂj, z:l,,m
Jj=1

Usage:

7.2. Description of the SUNMATRIX operations 289

User Documentation for CVODES, v7.3.0

retval = SUNMatMatvec(A, x, y);

SUNErrCode SUNMatHermitianTransposeVec (SUNMatrix A, N_Vector X, N_Vector y)

Performs the matrix-vector product iy <— A*x where * is the Hermitian (conjugate) transpose. It should only be
called with vectors x and y that are compatible with the matrix A* — both in storage type and dimensions. The
return value denotes the success/failure of the operation:

n
Yi = E Aj,ixja z:l,,m
j=1

where ¢ denotes the complex conjugate of c.
Usage:

retval = SUNMatHermitianTransposeVec(A, X, y);

7.3 The SUNMATRIX_DENSE Module

The dense implementation of the SUNMatrix module, SUNMATRIX_DENSE, defines the confent field of SUNMatrix
to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
sunrealtype *data;
sunindextype ldata;
sunrealtype **cols;

3

These entries of the content field contain the following information:
e M - number of rows
¢ N - number of columns

» data - pointer to a contiguous block of sunrealtype variables. The elements of the dense matrix are stored
columnwise, i.e. the (¢, j) element of a dense SUNMatrix object (with 0 < ¢ < M and 0 < j < N) may be
accessed via data[j*M+i].

* ldata - length of the data array (= M N).

* cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array data.
The (7, 7) element of a dense SUNMatrix (with 0 <4 < M and 0 < j < N) may be accessed may be accessed
via cols[j][i].

The header file to be included when using this module is sunmatrix/sunmatrix_dense.h.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _D denotes that these are specific
to the dense version.

SM_CONTENT_D(A)
This macro gives access to the contents of the dense SUNMatrix A.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix content
structure.

Implementation:

290 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

#define SM_CONTENT_D(A) ((SUNMatrixContent_Dense) (A->content))

SM_ROWS_D(A)

Access the number of rows in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_D(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_D(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_D(A) (SM_CONTENT_D(A)->M)

SM_COLUMNS_D(A)

Access the number of columns in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_columns = SM_-
COLUMNS_D(A) sets A_columns to be the number of columns in the matrix A. Similarly, the assignment SM_-
COLUMNS_D(A) = A_columns sets the number of columns in A to equal A_columns

Implementation:

#define SM_COLUMNS_D(A) (SM_CONTENT_D(A)->N)

SM_LDATA_D(A)
Access the total data length in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_ldata = SM_LDATA_-
D(A) sets A_ldata to be the length of the data array in the matrix A. Similarly, the assignment SM_LDATA_D (A)
= A_ldata sets the parameter for the length of the data array in A to equal A_ldata.

Implementation:

#define SM_LDATA_D(A) (SM_CONTENT_D(A)->ldata)

SM_DATA_D(A)

This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_D(A) sets A_data to be a pointer to the first component of the data array
for the dense SUNMatrix A. The assignment SM_DATA_D(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_D(A) (SM_CONTENT_D(A)->data)

SM_COLS_D(A)

This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of column pointers for the
dense SUNMatrix A. The assignment SM_COLS_D(A) = A_cols sets the column pointer array of A to be A_-
cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_D(A) (SM_CONTENT_D(A)->cols)

7.3. The SUNMATRIX_DENSE Module 291

User Documentation for CVODES, v7.3.0

SM_COLUMN_D(A)

This macros gives access to the individual columns of the data array of a dense SUNMatrix.

The assignment col_j = SM_COLUMN_D(A, j) sets col_j to be a pointer to the first entry of the j-th column of
the M x N dense matrix A (with 0 < 7 < N). The type of the expression SM_COLUMN_D(4, j) is sunrealtype
*. The pointer returned by the call SM_COLUMN_D(A, j) can be treated as an array which is indexed from 0 to
M-1.

Implementation:

#define SM_COLUMN_D(A, j) ((SM_CONTENT_D(A)->cols)[j])

SM_ELEMENT_D(A)

This macro gives access to the individual entries of the data array of a dense SUNMatrix.

The assignments SM_ELEMENT_D(A,i,j) = a_ijanda_ij = SM_ELEMENT_D(A,1i, j) reference the A; jel-
ement of the M x N dense matrix A (with 0 <7< M and 0 < j < N).

Implementation:

#define SM_ELEMENT D(A,i,j) ((SM_CONTENT_D(A)->cols)[jI1[i])

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in §7.2. Their names
are obtained from those in that section by appending the suffix _Dense (e.g. SUNMatCopy_Dense). The module
SUNMATRIX_DENSE provides the following additional user-callable routines:

SUNMatrix SUNDenseMatrix (sunindextype M, sunindextype N, SUNContext sunctx)

This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments are the number
of rows, M, and columns, N, for the dense matrix.

void SUNDenseMatrix_Print (SUNMatrix A, FILE *outfile)

This function prints the content of a dense SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNDenseMatrix_Rows (SUNMatrix A)

This function returns the number of rows in the dense SUNMatrix.
sunindextype SUNDenseMatrix_Columns (SUNMatrix A)

This function returns the number of columns in the dense SUNMatrix.
sunindextype SUNDenseMatrix_LData(SUNMatrix A)

This function returns the length of the data array for the dense SUNMatrix.
sunrealtype *SUNDenseMatrix_Data(SUNMatrix A)

This function returns a pointer to the data array for the dense SUNMatrix.
sunrealtype **SUNDenseMatrix_Cols (SUNMatrix A)

This function returns a pointer to the cols array for the dense SUNMatrix.
sunrealtype *SUNDenseMatrix_Column(SUNMatrix A, sunindextype j)

This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The resulting pointer
should be indexed over the range 0 to M-1.

Notes
* When looping over the components of a dense SUNMatrix A, the most efficient approaches are to:

— First obtain the component array via A_data = SUNDenseMatrix_Data(A), or equivalently A_data =
SM_DATA_D(A), and then access A_data[i] within the loop.

292 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

— First obtain the array of column pointers via A_cols = SUNDenseMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_D(A), and then access A_cols[j][i] within the loop.

— Within a loop over the columns, access the column pointer via A_colj = SUNDenseMatrix_Column(A,
j) and then to access the entries within that column using A_colj[i] within the loop.

All three of these are more efficient than using SM_ELEMENT_D(A, i, j) within a double loop.

* Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

7.4 The SUNMATRIX_MAGMADENSE Module

The SUNMATRIX_MAGMADENSE module interfaces to the MAGMA linear algebra library and can target
NVIDIA’s CUDA programming model or AMD’s HIP programming model [64]. All data stored by this matrix imple-
mentation resides on the GPU at all times. The implementation currently supports a standard LAPACK column-major
storage format as well as a low-storage format for block-diagonal matrices

Ag O 0
0 A, 0
A= .
0 0 - Ap 1

This matrix implementation is best paired with the SUNLinearSolver_MagmaDense SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix_magmadense.h. The installed library
to link to is libsundials_sunmatrixmagmadense.lib where 1ib is typically .so for shared libraries and .a for
static libraries.

Warning

The SUNMATRIX_MAGMADENSE module is experimental and subject to change.

7.4.1 SUNMATRIX_MAGMADENSE Functions
The SUNMATRIX_MAGMADENSE module defines GPU-enabled implementations of all matrix operations listed in
§7.2.
e SUNMatGetID_MagmaDense — returns SUNMATRIX_MAGMADENSE
* SUNMatClone_lMagmaDense
¢ SUNMatDestroy_MagmaDense
e SUNMatZero_MagmaDense
¢ SUNMatCopy_MagmaDense
e SUNMatScaleAdd_MagmaDense
e SUNMatScaleAddI_MagmaDense
e SUNMatMatvecSetup_MagmaDense

e SUNMatMatvec_MagmaDense

7.4. The SUNMATRIX_MAGMADENSE Module 293

https://icl.utk.edu/magma/index.html

User Documentation for CVODES, v7.3.0

¢ SUNMatSpace_MagmaDense
In addition, the SUNMATRIX_MAGMADENSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_MagmaDense (sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, void *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M x N SUNMATRIX_MAGMADENSE SUN-
Matrix.

Arguments:
¢ M — the number of matrix rows.
¢ N — the number of matrix columns.

* memtype — the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_-
DEVICE.

* memhelper — the memory helper used for allocating data.
* queue — a cudaStream_t when using CUDA or a hipStream_t when using HIP.
* sunctx — the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_MagmaDenseBlock (sunindextype nblocks, sunindextype M_block, sunindextype N_block,
SUNMemoryType memtype, SUNMemoryHelper memhelper, void
*queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_MAGMADENSE
SUNMatrix with nblocks of size M x N.

Arguments:
* nblocks — the number of matrix rows.
* M_block — the number of matrix rows in each block.
¢ N_block — the number of matrix columns in each block.

* memtype — the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_ -
DEVICE.

* memhelper — the memory helper used for allocating data.
* qgueue —a cudaStream_t when using CUDA or a hipStream_t when using HIP.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

sunindextype SUNMatrix_MagmaDense_Rows (SUNMatrix A)

This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Myjoc X nblocks.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

294 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

sunindextype SUNMatrix_MagmaDense_Columns (SUNMatrix A)

This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Npjocx X nblocks.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockRows (SUNMatrix A)

This function returns the number of rows in a block of the SUNMatrix object.
Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_BlockColumns (SUNMatrix A)

This function returns the number of columns in a block of the SUNMatrix object.
Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

sunindextype SUNMatrix_MagmaDense_LData (SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_MagmaDense_NumBlocks (SUNMatrix A)
This function returns the number of blocks in the SUNMatrix object.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_TLL_INPUT.

sunrealtype *SUNMatrix_MagmaDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:
¢ A —a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

7.4. The SUNMATRIX_MAGMADENSE Module 295

User Documentation for CVODES, v7.3.0

sunrealtype **SUNMatrix_MagmaDense_BlockData(SUNMatrix A)

This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.
Arguments:
* A —a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

sunrealtype *SUNMatrix_MagmaDense_Block (SUNMatrix A, sunindextype k)

This function returns a pointer to the data array for block k in the SUNMatrix.
Arguments:

* A —a SUNMatrix object.

* k — the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks.

sunrealtype *SUNMatrix_MagmaDense_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the data array for column j in the SUNMatrix.

Arguments:
¢ A —a SUNMatrix object.
¢ j —the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks % Npjock-

sunrealtype *SUNMatrix_MagmaDense_BlockColumn(SUNMatrix A, sunindextype X, sunindextype j)

This function returns a pointer to the data array for column j of block k in the SUNMatrix.
Arguments:

* A —a SUNMatrix object.

* k — the block index.

e j —the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

296 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

Note

No bounds-checking is performed by this function, k£ should be strictly less than nblocks and j should be
strictly less than Nyjock-

SUNErrCode SUNMatrix_MagmaDense_CopyToDevice (SUNMatrix A, sunrealtype *h_data)

This function copies the matrix data to the GPU device from the provided host array.

Arguments:
* A —a SUNMatrix object
* h_data — a host array pointer to copy data from.

Return value:
» SUN_SUCCESS — if the copy is successful.
e SUN_ERR_ARG_INCOMPATIBLE - if the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.
e SUN_ERR_MEM_FAIL - if the copy fails.

SUNErrCode SUNMatrix_MagmaDense_CopyFromDevice (SUNMatrix A, sunrealtype *h_data)

This function copies the matrix data from the GPU device to the provided host array.
Arguments:
* A —a SUNMatrix object
* h_data — a host array pointer to copy data to.
Return value:
» SUN_SUCCESS — if the copy is successful.
e SUN_ERR_ARG_INCOMPATIBLE - if the SUNMatrix is not a SUNMATRIX_MAGMADENSE matrix.
e SUN_ERR_MEM_FAIL - if the copy fails.

7.4.2 SUNMATRIX_MAGMADENSE Usage Notes

Warning

When using the SUNMATRIX_MAGMADENSE module with a SUNDIALS package (e.g. CVODE), the stream
given to matrix should be the same stream used for the NVECTOR object that is provided to the package, and the
NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization issues may
occur.

7.5 The SUNMATRIX_ONEMKLDENSE Module

The SUNMATRIX_ONEMKLDENSE module is intended for interfacing with direct linear solvers from the Intel
oneAPI Math Kernel Library (oneMKL) using the SYCL (DPC++) programming model. The implementation currently

7.5. The SUNMATRIX_ONEMKLDENSE Module 297

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

User Documentation for CVODES, v7.3.0

supports a standard LAPACK column-major storage format as well as a low-storage format for block-diagonal matrices,

Ay O 0

0 A, 0
A= .

0 0 - A, 1

This matrix implementation is best paired with the SUNLinearSolver_OneMklDense linear solver.

The header file to include when using this class is sunmatrix/sunmatrix_onemkldense.h. The installed library
to link to is 1ibsundials_sunmatrixonemkldense.lib where 1ib is typically .so for shared libraries and . a for
static libraries.

Warning

The SUNMATRIX_ONEMKLDENSE class is experimental and subject to change.

7.5.1 SUNMATRIX_ONEMKLDENSE Functions

The SUNMATRIX_ONEMKLDENSE class defines implementations of the following matrix operations listed in §7.2.
e SUNMatGetID_OneMklDense — returns SUNMATRIX_ONEMKLDENSE
* SUNMatClone_OnelMklDense
¢ SUNMatDestroy_OneMklDense
e SUNMatZero_OneMklDense
¢ SUNMatCopy_OnelMklDense
* SUNMatScaleAdd_OnelMklDense
e SUNMatScaleAddI_OnelMklDense
* SUNMatMatvec_OnelMklDense
¢ SUNMatSpace_OnelMklDense
In addition, the SUNMATRIX_ONEMKLDENSE class defines the following implementation specific functions.

7.5.1.1 Constructors

SUNMatrix SUNMatrix_OneMklDense (sunindextype M, sunindextype N, SUNMemoryType memtype,
SUNMemoryHelper memhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for an M x N SUNMATRIX_ONEMKLDENSE SUN-
Matrix.

Arguments:
e M — the number of matrix rows.
¢ N — the number of matrix columns.

* memtype — the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_ -
DEVICE.

* memhelper — the memory helper used for allocating data.

298 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

* queue — the SYCL queue to which operations will be submitted.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

SUNMatrix SUNMatrix_OneMklDenseBlock (sunindextype nblocks, sunindextype M_block, sunindextype
N_block, SUNMemoryType memtype, SUNMemoryHelper
membhelper, sycl::queue *queue, SUNContext sunctx)

This constructor function creates and allocates memory for a block diagonal SUNMATRIX_ONEMKLDENSE
SUNMatrix with nblocks of size Myjocr. X Npiock-

Arguments:
* nblocks — the number of matrix rows.
e M _block — the number of matrix rows in each block.
* N_block — the number of matrix columns in each block.

* memtype — the type of memory to use for the matrix data; can be SUNMEMTYPE_UVM or SUNMEMTYPE_ -
DEVICE.

* memhelper — the memory helper used for allocating data.
* queue — the SYCL queue to which operations will be submitted.
* sunctx —the SUNContext object (see §4.2)

Return value:
If successful, a SUNMatrix object otherwise NULL.

7.5.1.2 Access Matrix Dimensions

sunindextype SUNMatrix_OneMklDense_Rows (SUNMatrix A)

This function returns the number of rows in the SUNMatrix object. For block diagonal matrices, the number of
rows is computed as Myjoc X nblocks.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of rows in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_Columns (SUNMatrix A)

This function returns the number of columns in the SUNMatrix object. For block diagonal matrices, the number
of columns is computed as Npjocx X nblocks.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of columns in the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

7.5. The SUNMATRIX_ONEMKLDENSE Module 299

User Documentation for CVODES, v7.3.0

7.5.1.3 Access Matrix Block Dimensions

sunindextype SUNMatrix_OneMklDense_NumBlocks (SUNMatrix A)

This function returns the number of blocks in the SUNMatrix object.
Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of blocks in the SUNMatrix object otherwise SUNMATRIX_TILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockRows (SUNMatrix A)
This function returns the number of rows in a block of the SUNMatrix object.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the number of rows in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_INPUT.

sunindextype SUNMatrix_OneMklDense_BlockColumns (SUNMatrix A)

This function returns the number of columns in a block of the SUNMatrix object.
Arguments:
¢ A —a SUNMatrix object.

Return value:

If successful, the number of columns in a block of the SUNMatrix object otherwise SUNMATRIX_ILL_-
INPUT.

7.5.1.4 Access Matrix Data

sunindextype SUNMatrix_OneMklDense_LData(SUNMatrix A)
This function returns the length of the SUNMatrix data array.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array otherwise SUNMATRIX_ILL_INPUT.

sunrealtype *SUNMatrix_OneMklDense_Data(SUNMatrix A)
This function returns the SUNMatrix data array.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the SUNMatrix data array otherwise NULL.

sunrealtype *SUNMatrix_OneMklDense_Column (SUNMatrix A, sunindextype j)

This function returns a pointer to the data array for column j in the SUNMatrix.
Arguments:
¢ A —a SUNMatrix object.

¢ j —the column index.

300 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks * Npjock-

7.5.1.5 Access Matrix Block Data

sunindextype SUNMatrix_OneMklDense_BlockLData(SUNMatrix A)
This function returns the length of the SUNMatrix data array for each block of the SUNMatrix object.

Arguments:
* A —a SUNMatrix object.

Return value:
If successful, the length of the SUNMatrix data array for each block otherwise SUNMATRIX_ILL_INPUT.

sunrealtype **SUNMatrix_OneMklDense_BlockData(SUNMatrix A)

This function returns an array of pointers that point to the start of the data array for each block in the SUNMatrix.
Arguments:
* A —a SUNMatrix object.

Return value:
If successful, an array of data pointers to each of the SUNMatrix blocks otherwise NULL.

sunrealtype *SUNMatrix_OneMklDense_Block (SUNMatrix A, sunindextype k)

This function returns a pointer to the data array for block k in the SUNMatrix.
Arguments:

* A —a SUNMatrix object.

* k — the block index.

Return value:
If successful, a pointer to the data array for the SUNMatrix block otherwise NULL.

Note

No bounds-checking is performed by this function, j should be strictly less than nblocks.

sunrealtype *SUNMatrix_OneMklDense_BlockColumn(SUNMatrix A, sunindextype K, sunindextype j)

This function returns a pointer to the data array for column j of block k in the SUNMatrix.
Arguments:

¢ A —a SUNMatrix object.

* k —the block index.

e j —the column index.

Return value:
If successful, a pointer to the data array for the SUNMatrix column otherwise NULL.

7.5. The SUNMATRIX_ONEMKLDENSE Module 301

User Documentation for CVODES, v7.3.0

Note

No bounds-checking is performed by this function, k£ should be strictly less than nblocks and j should be
strictly less than Npjock-

7.5.1.6 Copy Data

SUNErrCode SUNMatrix_OneMklDense_CopyToDevice (SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data to the GPU device from the provided host array.

Arguments:
* A —a SUNMatrix object
* h_data — a host array pointer to copy data from.
Return value:
e SUN_SUCCESS — if the copy is successful.
e SUN_ERR_ARG_INCOMPATIBLE — if the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.
e SUN_ERR_MEM_FAIL - if the copy fails.

SUNErrCode SUNMatrix_OneMklDense_CopyFromDevice (SUNMatrix A, sunrealtype *h_data)
This function copies the matrix data from the GPU device to the provided host array.

Arguments:
* A —a SUNMatrix object
* h_data — a host array pointer to copy data to.
Return value:
* SUN_SUCCESS - if the copy is successful.
e SUN_ERR_ARG_INCOMPATIBLE — if the SUNMatrix is not a SUNMATRIX_ONEMKLDENSE matrix.
e SUN_ERR_MEM_FAIL - if the copy fails.

7.5.2 SUNMATRIX_ONEMKLDENSE Usage Notes

Warning

The SUNMATRIX_ONEMKLDENSE class only supports 64-bit indexing, thus SUNDIALS must be built for
64-bit indexing to use this class.

When using the SUNMATRIX_ONEMKLDENSE class with a SUNDIALS package (e.g. CVODE), the queue
given to matrix should be the same stream used for the NVECTOR object that is provided to the package, and
the NVECTOR object given to the SUNMatMatvec () operation. If different streams are utilized, synchronization
issues may occur.

7.6 The SUNMATRIX_BAND Module

The banded implementation of the SUNMatrix module, SUNMATRIX_BAND, defines the content field of SUNMatrix
to be the following structure:

302 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

struct _SUNMatrixContent_Band {

sunindextype M;

sunindextype N;

sunindextype mu;

sunindextype ml;

sunindextype smu;
sunindextype ldim;
sunrealtype *data;
sunindextype ldata;
sunrealtype **cols;

¥
A diagram of the underlying data representation in a banded matrix is shown in Fig. 7.1. A more complete description
of the parts of this content field is given below:

e M - number of rows

* N - number of columns (N = M)

e mu - upper half-bandwidth, 0 < mu < N

e ml - lower half-bandwidth, 0 < ml < N

* smu - storage upper bandwidth, mu < smu < N. The LU decomposition routines in the associated SUN-
LINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the existing storage for the
band matrix. The upper triangular factor U, however, may have an upper bandwidth as big asmin(N-1, mu+ml)
because of partial pivoting. The smu field holds the upper half-bandwidth allocated for the band matrix.

¢ 1dim - leading dimension (Ildim > smu + ml + 1)

* data - pointer to a contiguous block of sunrealtype variables. The elements of the banded matrix are stored
columnwise (i.e. columns are stored one on top of the other in memory). Only elements within the specified
half-bandwidths are stored. data is a pointer to 1data contiguous locations which hold the elements within the
banded matrix.

* ldata - length of the data array (= 1dim V)

* cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th column.
This pointer may be treated as an array indexed from smu-mu (to access the uppermost element within the
band in the j-th column) to smu+ml (to access the lowest element within the band in the j-th column). Indices
from 0 to smu-mu-1 give access to extra storage elements required by the LU decomposition function. Finally,
cols[j][i-j+smu] is the (¢, 7)-th element with j — mu < ¢ < j + ml.

The header file to be included when using this module is sunmatrix/sunmatrix_band.h.

The following macros are provided to access the content of a SUNMATRIX BAND matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _B denotes that these are specific
to the banded version.

SM_CONTENT_B(A)

This macro gives access to the contents of the banded SUNMatrix A.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_B(A) ((SUNMatrixContent_Band) (A->content))

7.6. The SUNMATRIX_BAND Module 303

User Documentation for CVODES, v7.3.0

size data data[0] °

N ° data[1] o

mu ml smu

data[j] @
data[j+1] | e data[j][smu—-mu] A(j—mu,j)
: A(-mu-1,j)
data[N-1] ¢ :
data[j][smu] AG.)
data[j][smu+ml]| A(j+mlj)

IOOO I I

o
o
(o]

smu—mu

!

mu+ml+1

v

Fig. 7.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an N x N band matrix with upper
and lower half-bandwidths mu and ml, respectively. The rows and columns of A are numbered from O to N-1 and the
(7, 5)-th element of A is denoted A(i, j). The greyed out areas of the underlying component storage are used by the

associated SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear solver.

304 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

SM_ROWS_B(A)

Access the number of rows in the banded SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_B(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_B(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_B(A) (SM_CONTENT_B(A)->M)

SM_COLUMNS_B(A)

Access the number of columns in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_B(A) (SM_CONTENT_B(A)->N)

SM_UBAND_B(A)

Access the mu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_UBAND_B(A) (SM_CONTENT_B(A)->mu)

SM_LBAND_B(A)

Access the ml parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LBAND_B(A) (SM_CONTENT_B(A)->ml)

SM_SUBAND_B(A)

Access the smu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_SUBAND_B(A) (SM_CONTENT_B(A)->smu)

SM_LDIM_B(A)

Access the 1dim parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

#define SM_LDIM_B(A) (SM_CONTENT_B(A)->ldim)

SM_LDATA_B(A)

Access the 1data parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to retrieve
or to set the value.

Implementation:

7.6. The SUNMATRIX_BAND Module 305

User Documentation for CVODES, v7.3.0

#define SM_LDATA_B(A) (SM_CONTENT_B(A)->ldata)

SM_DATA_B(A)

This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_B(A) sets A_data to be a pointer to the first component of the data array
for the banded SUNMatrix A. The assignment SM_DATA_B(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_B(A) (SM_CONTENT_B(A)->data)

SM_COLS_B(A)

This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of column pointers for the
banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the column pointer array of A to be
A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_B(A) (SM_CONTENT_B(A)->cols)

SM_COLUMN_B(A)

This macros gives access to the individual columns of the data array of a banded SUNMatrix.

The assignment col_j = SM_COLUMN_B(A, j) sets col_j to be a pointer to the diagonal element of the j-th
column of the V x N band matrix A, 0 < 5 < N — 1. The type of the expression SM_COLUMN_B(A, j) is
sunrealtype *. The pointer returned by the call SM_COLUMN_B(A, j) can be treated as an array which is
indexed from -mu to ml.

Implementation:

#define SM_COLUMN_B(A,j) (((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A))

SM_ELEMENT_B(A)

This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_ELEMENT_B(A,i,j) = a_ij and a_ij = SM_ELEMENT_B(A,1i, j) reference the (7, j)-
th element of the N x N band matrix A, where 0 < 7,57 < N — 1. The location (¢, j) should further satisfy
J—mu<i<j+ml

Implementation:

#define SM_ELEMENT_B(A,i,j) ((SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)])

SM_COLUMN_ELEMENT_B(A)

This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_COLUMN_ELEMENT_B(col_j,i,j) = a_ij and a_ij = SM_COLUMN_ELEMENT_-
B(col_j,1i, j) reference the (7, j)-th entry of the band matrix A when used in conjunction with SM_COLUMN_B
to reference the j-th column through col_j. The index (z, 7) should satisfy j — mu <7 < j + ml.

Implementation:

#define SM_COLUMN_ELEMENT B(col_j,i,j) (col_j[(i)-(j)])

306

Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in §7.2. Their
names are obtained from those in that section by appending the suffix _Band (e.g. SUNMatCopy_Band). The module
SUNMATRIX_BAND provides the following additional user-callable routines:

SUNMatrix SUNBandMatrix (sunindextype N, sunindextype mu, sunindextype ml, SUNContext sunctx)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, and the upper and lower half-bandwidths of the matrix, mu and ml. The stored upper bandwidth is set
to mu+ml to accommodate subsequent factorization in the SUNLINSOL_BAND and SUNLINSOL_LAPACK-
BAND modules.

SUNMatrix SUNBandMatrixStorage (sunindextype N, sunindextype mu, sunindextype ml, sunindextype smu,
SUNContext sunctx)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the stored upper bandwidth, smu.
When creating a band SUNMatrix, this value should be

e atleast min(N-1,mu+ml) if the matrix will be used by the SUNLinSol_Band module;
* exactly equal to mu+ml if the matrix will be used by the SUNLinSol_LapackBand module;

¢ at least mu if used in some other manner.

Note

It is strongly recommended that users call the default constructor, SUNBandMatrix(), in all standard use
cases. This advanced constructor is used internally within SUNDIALS solvers, and is provided to users who
require banded matrices for non-default purposes.

void SUNBandMatrix_Print (SUNMatrix A, FILE *outfile)

This function prints the content of a banded SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

sunindextype SUNBandMatrix_Rows (SUNMatrix A)
This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns (SUNMatrix A)
This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth (SUNMatrix A)

This function returns the lower half-bandwidth for the banded SUNMatrix.
sunindextype SUNBandMatrix_UpperBandwidth (SUNMatrix A)

This function returns the upper half-bandwidth of the banded SUNMatrix.
sunindextype SUNBandMatrix_StoredUpperBandwidth (SUNMatrix A)

This function returns the stored upper half-bandwidth of the banded SUNMatrix.
sunindextype SUNBandMatrix_LDim(SUNMatrix A)

This function returns the length of the leading dimension of the banded SUNMatrix.
sunindextype SUNBandMatrix_LData(SUNMatrix A)

This function returns the length of the data array for the banded SUNMatrix.
sunrealtype *SUNBandMatrix_Data(SUNMatrix A)

This function returns a pointer to the data array for the banded SUNMatrix.

7.6. The SUNMATRIX_BAND Module 307

User Documentation for CVODES, v7.3.0

sunrealtype **SUNBandMatrix_Cols (SUNMatrix A)
This function returns a pointer to the cols array for the band SUNMatrix.
sunrealtype *SUNBandMatrix_Column(SUNMatrix A, sunindextype j)

This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix. The resulting
pointer should be indexed over the range -mu to m1.

Warning

When calling this function from the Fortran interfaces the shape of the array that is returned is [1], and the
only element you can (legally) access is the diagonal element. Fortran users should instead work with the
data array returned by SUNBandMatrix_Data() directly.

Notes
* When looping over the components of a banded SUNMatrix A, the most efficient approaches are to:

— First obtain the component array via A_data = SUNBandMatrix_Data(A), or equivalently A_data =
SM_DATA_B(A), and then access A_data[i] within the loop.

— First obtain the array of column pointers via A_cols = SUNBandMatrix_Cols(A), or equivalently A_-
cols = SM_COLS_B(A), and then access A_cols[j][i] within the loop.

— Within a loop over the columns, access the column pointer via A_colj = SUNBandMatrix_Column(A, j)
and then to access the entries within that column using SM_COLUMN_ELEMENT_B(A_colj,i, j).

All three of these are more efficient than using SM_ELEMENT_B(A, i, j) within a double loop.

¢ Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

7.7 The SUNMATRIX_CUSPARSE Module

The SUNMATRIX_CUSPARSE module is an interface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs
[7]. All data stored by this matrix implementation resides on the GPU at all times.

The header file to be included when using this module is sunmatrix/sunmatrix_cusparse.h. The installed library
to link to is 1libsundials_sunmatrixcusparse.lib where .1ib is typically .so for shared libraries and .a for
static libraries.

7.7.1 SUNMATRIX_CUSPARSE Description

The implementation currently supports the cuSPARSE CSR matrix format described in the cuSPARSE documentation,
as well as a unique low-storage format for block-diagonal matrices of the form

Ay O 0
0 A, 0
A= . .)
0 0 An1

where all the block matrices A; share the same sparsity pattern. We will refer to this format as BCSR (not to be
confused with the canonical BSR format where each block is stored as dense). In this format, the CSR column indices

308 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

and row pointers are only stored for the first block and are computed only as necessary for other blocks. This can
drastically reduce the amount of storage required compared to the regular CSR format when the number of blocks is

large.

This format is well-suited for, and intended to be used with, the SUNLinearSolver_cuSolverSp_batchQR

linear solver (see §8.17).

The SUNMATRIX_CUSPARSE module is experimental and subject to change.

7.7.2 SUNMATRIX_CUSPARSE Functions

The SUNMATRIX_CUSPARSE module defines GPU-enabled sparse implementations of all matrix operations listed
in §7.2 except for the SUNMatSpace () and SUNMatMatvecSetup () operations:

SUNMatGetID_cuSparse — returns SUNMATRIX_CUSPARSE

SUNMatClone_cuSparse

SUNMatDestroy_cuSparse

SUNMatZero_cuSparse

SUNMatCopy_cuSparse

SUNMatScaleAdd_cuSparse — performs A = cA + B, where A and B must have the same sparsity pattern
SUNMatScaleAddI_cuSparse — performs A = cA + I, where the diagonal of A must be present

SUNMatMatvec_cuSparse

In addition, the SUNMATRIX_CUSPARSE module defines the following implementation specific functions:

SUNMatrix SUNMatrix_cuSparse_NewCSR(int M, int N, int NNZ, cusparseHandle_t cusp, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix that uses
the CSR storage format. Its arguments are the number of rows and columns of the matrix, M and N, the number
of nonzeros to be stored in the matrix, NNZ, and a valid cusparseHandle_t.

SUNMatrix SUNMatrix_cuSparse_NewBlockCSR (int nblocks, int blockrows, int blockcols, int blocknnz,

cusparseHandle_t cusp, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE SUNMatrix object
that leverages the SUNMAT_CUSPARSE_BCSR storage format to store a block diagonal matrix where each block
shares the same sparsity pattern. The blocks must be square. The function arguments are the number of blocks,
nblocks, the number of rows, blockrows, the number of columns, blockcols, the number of nonzeros in each
each block, blocknnz, and a valid cusparseHandle_t.

Warning

The SUNMAT_CUSPARSE_BCSR format currently only supports square matrices, i.e., blockrows == block-
cols.

SUNMatrix SUNMatrix_cuSparse_MakeCSR (cusparseMatDescr_t mat_descr, int M, int N, int NNZ, int *rowptrs,

int *colind, sunrealtype *data, cusparseHandle_t cusp, SUNContext
sunctx)

This constructor function creates a SUNMATRIX_CUSPARSE SUNMatrix object from user provided pointers.
Its arguments are a cusparseMatDescr_t that must have index base CUSPARSE_INDEX_BASE_ZERO, the num-
ber of rows and columns of the matrix, M and N, the number of nonzeros to be stored in the matrix, NNZ, and a
valid cusparseHandle_t.

7.7. The SUNMATRIX_CUSPARSE Module 309

User Documentation for CVODES, v7.3.0

int SUNMatrix_cuSparse_Rows (SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.
int SUNMatrix_cuSparse_Columns (SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.
int SUNMatrix_cuSparse_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

int SUNMatrix_cuSparse_SparseType (SUNMatrix A)

This function returns the storage type (SUNMAT_CUSPARSE_CSR or SUNMAT_CUSPARSE_BCSR) for the sparse
SUNMatrix.

sunrealtype *SUNMatrix_cuSparse_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.
int *SUNMatrix_cuSparse_IndexValues (SUNMatrix A)

This function returns a pointer to the index value array for the sparse SUNMatrix — for the CSR format this is an
array of column indices for each nonzero entry. For the BCSR format this is an array of the column indices for
each nonzero entry in the first block only.

int *SUNMatrix_cuSparse_IndexPointers(SUNMatrix A)

This function returns a pointer to the index pointer array for the sparse SUNMatrix — for the CSR format this is
an array of the locations of the first entry of each row in the data and indexvalues arrays, for the BCSR format
this is an array of the locations of each row in the data and indexvalues arrays in the first block only.

int SUNMatrix_cuSparse_NumBlocks (SUNMatrix A)

This function returns the number of matrix blocks.

int SUNMatrix_cuSparse_BlockRows (SUNMatrix A)

This function returns the number of rows in a matrix block.

int SUNMatrix_cuSparse_BlockColumns (SUNMatrix A)

This function returns the number of columns in a matrix block.
int SUNMatrix_cuSparse_BlockNNZ (SUNMatrix A)

This function returns the number of nonzeros in each matrix block.
sunrealtype *SUNMatrix_cuSparse_BlockData(SUNMatrix A, int blockidx)

This function returns a pointer to the location in the data array where the data for the block, blockidx, begins.
Thus, blockidx must be less than SUNMatrix_cuSparse_NumBlocks (A). The first block in the SUNMatrix
is index 0, the second block is index 1, and so on.

cusparseMatDescr_t SUNMatrix_cuSparse_MatDescr (SUNMatrix A)

This function returns the cusparseMatDescr_t object associated with the matrix.

SUNErrCode SUNMatrix_cuSparse_CopyToDevice(SUNMatrix A, sunrealtype *h_data, int *h_idxptrs, int
*h_idxvals)

This functions copies the matrix information to the GPU device from the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information.

The function returns SUN_SUCCESS if the copy operation(s) were successful, or a nonzero error code otherwise.

SUNErrCode SUNMatrix_cuSparse_CopyFromDevice (SUNMatrix A, sunrealtype *h_data, int *h_idxptrs, int
*h_idxvals)

This functions copies the matrix information from the GPU device to the provided host arrays. A user may
provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid copying that information. Otherwise:

310 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

* The h_data array must be at least SUNMatrix_cuSparse_NNZ(A) *sizeof(sunrealtype) bytes.

e The h_idxptrs array must be at least (SUNMatrix_cuSparse_BlockDim(A)+1)*sizeof(int) bytes.

e The h_idxvals array must be at least (SUNMatrix_cuSparse_BlockNNZ(A))*sizeof(int) bytes.
The function returns SUN_SUCCESS if the copy operation(s) were successful, or a nonzero error code otherwise.

SUNErrCode SUNMatrix_cuSparse_SetFixedPattern(SUNMatrix A, sunbooleantype yesno)

This function changes the behavior of the the SUNMatZero operation on the object A. By default the matrix
sparsity pattern is not considered to be fixed, thus, the SUNMatZero operation zeros out all data array as well
as the indexvalues and indexpointers arrays. Providing a value of 1 or SUNTRUE for the yesno argument
changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not the indexvalues or
indexpointers arrays. Providing a value of ® or SUNFALSE for the yesno argument is equivalent to the default
behavior.

SUNErrCode SUNMatrix_cuSparse_SetKernelExecPolicy(SUNMatrix A, SUNCudaExecPolicy *exec_policy)

This function sets the execution policies which control the kernel parameters utilized when launching the CUDA
kernels. By default the matrix is setup to use a policy which tries to leverage the structure of the matrix. See
§6.10.2 for more information about the SUNCudaExecPolicy class.

7.7.3 SUNMATRIX_CUSPARSE Usage Notes

The SUNMATRIX_CUSPARSE module only supports 32-bit indexing, thus SUNDIALS must be built for 32-bit in-
dexing to use this module.

The SUNMATRIX_CUSPARSE module can be used with CUDA streams by calling the cuSPARSE function cus-
parseSetStream on the cusparseHandle_t that is provided to the SUNMATRIX_CUSPARSE constructor.

Warning

When using the SUNMATRIX_CUSPARSE module with a SUNDIALS package (e.2. ARKODE), the stream
given to cuSPARSE should be the same stream used for the NVECTOR object that is provided to the package, and
the NVECTOR object given to the SUNMatvec operation. If different streams are utilized, synchronization issues
may occur.

7.8 The SUNMATRIX_SPARSE Module

The sparse implementation of the SUNMatrix module, SUNMATRIX_SPARSE, is designed to work with either
compressed-sparse-column (CSC) or compressed-sparse-row (CSR) sparse matrix formats. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
sunrealtype *data;
int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/% CSC indices */

(continues on next page)

7.8. The SUNMATRIX_SPARSE Module 311

User Documentation for CVODES, v7.3.0

(continued from previous page)

sunindextype **rowvals;
sunindextype **colptrs;

/:’r

CSR indices */

sunindextype **colvals;
sunindextype *“rowptrs;

e

A diagram of the underlying data representation in a sparse matrix is shown in Fig. 7.2. A more complete description
of the parts of this content field is given below:

M - number of rows
N - number of columns
NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices NP=N, and
for CSR matrices NP=M. This value is set automatically at construction based the input choice for sparsetype.

data - pointer to a contiguous block of sunrealtype variables (of length NNZ), containing the values of the
nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices (if CSC)
or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each entry
provides the index of the first column entry into the data and indexvals arrays, e.g. if indexptr[3]=7,
then the first nonzero entry in the fourth column of the matrix is located in data[7], and is located in row
indexvals[7] of the matrix. The last entry contains the total number of nonzero values in the matrix and
hence points one past the end of the active data in the data and indexvals arrays. For CSR matrices, each
entry provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SUNMATRIX_SPARSE content structure for user convenience, to provide a
more intuitive interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating a
sparse SUNMatrix, based on the sparse matrix storage type.

rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.
colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.
colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR_MAT, otherwise set to NULL.

For example, the 5 x 4 matrix

O = O Wwo
SO O W
OO OO
O O N O

could be stored as a CSC matrix in this structure as either

M=05;
N = 4;
NNZ = 8;
NP = N;
(continues on next page)
312 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

(continued from previous page)

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;

indexvals {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8};

or
k= 5

N = 4;

NNZ = 10;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with * may contain any
values). Note in both cases that the final value in indexptrs is 8, indicating the total number of nonzero entries in the
matrix.

Similarly, in CSR format, the same matrix could be stored as
M =25;

N = 4;

NNZ = 8;

NP = NM;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;

indexvals = {1, 2, 0, 3, 1, 0, 3, 3};

indexptrs = {0, 2, 4, 5, 7, 8};

The header file to be included when using this module is sunmatrix/sunmatrix_sparse.h.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _S denotes that these are specific
to the sparse version.

SM_CONTENT_S (A)

This macro gives access to the contents of the sparse SUNMatrix A.

The assignment A_cont = SM_CONTENT_S(A) sets A_cont to be a pointer to the sparse SUNMatrix content
structure.

Implementation:

#define SM_CONTENT_S(A) ((SUNMatrixContent_Sparse) (A->content))

SM_ROWS_S(A)
Access the number of rows in the sparse SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows = SM_ROWS_S(A)
sets A_rows to be the number of rows in the matrix A. Similarly, the assignment SM_ROWS_S(A) = A_rows sets
the number of columns in A to equal A_rows.

Implementation:

7.8. The SUNMATRIX_SPARSE Module 313

User Documentation for CVODES, v7.3.0

NULL NULL

['l
mowvalzs colplrz colvals mow ptrs M NP=MN N
A & & & &
BE—
indexvalz| wdexptrz data MNMNZ zparsetype=C5C_MAT
[B ¥
[
=————— o F----- = AlFovevalz[0],00
——-- 1 - I A *owvalz[1],00 colum O
1 1
H : H : :
-, 1 -, 1 -
1 1
1 1
==l ---4 k [F-—-- -3 Al*rowvalz[]],1)
I I o
| | 2
ol e e : :
o [[a
11 (|
11 (|
=--11 V- Al¥rowwalz[k] NP1 T
1 1
: i i : column MP-
1 1
l l Al*owvals[nz—1],MP-1) l
1 1
- L f
uauzed
storaga

Fig. 7.2: Diagram of the storage for a compressed-sparse-column matrix of type SUNMATRIX_SPARSE: Here A
isan M x N sparse CSC matrix with storage for up to NNZ nonzero entries (the allocated length of both data and
indexvals). The entries in indexvals may assume values from 0 to M-1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i, column
j entry of A (again, zero-based) denoted as A(i, j). The indexptrs array contains N+1 entries; the first N denote the
starting index of each column within the indexvals and data arrays, while the final entry points one past the final
nonzero entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions of data
and indexvals indicate extra allocated space.

314 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

#define SM_ROWS_S(A) (SM_CONTENT_S(CA)->M)

SM_COLUMNS_S(A)

Access the number of columns in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_S(A) (SM_CONTENT_S(A)->N)

SM_NNZ_S(A)

Access the allocated number of nonzeros in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NNZ_S(A) (SM_CONTENT_S(A)->NNZ)

SM_NP_S(A)

Access the number of index pointers NP in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either
to retrieve or to set the value.

Implementation:

#define SM_NP_S(A) (SM_CONTENT_S(A)->NP)

SM_SPARSETYPE_S(A)

Access the sparsity type parameter in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_SPARSETYPE_S(A) (SM_CONTENT_S(A)->sparsetype)

SM_DATA_S(A)

This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of the data array
for the sparse SUNMatrix A. The assignment SM_DATA_S(A) = A_data sets the data array of A to be A_data
by storing the pointer A_data.

Implementation:

#define SM_DATA_S(A) (SM_CONTENT_S(A)->data)

SM_INDEXVALS_S(A)

This macro gives access to the indexvals pointer for the matrix entries.

The assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer to the array of index
values (i.e. row indices for a CSC matrix, or column indices for a CSR matrix) for the sparse SUNMatrix A.

Implementation:

#define SM_INDEXVALS_S(A) (SM_CONTENT_S(A)->indexvals)

7.8. The SUNMATRIX_SPARSE Module 315

User Documentation for CVODES, v7.3.0

SM_INDEXPTRS_S(A)
This macro gives access to the indexptrs pointer for the matrix entries.

The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets A_indexptrs to be a pointer to the array of index
pointers (i.e. the starting indices in the data/indexvals arrays for each row or column in CSR or CSC formats,
respectively).

Implementation:

#define SM_INDEXPTRS_S(A) (SM_CONTENT_S(A)->indexptrs)

The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in §7.2. Their
names are obtained from those in that section by appending the suffix _Sparse (e.g. SUNMatCopy_Sparse). The
module SUNMATRIX_SPARSE provides the following additional user-callable routines:

SUNMatrix SUNSparseMatrix (sunindextype M, sunindextype N, sunindextype NNZ, int sparsetype, SUNContext
sunctx)

This constructor function creates and allocates memory for a sparse SUNMatrix. Its arguments are the number
of rows and columns of the matrix, M and N, the maximum number of nonzeros to be stored in the matrix, NNZ,
and a flag sparsetype indicating whether to use CSR or CSC format (valid choices are CSR_MAT or CSC_MAT).

SUNMatrix SUNSparseFromDenseMatrix (SUNMatrix A, sunrealtype droptol, int sparsetype)

This constructor function creates a new sparse matrix from an existing SUNMATRIX_DENSE object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:
* A must have type SUNMATRIX_DENSE
* droptol must be non-negative
* sparsetype must be either CSC_MAT or CSR_MAT
The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix (SUNMatrix A, sunrealtype droptol, int sparsetype)

This constructor function creates a new sparse matrix from an existing SUNMATRIX_BAND object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:
* A must have type SUNMATRIX_BAND
* droptol must be non-negative
* sparsetype must be either CSC_MAT or CSR_MAT.
The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNErrCode SUNSparseMatrix_Realloc(SUNMatrix A)

This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse matrix has no wasted
space (i.e. the space allocated for nonzero entries equals the actual number of nonzeros, indexptrs[NP]).
Returns a SUNErrCode.

SUNErrCode SUNSparseMatrix_Reallocate (SUNMatrix A, sunindextype NNZ)
Function to reallocate internal sparse matrix storage arrays so that the resulting sparse matrix has storage for a
specified number of nonzeros. Returns a SUNErrCode.

void SUNSparseMatrix_Print (SUNMatrix A, FILE *outfile)

This function prints the content of a sparse SUNMatrix to the output stream specified by outfile. Note: std-
out or stderr may be used as arguments for outfile to print directly to standard output or standard error,
respectively.

316 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

sunindextype SUNSparseMatrix_Rows (SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_Columns (SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A)

This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NP (SUNMatrix A)

This function returns the number of index pointers for the sparse SUNMatrix (the indexptrs array has NP+1
entries).

int SUNSparseMatrix_SparseType (SUNMatrix A)
This function returns the storage type (CSR_MAT or CSC_MAT) for the sparse SUNMatrix.

sunrealtype *SUNSparseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

sunindextype *SUNSparseMatrix_IndexValues (SUNMatrix A)

This function returns a pointer to index value array for the sparse SUNMatrix — for CSR format this is the column
index for each nonzero entry, for CSC format this is the row index for each nonzero entry.

sunindextype *SUNSparseMatrix_IndexPointers(SUNMatrix A)

This function returns a pointer to the index pointer array for the sparse SUNMatrix — for CSR format this is the
location of the first entry of each row in the data and indexvalues arrays, for CSC format this is the location
of the first entry of each column.

Note

Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that the matrix is
called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL, NVEC-
TOR_OPENMP, NVECTOR_PTHREADS, and NVECTOR_CUDA when using managed memory. As additional
compatible vector implementations are added to SUNDIALS, these will be included within this compatibility check.

7.9 The SUNMATRIX_SLUNRLOC Module

The SUNMATRIX_SLUNRLOC module is an interface to the SuperMatrix structure provided by the SuperLU_-
DIST sparse matrix factorization and solver library written by X. Sherry Li and collaborators [8, 35, 52, 53]. It is
designed to be used with the SuperLU_DIST SUNLinearSolver module discussed in §8.15. To this end, it defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_SLUNRloc {
sunbooleantype own_data;
gridinfo_t *grid;
sunindextype *“row_to_proc;
pdgsmv_comm_t *gsmv_comm;
SuperMatrix *A_super;
SuperMatrix *ACS_super;

};

A more complete description of the this content field is given below:

* own_data — a flag which indicates if the SUNMatrix is responsible for freeing A_super

7.9. The SUNMATRIX_SLUNRLOC Module 317

User Documentation for CVODES, v7.3.0

* grid — pointer to the SuperLU_DIST structure that stores the 2D process grid

* row_to_proc — a mapping between the rows in the matrix and the process it resides on; will be NULL until the
SUNMatMatvecSetup routine is called

e gsmv_comm — pointer to the SuperLU_DIST structure that stores the communication information needed for
matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is called

* A_super — pointer to the underlying SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc, Dtype =
SLU_D, Mtype = SLU_GE; must have the full diagonal present to be used with SUNMatScaleAddI routine

e ACS_super — a column-sorted version of the matrix needed to perform matrix-vector multiplication; will be
NULL until the routine SUNMatMatvecSetup routine is called

The header file to include when using this module is sunmatrix/sunmatrix_slunrloc.h. The installed module
library to link to is 1ibsundials_sunmatrixslunrloc.lib where .lib is typically . so for shared libraries and . a for
static libraries.

7.9.1 SUNMATRIX_SLUNRLOC Functions

The SUNMATRIX_SLUNRLOC module provides the following user-callable routines:

SUNMatrix SUNMatrix_SLUNRloc (SuperMatrix *Asuper, gridinfo_t *grid, SUNContext sunctx)

This constructor function creates and allocates memory for a SUNMATRIX_SLUNRLOC object. Its arguments
are a fully-allocated SuperLU_DIST SuperMatrix with Stype = SLU_NR_loc, Dtype = SLU_D, Mtype =
SLU_GE and an initialized SuperLU_DIST 2D process grid structure. It returns a SUNMatrix object if Asuper
is compatible else it returns NULL.

void SUNMatrix_SLUNRloc_Print (SUNMatrix A, FILE *fp)

This function prints the underlying SuperMatrix content. It is useful for debugging. Its arguments are the
SUNMatrix object and a FILE pointer to print to. It returns void.

SuperMatrix *SUNMatrix_SLUNRloc_SuperMatrix(SUNMatrix A)

This function returns the underlying SuperMatrix of A. Its only argument is the SUNMatrix object to access.

gridinfo_t *SUNMatrix_SLUNRloc_ProcessGrid (SUNMatrix A)

This function returns the SuperLU_DIST 2D process grid associated with A. Its only argument is the SUNMatrix
object to access.

sunbooleantype SUNMatrix_SLUNRloc_OwnData(SUNMatrix A)

This function returns true if the SUNMatrix object is responsible for freeing the underlying SuperMatrix, oth-
erwise it returns false. Its only argument is the SUNMatrix object to access.

The SUNMATRIX_SLUNRLOC module also defines implementations of all generic SUNMatrix operations listed in
§7.2:

¢ SUNMatGetID_SLUNRloc — returns SUNMATRIX_SLUNRLOC
¢ SUNMatClone_SLUNRloc
e SUNMatDestroy_SLUNRloc

¢ SUNMatSpace_SLUNRloc - this only returns information for the storage within the matrix interface, i.e. storage
for row_to_proc

* SUNMatZero_SLUNRloc
¢ SUNMatCopy_SLUNRloc
e SUNMatScaleAdd_SLUNRloc — performs A = cA + B, where A and B must have the same sparsity pattern

318 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

» SUNMatScaleAddI_SLUNRloc — performs A = cA + I, where the diagonal of A must be present

* SUNMatMatvecSetup_SLUNRloc — initializes the SuperLU_DIST parallel communication structures needed to
perform a matrix-vector product; only needs to be called before the first call to SUNMatMatvec () or if the matrix
changed since the last setup

¢ SUNMatMatvec_SLUNRloc

7.10 The SUNMATRIX_GINKGO Module

Added in version 6.4.0.

The SUNMATRIX_GINKGO implementation of the SUNMatrix API provides an interface to the matrix data structure
for the Ginkgo linear algebra library [11]. Ginkgo provides several different matrix formats and linear solvers which
can run on a variety of hardware, such as NVIDIA, AMD, and Intel GPUs as well as multicore CPUs. Since Ginkgo is
amodern C++ library, SUNMATRIX_GINKGO is also written in modern C++ (it requires C++14). Unlike most other
SUNDIALS modules, it is a header only library. To use the SUNMATRIX_GINKGO SUNMatrix, users will need to
include sunmatrix/sunmatrix_ginkgo.hpp. More instructions on building SUNDIALS with Ginkgo enabled are
givenin §11.3.18. For instructions on building and using Ginkgo itself, refer to the Ginkgo website and documentation.

Note

It is assumed that users of this module are aware of how to use Ginkgo. This module does not try to encapsulate
Ginkgo matrices, rather it provides a lightweight iteroperability layer between Ginkgo and SUNDIALS.

The SUNMATRIX_GINKGO module is defined by the sundials: :ginkgo: :Matrix templated class:

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>;

7.10.1 Compatible Vectors

The N_Vector to use with the SUNLINEARSOLVER_GINKGO module depends on the gko::Executor uti-
lized. That is, when using the gko::CudaExecutor you should use a CUDA capable N_Vector (e.g., §6.10),
gko: :HipExecutor goes with a HIP capable N_Vector (e.g., §6.11), gko::DpcppExecutor goes with a
DPC++/SYCL capable N_Vector (e.g., §6.12), and gko: : OmpExecutor goes with a CPU based N_Vector (e.g., §6.6).
Specifically, what makes a N_Vector compatible with different Ginkgo executors is where they store the data. The GPU
enabled Ginkgo executors need the data to reside on the GPU, so the N_Vector mustimplement N_VGetDeviceArray-
Pointer() and keep the data in GPU memory. The CPU-only enabled Ginkgo executors (e.g, gko: :OmpExecutor
and gko: :ReferenceExecutor) need data to reside on the CPU and will use N_VGetArrayPointer () to access the
N_Vector data.

7.10. The SUNMATRIX_GINKGO Module 319

https://ginkgo-project.github.io/

User Documentation for CVODES, v7.3.0

7.10.2 Using SUNMATRIX_GINKGO

To use the SUNMATRIX_GINKGO module, we begin by creating an instance of a Ginkgo matrix using Ginkgo’s APL
For example, below we create a Ginkgo sparse matrix that uses the CSR storage format and then fill the diagonal of the
matrix with ones to make an identity matrix:

auto gko_matrix{gko::matrix::Csr<sunrealtype, sunindextype>::create(gko_exec, matrix_dim)};
gko_matrix->read(gko: :matrix_data<sunrealtype, sunindextype>::diag(matrix_dim, 1.0));

After we have a Ginkgo matrix object, we wrap it in an instance of the sundials: :ginkgo: :Matrix class. This
object can be provided to other SUNDIALS functions that expect a SUNMatrix object via implicit conversion, or the
Convert () method:

sundials: :ginkgo: :Matrix<gko: :matrix::Csr> matrix{gko_matrix, sunctx};
SUNMatrix I1 = matrix.Convert(); // explicit conversion to SUNMatrix
SUNMatrix I2 = matrix; // implicit conversion to SUNMatrix

No further interaction with matrix is required from this point, and it is possible to to use the SUNMatrix API operating
on I1 or I2 (orif needed, via Ginkgo operations on gko_matrix).

Warning

SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a sundi-
als::ginkgo: :Matrix. Doing so may result in a double free.

7.10.3 SUNMATRIX_GINKGO API

In this section we list the public APTI of the sundials: :ginkgo: :Matrix class.

template<typename GkoMatType>
class Matrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo<SUNMatrix>

Matrix() = default
Default constructor - means the matrix must be copied or moved to.

Matrix(std::shared_ptr<GkoMatType> gko_mat, SUNContext sunctx)
Constructs a Matrix from an existing Ginkgo matrix object.

Parameters
¢ gko_mat — A Ginkgo matrix object
» sunctx — The SUNDIALS simulation context object (SUNContext)

Matrix(Matrix &&that_matrix) noexcept
Move constructor.

Matrix(const Matrix &that_matrix)
Copy constructor (performs a deep copy).

Matrix &operator=(Matrix &&rhs) noexcept
Move assignment.

Matrix &operator=_(const Matrix &rhs)

Copy assignment clones the gko: :matrix and SUNMatrix. This is a deep copy (i.e. a new data array is
created).

320 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

virtual ~Matrix() = default;

Default destructor.

std::shared_ptr<GkoMatType> GkoMtx () const
Get the underlying Ginkgo matrix object.

std::shared_ptr<const gko::Executor> GkoExec () const
Get the gko: :Executor associated with the Ginkgo matrix.

const gko::dim<2> &GkoSize () const
Get the size, i.e. gko: :dim, for the Ginkgo matrix.

operator SUNMatrix() override

Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override

Implicit conversion to a SUNMatrix.

SUNMatrix Convert () override

Explicit conversion to a SUNMatrix.

SUNMatrix Convert () const override

Explicit conversion to a SUNMatrix.

7.11 The SUNMATRIX_KOKKOSDENSE Module

Added in version 6.4.0.

The SUNMATRIX_KOKKOSDENSE SUNMatrix implementation provides a data structure for dense and dense
batched (block-diagonal) matrices using Kokkos [29, 66] and KokkosKernels [65] to support a variety of backends
including serial, OpenMP, CUDA, HIP, and SYCL. Since Kokkos is a modern C++ library, the module is also writ-
ten in modern C++ (it requires C++14) as a header only library. To utilize this SUNMatrix users will need to in-
clude sunmatrix/sunmatrix_kokkosdense.hpp. More instructions on building SUNDIALS with Kokkos and
KokkosKernels enabled are given in §11.3.23. For instructions on building and using Kokkos and KokkosKernels,
refer to the Kokkos and KokkosKernels. documentation.

7.11.1 Using SUNMATRIX_KOKKOSDENSE

The SUNMATRIX_KOKKOSDENSE module is defined by the DenseMatrix templated class in the sundi-
als: :kokkos namespace:

template<class ExecutionSpace = Kokkos::DefaultExecutionSpace,
class MemorySpace = typename ExecutionSpace::memory_space>
class DenseMatrix : public sundials::impl::BaseMatrix,
public sundials::ConvertibleTo<SUNMatrix>

To use the SUNMATRIX_KOKKOSDENSE module, we begin by constructing an instance of the Kokkos dense matrix
e.g.,

// Single matrix using the default execution space
sundials: :kokkos: :DenseMatrix<> A{rows, cols, sunctx};

// Batched (block-diagonal) matrix using the default execution space
(continues on next page)

7.11. The SUNMATRIX_KOKKOSDENSE Module 321

https://kokkos.github.io/kokkos-core-wiki/index.html
https://github.com/kokkos/kokkos-kernels/wiki

User Documentation for CVODES, v7.3.0

(continued from previous page)

sundials: :kokkos: :DenseMatrix<> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space
sundials: :kokkos: :DenseMatrix<Kokkos: :Cuda> Abatch{blocks, rows, cols, sunctx};

// Batched (block-diagonal) matrix using the Cuda execution space and

// a non-default execution space instance

sundials: :kokkos: :DenseMatrix<Kokkos: :Cuda> Abatch{blocks, rows, cols,
exec_space_instance,
sunctx};

Instances of the DenseMatrix class are implicitly or explicitly (using the Convert () method) convertible to a SUN-
Matrixe.g.,

sundials: :kokkos: :DenseMatrix<> A{rows, cols, sunctx};
SUNMatrix B = A; // implicit conversion to SUNMatrix
SUNMatrix C = A.Convert(); // explicit conversion to SUNMatrix

No further interaction with a DenseMatrix is required from this point, and it is possible to use the SUNMatrix API to
operate on B or C.

Warning

SUNMatDestroy() should never be called on a SUNMatrix that was created via conversion from a sundi-
als: :kokkos: :DenseMatrix. Doing so may result in a double free.

The underlying DenseMatrix can be extracted from a SUNMatrix using GetDenseMat () e.g.,

auto A_dense_mat = GetDenseMat<>(A_sunmat);

The SUNMATRIX_KOKKOSDENSE module is compatible with the NVECTOR_KOKKOS vector module (see
§6.14) and SUNLINEARSOLVER_KOKKOSDENSE linear solver module (see §8.19).

7.11.2 SUNMATRIX_KOKKOSDENSE API

In this section we list the public API of the sundials: :kokkos: :DenseMatrix class.

template<class ExeccutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename
ExecutionSpace::memory_space>
class DenseMatrix : public sundials::impl::BaseMatrix, public sundials::ConvertibleTo< SUNMatrix>

using exec_space = ExecutionSpace;

using memory_space = MemorySpace;

using view_type = Kokkos::View<sunrealtype***, memory_space>;

using size_type = typename view_type::size_type;

using range_policy = Kokkos::MDRangePolicy<exec_space, Kokkos::Rank<3>>;

using team_policy = typename Kokkos::TeamPolicy<exec_space>;

322 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

using member_type = typename Kokkos::TeamPolicy<exec_space>::member_type;
DenseMatrix () = default
Default constructor — the matrix must be copied or moved to.

DenseMatrix (size_type rows, size_type cols, SUNContext sunctx)

Constructs a single DenseMatrix using the default execution space instance.
Parameters
e rows — number of matrix rows
¢ cols — number of matrix columns
* sunctx — the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type rows, size_type cols, exec_space ex, SUNContext sunctx)

Constructs a single DenseMatrix using the provided execution space instance.
Parameters
e rows — number of matrix rows
¢ cols — number of matrix columns
* ex — an execution space
e sunctx — the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, SUNContext sunctx)
Constructs a batched (block-diagonal) DenseMatrix using the default execution space instance.

Parameters
* blocks — number of matrix blocks
* block_rows — number of rows in a block
* block_cols — number of columns in a block
* sunctx — the SUNDIALS simulation context object (SUNContext)

DenseMatrix(size_type blocks, size_type block_rows, size_type block_cols, exec_space ex, SUNContext
sunctx)

Constructs a batched (block-diagonal) DenseMatrix using the provided execution space instance.
Parameters
* blocks — number of matrix blocks
* block_rows — number of rows in a block
* block_cols — number of columns in a block
* ex — an execution space
* sunctx — the SUNDIALS simulation context object (SUNContext)

DenseMatrix(DenseMatrix &&that_matrix) noexcept
Move constructor.
DenseMatrix(const DenseMatrix &that_matrix)

Copy constructor. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.

7.11. The SUNMATRIX_KOKKOSDENSE Module 323

User Documentation for CVODES, v7.3.0

DenseMatrix &operator=(DenseMatrix &&rhs) noexcept
Move assignment.
DenseMatrix &operator=_(const DenseMatrix &rhs)
Copy assignment. This creates a shallow clone of the Matrix, i.e., it creates a new Matrix with the same
properties, such as size, but it does not copy the data.
virtual ~DenseMatrix() = default;
Default destructor.
exec_space ExecSpace()
Get the execution space instance used by the matrix.
view_type View()
Get the underlying Kokkos view with extents {blocks, block_rows, block_cols}.
size_type Blocks ()
Get the number of blocks i.e., extent (0).
size_type BlockRows ()
Get the number of rows in a block i.e., extent (1).
size_type BlockCols ()
Get the number of columns in a block i.e., extent (2).
size_type Rows ()
Get the number of rows in the block-diagonal matrix i.e., extent(0) * extent(l).
size_type Cols ()
Get the number of columns in the block-diagonal matrix i.e., extent () * extent(2).
operator SUNMatrix() override
Implicit conversion to a SUNMatrix.

operator SUNMatrix() const override
Implicit conversion to a SUNMatrix.

SUNMatrix Convert() override
Explicit conversion to a SUNMatrix.

SUNMatrix Convert() const override
Explicit conversion to a SUNMatrix.
template<class ExecutionSpace = Kokkos::DefaultExecutionSpace, class MemorySpace = typename

ExecutionSpace::memory_space>
inline DenseMatrix<MatrixType> *GetDenseMat (SUNMatrix A)

Get the dense matrix wrapped by a SUNMatrix

324 Chapter 7. Matrix Data Structures

User Documentation for CVODES, v7.3.0

7.12 SUNMATRIX Examples

There are SUNMatrix examples that may be installed for each implementation, that make use of the functions in test_-
sunmatrix.c. These example functions show simple usage of the SUNMatrix family of functions. The inputs to the
examples depend on the matrix type, and are output to stdout if the example is run without the appropriate number
of command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:
e Test_SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.
* Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their values match.
» Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.
» Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values match.

e Test_SUNMatScaleAdd: Given an input matrix A and an input identity matrix I, this test clones and copies A
to a new matrix B, computes B = —B + B, and verifies that the resulting matrix entries equal 0. Additionally,
if the matrix is square, this test clones and copies A to a new matrix D, clones and copies I to a new matrix C,
computes D = D + I and C = C + A using SUNMatScaleAdd(), and then verifies that C' = D.

e Test_SUNMatScaleAddI: Given an input matrix A and an input identity matrix I, this clones and copies I to a
new matrix B, computes B = — B+ I using SUNMatScaleAddI (), and verifies that the resulting matrix entries
equal 0.

e Test_SUNMatMatvecSetup: verifies that SUNMatMatvecSetup () can be called.

* Test_SUNMatMatvec Given an input matrix A and input vectors x and y such that y = Az, this test has dif-
ferent behavior depending on whether A is square. If it is square, it clones and copies A to a new matrix B,
computes B = 3B + [using SUNMatScaleAddI(), clones y to new vectors w and z, computes z = Bz using
SUNMatMatvec (), computes w = 3y + x using N_VLinearSum, and verifies that w == z. If A is not square,
it just clones y to a new vector z, computes :math: z=Ax using SUNMatMatvec (), and verifies that y = z.

* Test_SUNMatSpace: verifies that SUNMatSpace () can be called, and outputs the results to stdout.

7.13 SUNMatrix functions used by CVODES

In Table 7.2, we list the matrix functions in the SUNMatrix module used within the CVODES package. The table
also shows, for each function, which of the code modules uses the function. The main CVODES integrator does not
call any SUNMatrix functions directly, so the table columns are specific to the CVLS interface and the CVBANDPRE
and CVBBDPRE preconditioner modules. We further note that the CVLS interface only utilizes these routines when
supplied with a matrix-based linear solver, i.e., the SUNMatrix object passed to CVodeSetLinearSolver () was not
NULL.

At this point, we should emphasize that the CVODES user does not need to know anything about the usage of matrix
functions by the CVODES code modules in order to use CVODES. The information is presented as an implementation
detail for the interested reader.

7.12. SUNMATRIX Examples 325

User Documentation for CVODES, v7.3.0

Table 7.2: List of matrix functions usage by CVODES code modules

CVLS CVBANDPRE CVBBDPRE

SUNMatClone() X

SUNMatDestroy () X X X
SUNMatZero() X X X
SUNMatGetID() X

SUNMatCopy () X X X
SUNMatScaleAddI() x X X
SUNMatSpace () T T T

The matrix functions listed with a t symbol are optionally used, in that these are only called if they are implemented
in the SUNMatrix module that is being used (i.e. their function pointers are non-NULL). The matrix functions listed
in §7.1 that are not used by CVODES are: SUNMatScaleAdd() and SUNMatMatvec(). Therefore a user-supplied
SUNMatrix module for CVODES could omit these functions.

We note that the CVBANDPRE and CVBBDPRE preconditioner modules are hard-coded to use the SUNDIALS-
supplied band SUNMatrix type, so the most useful information above for user-supplied SUNMatrix implementations
is the column relating the CVLS requirements.

326 Chapter 7. Matrix Data Structures

Chapter 8

Linear Algebraic Solvers

For problems that require the solution of linear systems of equations, the SUNDIALS packages operate using generic
linear solver modules defined through the SUNLinearSolver, or “SUNLinSol”, API. This allows SUNDIALS pack-
ages to utilize any valid SUNLinSol implementation that provides a set of required functions. These functions can be
divided into three categories. The first are the core linear solver functions. The second group consists of “set” routines
to supply the linear solver object with functions provided by the SUNDIALS package, or for modification of solver
parameters. The last group consists of “get” routines for retrieving artifacts (statistics, residual vectors, etc.) from the
linear solver. All of these functions are defined in the header file sundials/sundials_linearsolver.h.

The implementations provided with SUNDIALS work in coordination with the SUNDIALS N_Vector, and optionally
SUNMatrix, modules to provide a set of compatible data structures and solvers for the solution of linear systems
using direct or iterative (matrix-based or matrix-free) methods. Moreover, advanced users can provide a customized
SUNLinearSolver implementation to any SUNDIALS package, particularly in cases where they provide their own
N_Vector and/or SUNMatrix modules.

Historically, the SUNDIALS packages have been designed to specifically leverage the use of either direct linear solvers
or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-based iterative linear solvers are also
supported.

The iterative linear solvers packaged with SUNDIALS leverage scaling and preconditioning, as applicable, to balance
error between solution components and to accelerate convergence of the linear solver. To this end, instead of solving
the linear system Ax = b directly, these apply the underlying iterative algorithm to the transformed system

Az =b (8.1)
where
A=S8, P AP Sy,
b= S P 'b, (8.2)
T = SQPQI,
and where

e P is the left preconditioner,
* P, is the right preconditioner,
» S is a diagonal matrix of scale factors for P, Ip,

¢ S5 is a diagonal matrix of scale factors for Pox.

327

User Documentation for CVODES, v7.3.0

SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled preconditioned residual
meeting a prescribed tolerance, i.e.,

Ha_AQeHQ < tol.

When provided an iterative SUNLinSol implementation that does not support the scaling matrices S7 and Ss, the
SUNDIALS packages will adjust the value of tol accordingly (see the iterative linear tolerance section that follows for
more details). In this case, they instead request that iterative linear solvers stop based on the criterion

| P 'o— Pt Az, < tol.

We note that the corresponding adjustments to tol in this case may not be optimal, in that they cannot balance error
between specific entries of the solution x, only the aggregate error in the overall solution vector.

We further note that not all of the SUNDIALS-provided iterative linear solvers support the full range of the above
options (e.g., separate left/right preconditioning), and that some of the SUNDIALS packages only utilize a subset of
these options. Further details on these exceptions are described in the documentation for each SUNLinearSolver
implementation, or for each SUNDIALS package.

For users interested in providing their own SUNLinSol module, the following section presents the SUNLinSol API
and its implementation beginning with the definition of SUNLinSol functions in §8.1.1 — §8.1.3. This is followed
by the definition of functions supplied to a linear solver implementation in §8.1.4. The linear solver return codes
are described in Table 8.1. The SUNLinearSolver type and the generic SUNLinSol module are defined in §8.1.6.
§8.1.8 lists the requirements for supplying a custom SUNLinSol module and discusses some intended use cases. Users
wishing to supply their own SUNLinSol module are encouraged to use the SUNLinSol implementations provided with
SUNDIALS as a template for supplying custom linear solver modules. The section that then follows describes the
SUNLinSol functions required by this SUNDIALS package, and provides additional package specific details. Then the
remaining sections of this chapter present the SUNLinSol modules provided with SUNDIALS.

8.1 The SUNLinearSolver API

The SUNLinSol API defines several linear solver operations that enable SUNDIALS packages to utilize this APL
These functions can be divided into three categories. The first are the core linear solver functions. The second consist
of “set” routines to supply the linear solver with functions provided by the SUNDIALS packages and to modify solver
parameters. The final group consists of “get” routines for retrieving linear solver statistics. All of these functions are
defined in the header file sundials/sundials_linearsolver.h.

8.1.1 SUNLinearSolver core functions
The core linear solver functions consist of two required functions: SUNLinSolGetType () returns the linear solver
type, and SUNLinSolSolve () solves the linear system Ax = b.

The remaining optional functions return the solver ID (SUNLinSolGetID()), initialize the linear solver object once all
solver-specific options have been set (SUNLinSolInitialize()), set up the linear solver object to utilize an updated
matrix A (SUNLinSolSetup()), and destroy a linear solver object (SUNLinSolFree()).

enum SUNLinearSolver_Type

An identifier indicating the type of linear solver.

Note

See §8.1.8.1 for more information on intended use cases corresponding to the linear solver type.

328 Chapter 8. Linear Algebraic Solvers

User Documentation for CVODES, v7.3.0

enumerator SUNLINEARSOLVER_DIRECT

The linear solver requires a matrix, and computes an “exact” solution to the linear system defined by that
martrix.

enumerator SUNLINEARSOLVER_ITERATIVE

The linear solver does not require a matrix (though one may be provided), and computes an inexact solution
to the linear system using a matrix-free iterative algorithm. That is it solves the linear system defined by the
package-supplied ATimes routine (see SUNLinSolSetATimes () below), even if that linear system differs
from the one encoded in the matrix object (if one is provided). As the solver computes the solution only
inexactly (or may diverge), the linear solver should check for solution convergence/accuracy as appropriate.

enumerator SUNLINEARSOLVER_MATRIX_ITERATIVE

The linear solver module requires a matrix, and computes an inexact solution to the linear system defined
by that matrix using an iterative algorithm. That is it solves the linear system defined by the matrix ob-
ject even if that linear system differs from that encoded by the package-supplied ATimes routine. As the
solver computes the solution only inexactly (or may diverge), the linear solver should check for solution
convergence/accuracy as appropriate.

enumerator SUNLINEARSOLVER_MATRIX_EMBEDDED

The linear solver sets up and solves the specified linear system at each linear solve call. Any matrix-related
data structures are held internally to the linear solver itself, and are not provided by the SUNDIALS package.

SUNLinearSolver_Type SUNLinSolGetType (SUNLinearSolver LS)
Returns the SUNLinearSolver_Type type identifier for the linear solver.

Usage:

type = SUNLinSolGetType(LS);

SUNLinearSolver _ID SUNLinS0lGetID (SUNLinearSolver LS)

Returns a non-negative linear solver identifier (of type int) for the linear solver LS.
Return value:

Non-negative linear solver identifier (of type int), defined by the enumeration SUNLinearSolver_-
ID, with values shown in Table 8.2 and defined in the sundials_linearsolver.h header file.

Usage:

id = SUNLinSolGetID(LS);

Note

It is recommended that a user-supplied SUNLinearSolver return the SUNLINEARSOLVER_CUSTONM identifier.

SUNErrCode SUNLinSolInitialize (SUNLinearSolver LS)
Performs linear solver initialization (assuming that all solver-specific options have been set).

Return value:
A SUNErrcCode.
Usage:

retval = SUNLinSolInitialize(LS);

8.1. The SUNLinearSolver API 329

User Documentation for CVODES, v7.3.0

int SUNLinSolSetup (SUNLinearSolver LS, SUNMatrix A)

Performs any linear solver setup needed, based on an updated system SUNMatrix A. This may be called frequently
(e.g., with a full Newton method) or infrequently (for a modified Newton method), based on the t