REDUCE functions provided by redcas

Martin Gregory

August 14, 2024

Contents

1 Introduction 1

2 Extracting the REDUCE code 1

3 Output procedures 2
3.1 asltx: calls arrayltx or exprltx depending on the object type 2
3.2 arrayltx: converts the flattened list to IXIRX oL oo 2
3.3 exprltx: converts an expression to IIEX o L 2

4 Utility procedures 3
4.1 array2flatls: converts an array to a flattened list o0 3
4.2 asltx _marker: mark output for extraction oo 3
4.3 1itoa: converts an integer to a stringo L Lo 3
4.4 lisp_dialect 4
4.5 swget ..o 4
4.6 swtoggle 4

5 Symbolic procedures 4
5.1 arrayp: array predicate oL Lo 4
5.2 concat: concatenate 2 stringso Lo 5
5.3 gettype: distinguishing arrays from "simple" expressionso 5
5.4 id2string L e 5
5.5 omnoff: required by swtoggleo 5
5.6 tex_string: render string as BITEX oo 5

1 Introduction

The redcas package provides a number of REDUCE procedures which are required for the package to
function. While knowledge of these procedures is not needed to use redcas, they may be of interest
for use in REDUCE itself. There are three types of procedures. The first type produce outputs in a
format which can be used by redcas. The second type are utility procedures needed by the first type.
Finally there are declarations of symbolic procedures for use in algebraic mode using the symbolic
operator statement. This third type are also utilites used by the first type.

2 Extracting the REDUCE code

All procedures are included in the file redcas.red in the reduce directory of the installed package. If you
are using PSL, redcas.red calls tmprint-psl.red, also located in the same directory. You can extract the
code to a location of your choice using the following code:

library(redcas)
file.copy(pasteO(redCodeDir(),"/",c("redcas.red","tmprint-psl.red"), "mydir")

where mydir is a writable directory of your choice. In order that redcas.red can find tmprint-psl.red,
you need to define the environment variable TMPRINT PSL PATH to point to tmprint-psl.red file
before starting REDUCE.

3 Output procedures

3.1 asltx: calls arrayltx or exprltx depending on the object type

asltr is a convenience function which calls arrayltx 3.2 for arrays, expritz 3.3 for expressions and returns
an error for any other type.

Syntax arrayltx(x, math, mode, name) ;

Arguments x identifier of an object to be typeset.

math string naming a IATEX math environment in which to enclose each array element. If empty
no math environment is written.

mode string naming the print mode: nat|fancy. nat is the standard REDUCE output while fancy
produces IXTEX output using the REDUCE package TMPRINT. If not specified, defaults
to nat.

name string providing the name to use when printing expressions.

Details Since REDUCE procedures do not support named arguments’, all arguments must be speci-
fied.

Value None. Called for side effect of producing the output in the desired format.

3.2 arrayltx: converts the flattened list to BTEX
arrayltr accepts an array of arbitrary dimensions and displays each element using the specified mode.

Syntax arrayltx (arrx, math, mode) ;

Arguments x identifier of an array.

math string naming a IXTEX math environment in which to enclose each array element. If empty
no math environment is written.

mode string naming the print mode: nat|fancy. nat is the standard REDUCE output while
fancy produces IATEX| output using the REDUCE package TMPRINT. If not specified,
defaults to nat.

Details Since REDUCE procedures do not support named arguments, all arguments must be specified.

Value None. Called for side effect of producing the output in the desired format.

3.3 exprltx: converts an expression to BTEX
Syntax

Arguments x

math string naming a LaTeX math environment in which to enclose each array element. If
empty no math environment is written.

mode string naming the print mode: nat|fancy. natis the standard REDUCE output while fancy
produces A TEXoutput using the REDUCE package TMPRINT. If not specified, defaults to
nat.

Details Since REDUCE procedures do not support named arguments, all arguments must be specified.

Value None. Called for side effect of producing the output in the desired format.

Hists can be used

4 Utility procedures

4.1 array2flatls: converts an array to a flattened list

array2flatls converts an array to a flattened list using the procedure array to list from the REDUCE
package ASSIST and a for loop using the join action. This is called by arrayltz to allow handling
arrays with an arbitrary number of dimensions.

Syntax array2flatls(arrx) ;

Arguments arrx identifier of array to convert

Value A list containing the elements of the array. The order of the list is unknown to me at the
moment.

4.2 asltx marker: mark output for extraction

asltz_marker calls asltz and encloses the output between a line ##START label and ##END label, so
that it can be easily extracted from a REDUCE log.

1. also export redSplitOut or just call it from redExtract?
2. do this in 1.0.1 or wait for next version?

3. consider this for the markers:

##< label
output
##> label

Syntax asltx_marker (thing, math, mode, name, label) ;

Arguments x identifier of an object to be typeset.

math string naming a IXTEX math environment in which to enclose each array element. If empty
no math environment is written.

mode string naming the print mode: nat|fancy. natis the standard REDUCE output while fancy
produces INTEX output using the REDUCE package TMPRINT. If not specified, defaults
to nat.

name string providing the name to use when printing expressions.

label an arbitrary string to identify the output.

Details This procedure allows extraction of specific outputs from the log of a reduce program which
has been run either independently of redcas or using or redcas::redBatch. While extraction can
be done using any program, redcas::redEztract provides a way to do this.

Value None. Called for side effect of producing the output in the desired format enclosed in the start
and end markers.

4.3 itoa: converts an integer to a string

itoa converts an integer to a string. Useful for formatting output.
Syntax itoa(integer) ;
Arguments integer an arbitrary integer.

Value a string representation of the integer.

4.4 lisp dialect
lisp_ dialect determines whether REDUCE is running under CSL or PSL

Syntax lisp_dialect() ;
Arguments None

Details this function is intended for use in a condition, for example
if lisp_dialect = ’csl then ... ;

Value the quoted symbol csl or ’psl

4.5 swget
swget tests whether a REDUCE switch is on or off.

Syntax swget(s)
Arguments s the identifier of the switch to test

Details if the value of swget is nil it prints as blank. It should only be used in a condition, for example,
if swget(echo) then write "on" else write "off";

Value Boolean.

4.6 swtoggle
swtoggle toggles a REDUCE switch.

Syntax swtoggle(s) ;
Arguments s the identifier of the switch to toggle

Value the new state of the switch.

5 Symbolic procedures

This section describes symbolic procedure which have been declared algebraic by using the symbolic
operator statement.

5.1 arrayp: array predicate

arrayp is a predicate function to test whether an object is an array or not.
Syntax array(x)
Arguments x an identifier to test

Details if the value of arrayp is nil it prints as blank. It should only be used in a condition, for
example,

if arrayp(x) then ... ;

Value Boolean.

5.2 concat: concatenate 2 strings

concat concatenates two strings.
Syntax result := concat(a, b) ;

Arguments a first string

b second string
Details

Value string containing the concatenation of the first and second strings.

5.3 gettype: distinguishing arrays from "simple" expressions
gettype returns the type of an identifier.

Syntax gettype(x)

Arguments x the object for which type should be returned

Detalils gettype is used by asltxr to determine whether to call arraylix or expritz.

Value the type of the object as a quoted identifier, for example, ’array.

5.4 id2string

1d2string returns an identifier’s name as a string
Syntax id_as_string := id2string(x) ;
Arguments x identifier whose name is to be returned as a string

Value string containing the name of the identifier.

5.5 onoff: required by swtoggle

onoff is a symbolic function which sets a switch.
Syntax onoff(s, bool) ;

Arguments s identifier of the switch.

bool a boolean to set the switch on (t) or off (nil).
Details This is used by swtoggle.

Value None, but check documentation - csl or psl manual?

5.6 tex string: render string as BTEX

tex_string prevents REDUCE replacing \ with \textbackslash and {} with \{\} when the FANCY
switch is on.

Syntax result := tex_string(s) ;
Arguments s a string to render as KIEX
Details redcas uses tex string when writing the math environment to ensure the string is not modified.

Value the original string without the unwanted conversions.

	Introduction
	Extracting the REDUCE code
	Output procedures
	asltx: calls arrayltx or exprltx depending on the object type
	arrayltx: converts the flattened list to LaTeX
	exprltx: converts an expression to LaTeX

	Utility procedures
	array2flatls: converts an array to a flattened list
	asltx_marker: mark output for extraction
	itoa: converts an integer to a string
	lisp_dialect
	swget
	swtoggle

	Symbolic procedures
	arrayp: array predicate
	concat: concatenate 2 strings
	gettype: distinguishing arrays from "simple" expressions
	id2string
	onoff: required by swtoggle
	tex_string: render string as LaTeX

