
SymPol Manual

Thomas Rehn and Achill Schürmann

Contents

1. Overview 1

2. Compile and install 2
2.1. Software requirements . 2
2.2. Building SymPol . 2

2.2.1. Compiling and installing . 2

3. Input format 2
3.1. H-representation . 3
3.2. V-representation . 3
3.3. Differences to cdd and lrs . 3

4. Computing restricted automorphisms 4

5. Description conversion 4
5.1. Direct conversion . 4
5.2. Recursive methods . 5
5.3. Examples . 5
5.4. Memory usage and other parameters . 5
5.5. Combinatorial features . 5

6. Output format 6

7. Other program options 6

A. Quick Start Guide 6

B. Directory overview 6

C. License 7

D. References 7

1. Overview

SymPol computes restricted automorphisms of polyhedra and performs polyhedral description
conversion up to a given or computed symmetry group.

This document will give you a step-by-step introduction to the usage of SymPol. You can find
a very compact quick start guide in Section A on page 6.

1

2. Compile and install

2.1. Software requirements

SymPol comes already bundled with patched versions of [cdd] and [lrs] to actually perform poly-
hedral representation conversion. It also contains a copy of [PermLib] for computations with
permutations. To use and compile SymPol the following external software is required:

Parts of the [Boost] library are required by both PermLib and SymPol. Boost has to be installed
in version 1.34.1 or higher with its program options and serialization libraries. cdd, lrs and
SymPol also make use of the arbitrary precision arithmetics library [GMP], both in its C and C++
version. Building SymPol (see also the next section) is most easily accomplished with the [CMake]
configuration system.

So on a Debian/Ubuntu-based computer you would install the following packages:

• libboost-dev

• libboost-program-options-dev

• libboost-serialization-dev

• libgmp3-dev

• libgmpxx4ldbl (GMP C++ interface)

• cmake

2.2. Building SymPol

2.2.1. Compiling and installing

If CMake, Boost and GMP are installed, SymPol can be compiled as follows:

~/sympol$ mkdir build && cd build

~/sympol/build$ cmake -DCMAKE_BUILD_TYPE=Release ..

~/sympol/build$ make

You can then use SymPol directly from the build directory and, for instance, print the command
line help with

~/sympol/build$./sympol/sympol -h

SymPol v0.1 and PermLib 0.2 with lrs 4.2c and cddlib 0.94f

Allowed options:

-h [--help] produce help message

[...]

You can also build SymPol from any other directory by calling

cmake -DCMAKE_BUILD_TYPE=Release /path/to/sympol-source

If you want to install SymPol you can call make install as root. This will install SymPol into
/usr/local. To choose a different prefix add an additional argument -DCMAKE INSTALL PREFIX=/your/prefix/here

after the -DCMAKE BUILD TYPE=Release. On Linux systems you may have to call ldconfig as root
afterwards so that the system knows about the new shared libraries (cddgmp and lrsgmp).

Assuming that the default installation directory is in your $PATH, you can check that SymPol is
correctly installed and view the command line help by issuing

$ sympol -h

3. Input format

SymPol mainly builds on the .ine/.ext file format as established by [cdd] and [lrs]. However,
SymPol imposes one restriction and offers one extension to the format.

Regardless of the file format, the input filename has to be specified by the command-line ar-
gument -i <filename>. In most cases the -i can be omitted and ending the command with a command-

linefilename suffices.

2

3.1. H-representation

A polyhedron in H-representation, i.e. given by m inequalities in n−1 variables, can be represented
in an .ine file with the following format

H-representation

begin

m n rational

{ list of inequalities }

end

Every inequality is expected to be in the form a0 + a1x1 + a2x2 + · · · + an−1xn−1 ≥ 0. Such
an inequality then is denoted in the .ine file as line a0 a1 a2 . . . an−1. So, for instance, a two-
dimensional triangle defined by

x1 ≥ 0
x2 ≥ 0

x1 + x2 ≤ 1

can be represented by the file

* 2-dim triangle

H-representation

begin

3 3 rational

0 1 0

0 0 1

1 -1 -1

end

Here, the first line denotes a comment, introduced by a starting ’*’ character.

3.2. V-representation

Similarly, if a polytope is given by m rays and vertices in dimension n − 1, it can be represented
by an .ext file according to

V-representation

begin

m n rational

{ list of vertices }

{ list of rays }

end

Every vertex v gets a line 1 v1 v2 . . . vn−1 and every ray r a line 0 r1 r2 . . . rn−1.

3.3. Differences to cdd and lrs

As extension to this basic format, SymPol allows to include the automorphism group of the polyhe-
dron, or parts of it, into the file. The user may specify after the end of the H- or V-representation
a permutation group section as follows:

...

end

permutation group

p

{ list of #p group generators }

q

{ #q base points separated by whitespace }

The p group generators are to be given in cycle form, where commas separate cycles. The value q
may be set to zero if no base of the group is known. A definition of a group base and what it is
good for is explained in [Ser03], [HEO05] or [Reh10]. So to denote a group G = 〈(1 3)(4 5), (2 6 5)〉
with two generators and no base one would write:

3

...

end

permutation group

2

1 3,4 5

2 6 5

0

If you want to use 1, 2, 4, 5 as a (potentially partial) base the section should look like

...

end

permutation group

2

1 3,4 5

2 6 5

4

1 2 4 5

In contrast to cdd and lrs, in SymPol every inequality (H-representation case) or vertex and ray
(V-representation case) has to be in exactly one line. At least lrs tolerates parts of an inequality
or vertex spread over multiple lines, which SymPol currently does not support. However, SymPol
comes with a Perl script that converts an .ine or .ext file into a suitable format (see Section B).

4. Computing restricted automorphisms

If no or only a few automorphisms are known a priori, the user has the possibility to compute
restricted automorphisms of a polyhedron. These automorphisms may not be the full (combinato-
rial) symmetry group of the polyhedron, but it can be computed without full knowledge of both
descriptions. We refer to [BDS09] for further details. SymPol offers two different implementations.
One is a straight-forward implementation using a standard matrix inversion algorithm [CLRS09,
Ch. 28] and PermLib to compute matrix automorphisms [Reh, Reh10]. The other relies on [bliss]
for graph automorphisms and can use floating-point arithmetics for matrix inversion based on
[Eigen].

To just compute and print the restricted automorphism group of a polyhedron use the command-
line switch --automorphisms-only. command-

line

5. Description conversion

In order to perform a description conversion of a polyhedron SymPol offers several algorithms. One
of the following has to be chosen at the command-line as an automatic strategy selection currently
is work in progress.

5.1. Direct conversion

The most straightforward way is to compute the complete complementary description and filter up
to symmetries afterwards. The user can choose between [lrs] and [cdd] to perform the description
conversion task. One may also estimate the difficulty of a problem by using the estimation feature
of lrs.

The command-line switch -e enables the estimation mode. In this mode only a difficulty estima- command-
linetion is made by lrs and the program exits. To perform a polyhedral representation conversion up

to symmetry for “easy” polyhedra you can use the -d switch for direct conversion. What “easy”
means is hard to specify but experiments so far suggest that polyhedra with an estimation of 40
or below are good for the direct conversion technique. More difficult problems should be treated
with one of the recursive methods shown below. Note that the absolute value of the estimation
depends on the speed of the computer on which the estimation is performed, so these numbers are
not necessarily comparable between different machines.

You also can choose between cdd and lrs for the core polyhedral computations (difficulty esti-
mation so far only by lrs). Both programs may behave quite differently on the same input so it

4

may be worthwhile to try both options for difficult problems. By default lrs is used. To replace
it with cdd use the --cdd command-line switch. The interface to cdd is still a bit experimental command-

lineand may not work in all cases.

5.2. Recursive methods

More sophisticated algorithms are recursive Adjacency Decomposition Method (ADM) and Inci-
dence Decomposition Method (IDM) [BDS09, Reh]. If the estimation of a problem exceeds 40 one
of the following methods should be used.

The ADM is selected by the command-line argument -a. One recursion level of ADM is used, command-
lineall subproblems are then treated directly.

For some polyhedra it seems to be advantageous to also use the Incidence Decomposition Method
in combination with ADM. The --idm-adm-level <levelIDM> <levelADM> command-line argu-
ment selects this strategy. This will use IDM for the first levelIDM levels (may be 0) and ADM command-

linefor the first levelADM, if IDM is not used. After levelADM direct computation will be used.

5.3. Examples

Direct conversion

sympol -d -i input-file

ADM

sympol -a -i input-file

IDM and ADM combined

use one layer of IDM and then one layer of ADM

sympol --idm-adm-level 1 2 -i input-file

5.4. Memory usage and other parameters

The memory usage of SymPol is dominated by the number of orbit elements it is allowed to store
in RAM. Storing orbits in RAM allows to decide fast whether a new vertex/ray is equivalent under
symmetry to one computed before. If not all orbits can be stored a quite expensive calculation is
started to check for equivalence [Reh10, Ch. 3]. Thus the memory limit for orbits, specified by the
command-line argument --conf-compute-orbit-limit <number>, should be chosen as large as command-

linepossible. The default value 1024 means that SymPol will pre-compute orbits as long as it occupies
less than 1024 megabytes of RAM. If this memory limit is exceeded vertex/ray equivalence will be
computed by other means.

5.5. Combinatorial features

SymPol can compute the adjacency graph of the description conversion result, up to the used
symmetries. Construction of the adjacency graph requires the use of the ADM at least at the
first recursion level. In this case the command-line option --adjacencies activates the adjacency command-

linegraph computation. The adjacency graph is printed in a format suitable for visualization with
[Graphv]. The vertex numbers correspond to the position of the vertex/facet in the output list
above.

Example

sympol --adjacencies --idm-adm-level 0 1 -i input-file

If you copy the adjacency part of the output into a textfile adjacencies.dot and have [Graphv]
installed you can generate, for instance, a PNG graphic adjacencies.png of the graph by

neato -Tpng -o adjacencies.png adjacencies.dot

5

6. Output format

The output format follows the .ine/.ext format. The only difference is that the data section contains
only rays/inequalities up to symmetry. The computed automorphisms group and the base used
are printed, following the description in Section 3.3.

7. Other program options

By default SymPol prints usage statistics about used processor time and RAM and warnings and
errors. If you want a more verbose output you can specify the -v parameter, followed by a number command-

linewhich represents the logging level: INFO (1), DEBUG (2), DEBUG2 through DEBUG5 (3–6).
The command-line switch -t enables time measurement and prints the CPU time used at the

end of the computation.

A. Quick Start Guide

Install If [CMake], [Boost] and [GMP] are installed:

~/sympol$ mkdir build && cd build

~/sympol/build$ cmake -DCMAKE_BUILD_TYPE=Release ..

~/sympol/build$ make

as root or in su/sudo shell

~/sympol/build$ make install

Then the SymPol binary will be installed in /usr/local/bin. On Linux systems you may have to
call ldconfig as root afterwards so that the system knows about the new shared libraries (cddgmp
and lrsgmp).

Compute the restricted automorphism group

sympol --automorphisms-only input-file

Estimate the difficulty of a representation conversion

sympol -e input-file

Do a representation conversion For “easy” input (see estimation, probably estimation below
40), try:

sympol -d input-file

For “difficult” input, try

sympol -a input-file

Compute the adjacency graph after conversion

sympol --idm-adm-level 0 1 --adjacencies -i input-file

If you copy the adjacency part of the output into a textfile adjacencies.dot and have [Graphv]
installed you can generate, for instance, a PNG graphic adjacencies.png of the graph by

neato -Tpng -o adjacencies.png adjacencies.dot

B. Directory overview

After you extract a SymPol distribution package, you will find the following directories:

• contrib contains scripts to manipulate .ine/.ext files.

• data contains various example polyhedra in .ine/.ext files.

• external contains all third-party software used by SymPol: [cdd], [lrs], [PermLib].

• sympol contains the source code of the SymPol application

6

C. License

As both cdd and lrs are published under GPL2, SymPol is also available under GPL2. The
complete text of the license is available from http://www.gnu.org/licenses/gpl-2.0.html.

Parts of the source code come with a more liberal license: The author’s PermLib is BSD licensed.

D. References

Literature

[BDS09] David Bremner, Mathieu Dutour Sikiric, and Achill Schürmann. Polyhedral repre-
sentation conversion up to symmetries. In David Avis, David Bremner, and Antoine
Deza, editors, Polyhedral computation, CRM Proceedings & Lecture Notes, pages 45–
72. American Mathematical Society, 2009. Available from: http://arxiv.org/abs/

math/0702239.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. The MIT Press, 3rd edition, 2009.

[HEO05] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of Computational
Group Theory. Discrete Mathematics and Applications. Chapman & Hall/CRC, 2005.

[Reh] Thomas Rehn. Polyhedral description conversion up to symmetries: Theory and ap-
plication. Diploma thesis (mathematics), Otto von Guericke University Magdeburg. In
preparation.

[Reh10] Thomas Rehn. Fundamental Permutation Group Algorithms for Symmetry Compu-
tation. Diploma thesis (computer science), Otto von Guericke University Magdeburg,
February 2010.

[Ser03] Ákos Seress. Permutation Group Algorithms. Cambridge University Press, 2003.

Software

[bliss] bliss: A Tool for Computing Automorphism Groups and Canonical Labelings of Graphs
by T. Junttila and P. Kaski. http://www.tcs.hut.fi/Software/bliss/.

[Boost] Boost free peer-reviewed portable C++ source libraries. http://www.boost.org/.

[cdd] cdd, cddplus and cddlib by K. Fukuda. http://www.ifor.math.ethz.ch/~fukuda/

cdd_home/cdd.html.

[CMake] CMake – Cross Platform Make. http://www.cmake.org/.

[Eigen] Eigen, a C++ template library for linear algebra. http://eigen.tuxfamily.org/.

[GMP] GMP, The GNU Multiple Precision Arithmetic Library. http://gmplib.org/.

[Graphv] Graphviz – Graph Visualization Software. http://www.graphviz.org/.

[lrs] lrs by D. Avis. http://cgm.cs.mcgill.ca/~avis/C/lrs.html.

[PermLib] PermLib, a C++ library for permutation computations, by T. Rehn. http://www.

mathematik.uni-rostock.de/lehrstuehle/geometrie/software/.

7

http://www.gnu.org/licenses/gpl-2.0.html
http://arxiv.org/abs/math/0702239
http://arxiv.org/abs/math/0702239
http://www.tcs.hut.fi/Software/bliss/
http://www.boost.org/
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
http://www.cmake.org/
http://eigen.tuxfamily.org/
http://gmplib.org/
http://www.graphviz.org/
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.mathematik.uni-rostock.de/lehrstuehle/geometrie/software/
http://www.mathematik.uni-rostock.de/lehrstuehle/geometrie/software/

	Overview
	Compile and install
	Software requirements
	Building SymPol
	Compiling and installing

	Input format
	H-representation
	V-representation
	Differences to cdd and lrs

	Computing restricted automorphisms
	Description conversion
	Direct conversion
	Recursive methods
	Examples
	Memory usage and other parameters
	Combinatorial features

	Output format
	Other program options
	Quick Start Guide
	Directory overview
	License
	References

