posterior_predict {rstanemax} | R Documentation |
Outcome prediction from posterior distribution of parameters
Description
Compute outcome predictions using posterior samples. Exposure data for prediction can be either original data used for model fit or new data.
Usage
posterior_predict(object, ...)
posterior_epred(object, ...)
posterior_linpred(object, transform = FALSE, ...)
## S3 method for class 'stanemax'
posterior_predict(
object,
newdata = NULL,
returnType = "matrix",
newDataType = "raw",
...
)
## S3 method for class 'stanemaxbin'
posterior_predict(
object,
newdata = NULL,
returnType = "matrix",
newDataType = "raw",
...
)
## S3 method for class 'stanemax'
posterior_epred(object, newdata = NULL, newDataType = "raw", ...)
## S3 method for class 'stanemaxbin'
posterior_epred(object, newdata = NULL, newDataType = "raw", ...)
## S3 method for class 'stanemax'
posterior_linpred(
object,
transform = FALSE,
newdata = NULL,
newDataType = "raw",
...
)
## S3 method for class 'stanemaxbin'
posterior_linpred(
object,
transform = FALSE,
newdata = NULL,
newDataType = "raw",
...
)
posterior_predict_quantile(
object,
newdata = NULL,
ci = 0.9,
pi = 0.9,
newDataType = c("raw", "modelframe")
)
Arguments
Details
Run vignette("emaxmodel", package = "rstanemax")
to see how you can
use the posterior prediction for plotting estimated Emax curve.
Value
An object that contain predicted response with posterior distribution
of parameters. The default is a matrix containing predicted response
for
stan_emax()
and .epred
for stan_emax_binary()
. Each row of the matrix
is a vector of predictions generated using a single draw of the model
parameters from the posterior distribution.
If either dataframe
or tibble
is specified, the function returns a data
frame or tibble object in a long format - each row is a prediction
generated using a single draw of the model parameters and a corresponding
exposure.
Several types of predictions are generated with this function.
For continuous endpoint model (stan_emax()
),
-
.linpred
&.epred
: prediction without considering residual variability and is intended to provide credible interval of "mean" response. -
.prediction
: include residual variability in its calculation, therefore the range represents prediction interval of observed response.
For binary endpoint model (stan_emax_binary()
),
-
.linpred
: predicted probability on logit scale -
.epred
: predicted probability on probability scale -
.prediction
: predicted event (1) or non-event (0)The return object also contains exposure and parameter values used for calculation.
With posterior_predict_quantile()
function, you can obtain quantiles
of respHat
and response
as specified by ci
and pi
.