Point Cloud Library (PCL) 1.12.0
Loading...
Searching...
No Matches
segment_differences.h
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2010, Willow Garage, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of the copyright holder(s) nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $Id$
35 *
36 */
37
38#pragma once
39
40#include <pcl/pcl_base.h>
41#include <pcl/pcl_macros.h>
42#include <pcl/search/search.h> // for Search
43
44namespace pcl
45{
46 ////////////////////////////////////////////////////////////////////////////////////////////
47 /** \brief Obtain the difference between two aligned point clouds as another point cloud, given a distance threshold.
48 * \param src the input point cloud source
49 * \param threshold the distance threshold (tolerance) for point correspondences. (e.g., check if f a point p1 from
50 * src has a correspondence > threshold than a point p2 from tgt)
51 * \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching built over the target cloud
52 * \param output the resultant output point cloud difference
53 * \ingroup segmentation
54 */
55 template <typename PointT>
57 const pcl::PointCloud<PointT> &src,
58 double threshold,
59 const typename pcl::search::Search<PointT>::Ptr &tree,
61
62 ////////////////////////////////////////////////////////////////////////////////////////////
63 ////////////////////////////////////////////////////////////////////////////////////////////
64 ////////////////////////////////////////////////////////////////////////////////////////////
65 /** \brief @b SegmentDifferences obtains the difference between two spatially
66 * aligned point clouds and returns the difference between them for a maximum
67 * given distance threshold.
68 * \author Radu Bogdan Rusu
69 * \ingroup segmentation
70 */
71 template <typename PointT>
72 class SegmentDifferences: public PCLBase<PointT>
73 {
75
76 public:
80
82 using KdTreePtr = typename KdTree::Ptr;
83
86
87 /** \brief Empty constructor. */
91
92 /** \brief Provide a pointer to the target dataset against which we
93 * compare the input cloud given in setInputCloud
94 *
95 * \param cloud the target PointCloud dataset
96 */
97 inline void
98 setTargetCloud (const PointCloudConstPtr &cloud) { target_ = cloud; }
99
100 /** \brief Get a pointer to the input target point cloud dataset. */
101 inline PointCloudConstPtr const
102 getTargetCloud () { return (target_); }
103
104 /** \brief Provide a pointer to the search object.
105 * \param tree a pointer to the spatial search object.
106 */
107 inline void
108 setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
109
110 /** \brief Get a pointer to the search method used. */
111 inline KdTreePtr
112 getSearchMethod () { return (tree_); }
113
114 /** \brief Set the maximum distance tolerance (squared) between corresponding
115 * points in the two input datasets.
116 *
117 * \param sqr_threshold the squared distance tolerance as a measure in L2 Euclidean space
118 */
119 inline void
120 setDistanceThreshold (double sqr_threshold) { distance_threshold_ = sqr_threshold; }
121
122 /** \brief Get the squared distance tolerance between corresponding points as a
123 * measure in the L2 Euclidean space.
124 */
125 inline double
127
128 /** \brief Segment differences between two input point clouds.
129 * \param output the resultant difference between the two point clouds as a PointCloud
130 */
131 void
132 segment (PointCloud &output);
133
134 protected:
135 // Members derived from the base class
140
141 /** \brief A pointer to the spatial search object. */
143
144 /** \brief The input target point cloud dataset. */
146
147 /** \brief The distance tolerance (squared) as a measure in the L2
148 * Euclidean space between corresponding points.
149 */
151
152 /** \brief Class getName method. */
153 virtual std::string
154 getClassName () const { return ("SegmentDifferences"); }
155 };
156}
157
158#ifdef PCL_NO_PRECOMPILE
159#include <pcl/segmentation/impl/segment_differences.hpp>
160#endif
PCL base class.
Definition pcl_base.h:70
PointCloudConstPtr input_
The input point cloud dataset.
Definition pcl_base.h:147
IndicesPtr indices_
A pointer to the vector of point indices to use.
Definition pcl_base.h:150
bool initCompute()
This method should get called before starting the actual computation.
Definition pcl_base.hpp:138
bool deinitCompute()
This method should get called after finishing the actual computation.
Definition pcl_base.hpp:174
PointCloud represents the base class in PCL for storing collections of 3D points.
shared_ptr< const PointCloud< PointT > > ConstPtr
shared_ptr< PointCloud< PointT > > Ptr
SegmentDifferences obtains the difference between two spatially aligned point clouds and returns the ...
void setSearchMethod(const KdTreePtr &tree)
Provide a pointer to the search object.
void setTargetCloud(const PointCloudConstPtr &cloud)
Provide a pointer to the target dataset against which we compare the input cloud given in setInputClo...
double getDistanceThreshold()
Get the squared distance tolerance between corresponding points as a measure in the L2 Euclidean spac...
PointIndices::ConstPtr PointIndicesConstPtr
void segment(PointCloud &output)
Segment differences between two input point clouds.
SegmentDifferences()
Empty constructor.
KdTreePtr tree_
A pointer to the spatial search object.
PointCloudConstPtr target_
The input target point cloud dataset.
PointCloudConstPtr const getTargetCloud()
Get a pointer to the input target point cloud dataset.
KdTreePtr getSearchMethod()
Get a pointer to the search method used.
typename PointCloud::Ptr PointCloudPtr
typename KdTree::Ptr KdTreePtr
void setDistanceThreshold(double sqr_threshold)
Set the maximum distance tolerance (squared) between corresponding points in the two input datasets.
PointIndices::Ptr PointIndicesPtr
typename PointCloud::ConstPtr PointCloudConstPtr
double distance_threshold_
The distance tolerance (squared) as a measure in the L2 Euclidean space between corresponding points.
virtual std::string getClassName() const
Class getName method.
Generic search class.
Definition search.h:75
shared_ptr< pcl::search::Search< PointT > > Ptr
Definition search.h:81
void getPointCloudDifference(const pcl::PointCloud< PointT > &src, double threshold, const typename pcl::search::Search< PointT >::Ptr &tree, pcl::PointCloud< PointT > &output)
Obtain the difference between two aligned point clouds as another point cloud, given a distance thres...
Defines all the PCL and non-PCL macros used.
shared_ptr< ::pcl::PointIndices > Ptr
shared_ptr< const ::pcl::PointIndices > ConstPtr