Givaro
Public Member Functions
Rational Class Reference

Rationals. No doc. More...

#include <givrational.h>

+ Collaboration diagram for Rational:

Public Member Functions

 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 
 Rational (const Integer &f, const Integer &m, const Integer &k, bool recurs=false)
 Rational number reconstruction. More...
 

Detailed Description

Rationals. No doc.

Examples
examples/Rational/iratrecon.C.

Constructor & Destructor Documentation

◆ Rational() [1/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [2/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [3/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [4/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [5/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [6/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [7/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [8/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [9/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [10/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [11/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [12/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [13/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [14/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [15/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [16/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [17/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [18/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [19/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [20/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [21/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [22/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [23/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [24/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [25/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [26/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [27/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [28/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [29/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [30/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [31/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [32/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [33/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [34/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [35/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [36/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [37/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [38/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [39/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [40/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

◆ Rational() [41/41]

Rational ( const Integer f,
const Integer m,
const Integer k,
bool  recurs = false 
)

Rational number reconstruction.

$ num/den \equiv f \mod m$, with $|num|<k$ and $0 < |den| \leq f/kf$

Bibliography:
  • von zur Gathen & Gerhard Modern Computer Algebra, 5.10, Cambridge Univ. Press 1999]

The documentation for this class was generated from the following files: