|
using | PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut |
|
using | PointCloudIn = typename Feature<PointInT, PointOutT>::PointCloudIn |
|
using | Ptr = shared_ptr<RSDEstimation<PointInT, PointNT, PointOutT> > |
|
using | ConstPtr = shared_ptr<const RSDEstimation<PointInT, PointNT, PointOutT> > |
|
using | PointCloudN = pcl::PointCloud<PointNT> |
|
using | PointCloudNPtr = typename PointCloudN::Ptr |
|
using | PointCloudNConstPtr = typename PointCloudN::ConstPtr |
|
using | Ptr = shared_ptr< FeatureFromNormals<PointInT, PointNT, PointOutT> > |
|
using | ConstPtr = shared_ptr< const FeatureFromNormals<PointInT, PointNT, PointOutT> > |
|
using | BaseClass = PCLBase<PointInT> |
|
using | Ptr = shared_ptr< Feature<PointInT, PointOutT> > |
|
using | ConstPtr = shared_ptr< const Feature<PointInT, PointOutT> > |
|
using | KdTree = pcl::search::Search<PointInT> |
|
using | KdTreePtr = typename KdTree::Ptr |
|
using | PointCloudIn = pcl::PointCloud<PointInT> |
|
using | PointCloudInPtr = typename PointCloudIn::Ptr |
|
using | PointCloudInConstPtr = typename PointCloudIn::ConstPtr |
|
using | PointCloudOut = pcl::PointCloud<PointOutT> |
|
using | SearchMethod = std::function<int (std::size_t, double, pcl::Indices &, std::vector<float> &)> |
|
using | SearchMethodSurface = std::function<int (const PointCloudIn &cloud, std::size_t index, double, pcl::Indices &, std::vector<float> &)> |
|
using | PointCloud |
|
using | PointCloudPtr |
|
using | PointCloudConstPtr |
|
using | PointIndicesPtr |
|
using | PointIndicesConstPtr |
|
|
| RSDEstimation () |
| Empty constructor.
|
|
void | setNrSubdivisions (int nr_subdiv) |
| Set the number of subdivisions for the considered distance interval.
|
|
int | getNrSubdivisions () const |
| Get the number of subdivisions for the considered distance interval.
|
|
void | setPlaneRadius (double plane_radius) |
| Set the maximum radius, above which everything can be considered planar.
|
|
double | getPlaneRadius () const |
| Get the maximum radius, above which everything can be considered planar.
|
|
void | setKSearch (int) |
| Disables the setting of the number of k nearest neighbors to use for the feature estimation.
|
|
void | setSaveHistograms (bool save) |
| Set whether the full distance-angle histograms should be saved.
|
|
bool | getSaveHistograms () const |
| Returns whether the full distance-angle histograms are being saved.
|
|
shared_ptr< std::vector< Eigen::MatrixXf, Eigen::aligned_allocator< Eigen::MatrixXf > > > | getHistograms () const |
| Returns a pointer to the list of full distance-angle histograms for all points.
|
|
| FeatureFromNormals () |
| Empty constructor.
|
|
virtual | ~FeatureFromNormals () |
| Empty destructor.
|
|
void | setInputNormals (const PointCloudNConstPtr &normals) |
| Provide a pointer to the input dataset that contains the point normals of the XYZ dataset.
|
|
PointCloudNConstPtr | getInputNormals () const |
| Get a pointer to the normals of the input XYZ point cloud dataset.
|
|
| Feature () |
| Empty constructor.
|
|
virtual | ~Feature () |
| Empty destructor.
|
|
void | setSearchSurface (const PointCloudInConstPtr &cloud) |
| Provide a pointer to a dataset to add additional information to estimate the features for every point in the input dataset.
|
|
PointCloudInConstPtr | getSearchSurface () const |
| Get a pointer to the surface point cloud dataset.
|
|
void | setSearchMethod (const KdTreePtr &tree) |
| Provide a pointer to the search object.
|
|
KdTreePtr | getSearchMethod () const |
| Get a pointer to the search method used.
|
|
double | getSearchParameter () const |
| Get the internal search parameter.
|
|
void | setKSearch (int k) |
| Set the number of k nearest neighbors to use for the feature estimation.
|
|
int | getKSearch () const |
| get the number of k nearest neighbors used for the feature estimation.
|
|
void | setRadiusSearch (double radius) |
| Set the sphere radius that is to be used for determining the nearest neighbors used for the feature estimation.
|
|
double | getRadiusSearch () const |
| Get the sphere radius used for determining the neighbors.
|
|
void | compute (PointCloudOut &output) |
| Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod ()
|
|
| PCLBase () |
| Empty constructor.
|
|
| PCLBase (const PCLBase &base) |
| Copy constructor.
|
|
virtual | ~PCLBase ()=default |
| Destructor.
|
|
virtual void | setInputCloud (const PointCloudConstPtr &cloud) |
| Provide a pointer to the input dataset.
|
|
PointCloudConstPtr const | getInputCloud () const |
| Get a pointer to the input point cloud dataset.
|
|
virtual void | setIndices (const IndicesPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data.
|
|
virtual void | setIndices (const IndicesConstPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data.
|
|
virtual void | setIndices (const PointIndicesConstPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data.
|
|
virtual void | setIndices (std::size_t row_start, std::size_t col_start, std::size_t nb_rows, std::size_t nb_cols) |
| Set the indices for the points laying within an interest region of the point cloud.
|
|
IndicesPtr | getIndices () |
| Get a pointer to the vector of indices used.
|
|
IndicesConstPtr const | getIndices () const |
| Get a pointer to the vector of indices used.
|
|
const PointInT & | operator[] (std::size_t pos) const |
| Override PointCloud operator[] to shorten code.
|
|
|
void | computeFeature (PointCloudOut &output) override |
| Estimate the estimates the Radius-based Surface Descriptor (RSD) at a set of points given by <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod ()
|
|
virtual bool | initCompute () |
| This method should get called before starting the actual computation.
|
|
const std::string & | getClassName () const |
| Get a string representation of the name of this class.
|
|
virtual bool | deinitCompute () |
| This method should get called after ending the actual computation.
|
|
int | searchForNeighbors (std::size_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const |
| Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface.
|
|
int | searchForNeighbors (const PointCloudIn &cloud, std::size_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const |
| Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface.
|
|
bool | initCompute () |
| This method should get called before starting the actual computation.
|
|
bool | deinitCompute () |
| This method should get called after finishing the actual computation.
|
|
template<typename PointInT, typename PointNT, typename PointOutT>
class pcl::RSDEstimation< PointInT, PointNT, PointOutT >
RSDEstimation estimates the Radius-based Surface Descriptor (minimal and maximal radius of the local surface's curves) for a given point cloud dataset containing points and normals.
- Note
- If you use this code in any academic work, please cite:
-
Z.C. Marton , D. Pangercic , N. Blodow , J. Kleinehellefort, M. Beetz General 3D Modelling of Novel Objects from a Single View In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Taipei, Taiwan, October 18-22, 2010
-
Z.C. Marton, D. Pangercic, N. Blodow, Michael Beetz. Combined 2D-3D Categorization and Classification for Multimodal Perception Systems. In The International Journal of Robotics Research, Sage Publications pages 1378–1402, Volume 30, Number 11, September 2011.
- Note
- The code is stateful as we do not expect this class to be multicore parallelized.
- Author
- Zoltan-Csaba Marton
Definition at line 131 of file rsd.h.
template<typename PointInT , typename PointNT , typename PointOutT >
Estimate the estimates the Radius-based Surface Descriptor (RSD) at a set of points given by <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod ()
- Parameters
-
output | the resultant point cloud model dataset that contains the RSD feature estimates (r_min and r_max values) |
Implements pcl::Feature< PointInT, PointOutT >.
Definition at line 248 of file rsd.hpp.
References pcl::computeRSD().