We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5 o1 = (5, 5) o1 : Sequence |
i2 : h=carpetBettiTables(a,b) -- 0.00202561 seconds elapsed -- 0.00612353 seconds elapsed -- 0.0249517 seconds elapsed -- 0.010726 seconds elapsed -- 0.00358024 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1} 0: 1 . . . . . . . . . 1: . 36 160 315 288 . . . . . 2: . . . . . 288 315 160 36 . 3: . . . . . . . . . 1 0 1 2 3 4 5 6 7 8 9 2 => total: 1 36 167 370 476 476 370 167 36 1 0: 1 . . . . . . . . . 1: . 36 160 322 336 140 48 7 . . 2: . . 7 48 140 336 322 160 36 . 3: . . . . . . . . . 1 0 1 2 3 4 5 6 7 8 9 3 => total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o2 : HashTable |
i3 : T= carpetBettiTable(h,3) 0 1 2 3 4 5 6 7 8 9 o3 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o3 : BettiTally |
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3); ZZ o4 : Ideal of --[x ..x , y ..y ] 3 0 5 0 5 |
i5 : elapsedTime T'=minimalBetti J -- 0.188438 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o5 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o5 : BettiTally |
i6 : T-T' 0 1 2 3 4 5 6 7 8 9 o6 = total: . . . . . . . . . . 1: . . . . . . . . . . 2: . . . . . . . . . . 3: . . . . . . . . . . o6 : BettiTally |
i7 : elapsedTime h=carpetBettiTables(6,6); -- 0.00393583 seconds elapsed -- 0.019421 seconds elapsed -- 0.149841 seconds elapsed -- 2.0763 seconds elapsed -- 0.566762 seconds elapsed -- 0.0431238 seconds elapsed -- 0.0066276 seconds elapsed -- 5.63325 seconds elapsed |
i8 : keys h o8 = {0, 2, 3, 5} o8 : List |
i9 : carpetBettiTable(h,7) 0 1 2 3 4 5 6 7 8 9 10 11 o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 . . . . . . 2: . . . . . . 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o9 : BettiTally |
i10 : carpetBettiTable(h,5) 0 1 2 3 4 5 6 7 8 9 10 11 o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 120 . . . . . 2: . . . . . 120 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o10 : BettiTally |
The object carpetBettiTables is a method function.