We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00585702 seconds elapsed -- 0.0138504 seconds elapsed -- 0.000312527 seconds elapsed -- 0.000142878 seconds elapsed -- 0.000120376 seconds elapsed -- 0.000126597 seconds elapsed -- 0.0001171 seconds elapsed -- 0.000114435 seconds elapsed -- 0.000153429 seconds elapsed -- 0.000161995 seconds elapsed -- 0.000142909 seconds elapsed -- 0.000142689 seconds elapsed -- 0.000119955 seconds elapsed -- 0.000126819 seconds elapsed -- 0.000124383 seconds elapsed -- 0.000135404 seconds elapsed -- 0.00012731 seconds elapsed -- 0.000130715 seconds elapsed -- 0.000147668 seconds elapsed -- 0.00014867 seconds elapsed -- 0.00015907 seconds elapsed -- 0.000142838 seconds elapsed -- 0.000144191 seconds elapsed -- 0.000124214 seconds elapsed -- 0.000151855 seconds elapsed -- 0.000139032 seconds elapsed -- 0.000128411 seconds elapsed -- 0.000128631 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.