class Fox::FXSpheref
Public Class Methods
new(*args)
click to toggle source
SWIGINTERN VALUE _wrap_new_FXSpheref(int nargs, VALUE *args, VALUE self) { int argc; VALUE argv[4]; int ii; argc = nargs; if (argc > 4) SWIG_fail; for (ii = 0; (ii < argc); ++ii) { argv[ii] = args[ii]; } if (argc == 0) { return _wrap_new_FXSpheref__SWIG_0(nargs, args, self); } if (argc == 1) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_new_FXSpheref__SWIG_1(nargs, args, self); } } if ((argc >= 1) && (argc <= 2)) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXVec3f, 0); _v = SWIG_CheckState(res); if (_v) { if (argc <= 1) { return _wrap_new_FXSpheref__SWIG_2(nargs, args, self); } { int res = SWIG_AsVal_float(argv[1], NULL); _v = SWIG_CheckState(res); } if (_v) { return _wrap_new_FXSpheref__SWIG_2(nargs, args, self); } } } if (argc == 1) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXRangef, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_new_FXSpheref__SWIG_4(nargs, args, self); } } if ((argc >= 3) && (argc <= 4)) { int _v; { int res = SWIG_AsVal_float(argv[0], NULL); _v = SWIG_CheckState(res); } if (_v) { { int res = SWIG_AsVal_float(argv[1], NULL); _v = SWIG_CheckState(res); } if (_v) { { int res = SWIG_AsVal_float(argv[2], NULL); _v = SWIG_CheckState(res); } if (_v) { if (argc <= 3) { return _wrap_new_FXSpheref__SWIG_3(nargs, args, self); } { int res = SWIG_AsVal_float(argv[3], NULL); _v = SWIG_CheckState(res); } if (_v) { return _wrap_new_FXSpheref__SWIG_3(nargs, args, self); } } } } } fail: Ruby_Format_OverloadedError( argc, 4, "FXSpheref.new", " FXSpheref.new()\n" " FXSpheref.new(FXSpheref const &sphere)\n" " FXSpheref.new(FXVec3f const &cen, FXfloat rad)\n" " FXSpheref.new(FXfloat x, FXfloat y, FXfloat z, FXfloat rad)\n" " FXSpheref.new(FXRangef const &bounds)\n"); return Qnil; }
Public Instance Methods
center(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_center_get(int argc, VALUE *argv, VALUE self) { FXSpheref *arg1 = (FXSpheref *) 0 ; void *argp1 = 0 ; int res1 = 0 ; FXVec3f *result = 0 ; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) { rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail; } res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_FXSpheref, 0 | 0 ); if (!SWIG_IsOK(res1)) { SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "FXSpheref *","center", 1, self )); } arg1 = reinterpret_cast< FXSpheref * >(argp1); result = (FXVec3f *) & ((arg1)->center); { FXVec3f* resultptr = new FXVec3f(*result); vresult = FXRbGetRubyObj(resultptr, "FXVec3f *"); } return vresult; fail: return Qnil; }
center=(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_center_set(int argc, VALUE *argv, VALUE self) { FXSpheref *arg1 = (FXSpheref *) 0 ; FXVec3f *arg2 = 0 ; void *argp1 = 0 ; int res1 = 0 ; if ((argc < 1) || (argc > 1)) { rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail; } res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_FXSpheref, 0 | 0 ); if (!SWIG_IsOK(res1)) { SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "FXSpheref *","center", 1, self )); } arg1 = reinterpret_cast< FXSpheref * >(argp1); { if (TYPE(argv[0]) == T_ARRAY) { arg2 = new FXVec3f(NUM2DBL(rb_ary_entry(argv[0], 0)), NUM2DBL(rb_ary_entry(argv[0], 1)), NUM2DBL(rb_ary_entry(argv[0], 2))); } else { FXVec3f *p; SWIG_ConvertPtr(argv[0], (void **)&p, SWIGTYPE_p_FXVec3f, 1); arg2 = new FXVec3f(*p); } } if (arg1) (arg1)->center = *arg2; delete arg2; return Qnil; fail: delete arg2; return Qnil; }
contains?(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_containsq___(int nargs, VALUE *args, VALUE self) { int argc; VALUE argv[5]; int ii; argc = nargs + 1; argv[0] = self; if (argc > 5) SWIG_fail; for (ii = 1; (ii < argc); ++ii) { argv[ii] = args[ii-1]; } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXVec3f, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_containsq_____SWIG_1(nargs, args, self); } } } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXRangef, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_containsq_____SWIG_2(nargs, args, self); } } } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_containsq_____SWIG_3(nargs, args, self); } } } if (argc == 4) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { { int res = SWIG_AsVal_float(argv[1], NULL); _v = SWIG_CheckState(res); } if (_v) { { int res = SWIG_AsVal_float(argv[2], NULL); _v = SWIG_CheckState(res); } if (_v) { { int res = SWIG_AsVal_float(argv[3], NULL); _v = SWIG_CheckState(res); } if (_v) { return _wrap_FXSpheref_containsq_____SWIG_0(nargs, args, self); } } } } } fail: Ruby_Format_OverloadedError( argc, 5, "FXSpheref.contains?", " bool FXSpheref.contains?(FXfloat x, FXfloat y, FXfloat z)\n" " bool FXSpheref.contains?(FXVec3f const &p)\n" " bool FXSpheref.contains?(FXRangef const &box)\n" " bool FXSpheref.contains?(FXSpheref const &sphere)\n"); return Qnil; }
diameter(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_diameter(int argc, VALUE *argv, VALUE self) { FXSpheref *arg1 = (FXSpheref *) 0 ; void *argp1 = 0 ; int res1 = 0 ; FXfloat result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) { rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail; } res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_FXSpheref, 0 | 0 ); if (!SWIG_IsOK(res1)) { SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "FXSpheref const *","diameter", 1, self )); } arg1 = reinterpret_cast< FXSpheref * >(argp1); result = (FXfloat)((FXSpheref const *)arg1)->diameter(); vresult = SWIG_From_float(static_cast< float >(result)); return vresult; fail: return Qnil; }
empty? → bool
click to toggle source
Check if FXSpheref is empty.
SWIGINTERN VALUE _wrap_FXSpheref_emptyq___(int argc, VALUE *argv, VALUE self) { FXSpheref *arg1 = (FXSpheref *) 0 ; void *argp1 = 0 ; int res1 = 0 ; bool result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) { rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail; } res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_FXSpheref, 0 | 0 ); if (!SWIG_IsOK(res1)) { SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "FXSpheref const *","empty", 1, self )); } arg1 = reinterpret_cast< FXSpheref * >(argp1); result = (bool)((FXSpheref const *)arg1)->empty(); vresult = SWIG_From_bool(static_cast< bool >(result)); return vresult; fail: return Qnil; }
include!(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_includeN___(int nargs, VALUE *args, VALUE self) { int argc; VALUE argv[5]; int ii; argc = nargs + 1; argv[0] = self; if (argc > 5) SWIG_fail; for (ii = 1; (ii < argc); ++ii) { argv[ii] = args[ii-1]; } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXVec3f, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_includeN_____SWIG_1(nargs, args, self); } } } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXRangef, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_includeN_____SWIG_2(nargs, args, self); } } } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_includeN_____SWIG_3(nargs, args, self); } } } if (argc == 4) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { { int res = SWIG_AsVal_float(argv[1], NULL); _v = SWIG_CheckState(res); } if (_v) { { int res = SWIG_AsVal_float(argv[2], NULL); _v = SWIG_CheckState(res); } if (_v) { { int res = SWIG_AsVal_float(argv[3], NULL); _v = SWIG_CheckState(res); } if (_v) { return _wrap_FXSpheref_includeN_____SWIG_0(nargs, args, self); } } } } } fail: Ruby_Format_OverloadedError( argc, 5, "FXSpheref.include!", " FXSpheref FXSpheref.include!(FXfloat x, FXfloat y, FXfloat z)\n" " FXSpheref FXSpheref.include!(FXVec3f const &p)\n" " FXSpheref FXSpheref.include!(FXRangef const &box)\n" " FXSpheref & FXSpheref.include!(FXSpheref const &sphere)\n"); return Qnil; }
includeInRadius!(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_includeInRadiusN___(int nargs, VALUE *args, VALUE self) { int argc; VALUE argv[5]; int ii; argc = nargs + 1; argv[0] = self; if (argc > 5) SWIG_fail; for (ii = 1; (ii < argc); ++ii) { argv[ii] = args[ii-1]; } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXVec3f, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_includeInRadiusN_____SWIG_1(nargs, args, self); } } } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXRangef, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_includeInRadiusN_____SWIG_2(nargs, args, self); } } } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_includeInRadiusN_____SWIG_3(nargs, args, self); } } } if (argc == 4) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { { int res = SWIG_AsVal_float(argv[1], NULL); _v = SWIG_CheckState(res); } if (_v) { { int res = SWIG_AsVal_float(argv[2], NULL); _v = SWIG_CheckState(res); } if (_v) { { int res = SWIG_AsVal_float(argv[3], NULL); _v = SWIG_CheckState(res); } if (_v) { return _wrap_FXSpheref_includeInRadiusN_____SWIG_0(nargs, args, self); } } } } } fail: Ruby_Format_OverloadedError( argc, 5, "FXSpheref.includeInRadius!", " FXSpheref FXSpheref.includeInRadius!(FXfloat x, FXfloat y, FXfloat z)\n" " FXSpheref FXSpheref.includeInRadius!(FXVec3f const &p)\n" " FXSpheref FXSpheref.includeInRadius!(FXRangef const &box)\n" " FXSpheref & FXSpheref.includeInRadius!(FXSpheref const &sphere)\n"); return Qnil; }
intersect(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_intersect(int argc, VALUE *argv, VALUE self) { FXSpheref *arg1 = (FXSpheref *) 0 ; FXVec4f *arg2 = 0 ; void *argp1 = 0 ; int res1 = 0 ; FXint result; VALUE vresult = Qnil; if ((argc < 1) || (argc > 1)) { rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail; } res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_FXSpheref, 0 | 0 ); if (!SWIG_IsOK(res1)) { SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "FXSpheref const *","intersect", 1, self )); } arg1 = reinterpret_cast< FXSpheref * >(argp1); { if (TYPE(argv[0]) == T_ARRAY) { arg2 = new FXVec4f(NUM2DBL(rb_ary_entry(argv[0], 0)), NUM2DBL(rb_ary_entry(argv[0], 1)), NUM2DBL(rb_ary_entry(argv[0], 2)), NUM2DBL(rb_ary_entry(argv[0], 3))); } else { FXVec4f *p; SWIG_ConvertPtr(argv[0],(void **)&p,SWIGTYPE_p_FXVec4f,1); arg2 = new FXVec4f(*p); } } result = (FXint)((FXSpheref const *)arg1)->intersect((FXVec4f const &)*arg2); vresult = SWIG_From_int(static_cast< int >(result)); delete arg2; return vresult; fail: delete arg2; return Qnil; }
intersects?(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_intersectsq___(int argc, VALUE *argv, VALUE self) { FXSpheref *arg1 = (FXSpheref *) 0 ; FXVec3f *arg2 = 0 ; FXVec3f *arg3 = 0 ; void *argp1 = 0 ; int res1 = 0 ; bool result; VALUE vresult = Qnil; if ((argc < 2) || (argc > 2)) { rb_raise(rb_eArgError, "wrong # of arguments(%d for 2)",argc); SWIG_fail; } res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_FXSpheref, 0 | 0 ); if (!SWIG_IsOK(res1)) { SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "FXSpheref const *","intersect", 1, self )); } arg1 = reinterpret_cast< FXSpheref * >(argp1); { if (TYPE(argv[0]) == T_ARRAY) { arg2 = new FXVec3f(NUM2DBL(rb_ary_entry(argv[0], 0)), NUM2DBL(rb_ary_entry(argv[0], 1)), NUM2DBL(rb_ary_entry(argv[0], 2))); } else { FXVec3f *p; SWIG_ConvertPtr(argv[0], (void **)&p, SWIGTYPE_p_FXVec3f, 1); arg2 = new FXVec3f(*p); } } { if (TYPE(argv[1]) == T_ARRAY) { arg3 = new FXVec3f(NUM2DBL(rb_ary_entry(argv[1], 0)), NUM2DBL(rb_ary_entry(argv[1], 1)), NUM2DBL(rb_ary_entry(argv[1], 2))); } else { FXVec3f *p; SWIG_ConvertPtr(argv[1], (void **)&p, SWIGTYPE_p_FXVec3f, 1); arg3 = new FXVec3f(*p); } } result = (bool)((FXSpheref const *)arg1)->intersect((FXVec3f const &)*arg2,(FXVec3f const &)*arg3); vresult = SWIG_From_bool(static_cast< bool >(result)); delete arg2; delete arg3; return vresult; fail: delete arg2; delete arg3; return Qnil; }
overlaps?(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_overlapsq___(int nargs, VALUE *args, VALUE self) { int argc; VALUE argv[3]; int ii; argc = nargs + 1; argv[0] = self; if (argc > 3) SWIG_fail; for (ii = 1; (ii < argc); ++ii) { argv[ii] = args[ii-1]; } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXRangef, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_overlapsq_____SWIG_0(nargs, args, self); } } } if (argc == 2) { int _v; void *vptr = 0; int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { void *vptr = 0; int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FXSpheref, 0); _v = SWIG_CheckState(res); if (_v) { return _wrap_FXSpheref_overlapsq_____SWIG_1(nargs, args, self); } } } fail: Ruby_Format_OverloadedError( argc, 3, "overlaps?", " bool overlaps?(FXRangef const &other)\n" " bool overlaps?(FXSpheref const &other)\n"); return Qnil; }
radius(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_radius_get(int argc, VALUE *argv, VALUE self) { FXSpheref *arg1 = (FXSpheref *) 0 ; void *argp1 = 0 ; int res1 = 0 ; FXfloat result; VALUE vresult = Qnil; if ((argc < 0) || (argc > 0)) { rb_raise(rb_eArgError, "wrong # of arguments(%d for 0)",argc); SWIG_fail; } res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_FXSpheref, 0 | 0 ); if (!SWIG_IsOK(res1)) { SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "FXSpheref *","radius", 1, self )); } arg1 = reinterpret_cast< FXSpheref * >(argp1); result = (FXfloat) ((arg1)->radius); vresult = SWIG_From_float(static_cast< float >(result)); return vresult; fail: return Qnil; }
radius=(*args)
click to toggle source
SWIGINTERN VALUE _wrap_FXSpheref_radius_set(int argc, VALUE *argv, VALUE self) { FXSpheref *arg1 = (FXSpheref *) 0 ; FXfloat arg2 ; void *argp1 = 0 ; int res1 = 0 ; float val2 ; int ecode2 = 0 ; if ((argc < 1) || (argc > 1)) { rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail; } res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_FXSpheref, 0 | 0 ); if (!SWIG_IsOK(res1)) { SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "FXSpheref *","radius", 1, self )); } arg1 = reinterpret_cast< FXSpheref * >(argp1); ecode2 = SWIG_AsVal_float(argv[0], &val2); if (!SWIG_IsOK(ecode2)) { SWIG_exception_fail(SWIG_ArgError(ecode2), Ruby_Format_TypeError( "", "FXfloat","radius", 2, argv[0] )); } arg2 = static_cast< FXfloat >(val2); if (arg1) (arg1)->radius = arg2; return Qnil; fail: return Qnil; }