
Introduction to the redcas package

Martin Gregory

October 21, 2024

Contents

1 Overview 1

2 Finding REDUCE 2

3 Controlling a REDUCE session from R 2

3.1 Starting REDUCE . 2
3.2 Executing REDUCE code . 2
3.3 Closing REDUCE . 3

4 Controlling output 3

5 Sourcing REDUCE őles: IN 4

6 Solving a system of equations 5

7 Producing LATEX output 8

A Known issues 12

A.1 redExec hangs . 12
A.1.1 Operator prompt . 12
A.1.2 Missing statement terminators . 12

A.2 Parsing REDUCE output . 12
A.2.1 Using the OUT statement . 12
A.2.2 Using the OUTPUT switch . 12
A.2.3 Using the IN statement . 12
A.2.4 Commands with trailing comments . 12

A.3 asltx issues . 13

B The REDUCE transcript 13

C Testing 14

1 Overview

redcas is an interface to REDUCE , a portable general-purpose computer algebra system supporting
scalar, vector, matrix and tensor algebra, symbolic differential and integral calculus, arbitrary precision
numerical calculations and output in LATEXformat. This document shows some basic examples of using
redcas. The examples are trivial in order to concentrate on the use of the package but explanation of
some aspects of REDUCE are provided for those not familiar with it. REDUCE is written in Lisp and
can run on various Lisp dialects, the most common being CSL and PSL. redcas can use either of these
two. We show how redcas őnds the REDUCE executables (section 2), how to start a session, deőne
and display expressions and close the session (section 3), control output (section 4), how to solve a

1

system of equations (section 6) and how to produce LATEX output (section 7). We also describe some
known issues (appendix A) and the tests supplied with the package (appendix C).

2 Finding REDUCE

redcas can be installed even if REDUCE is not installed, but to use it requires a REDUCE installation.
Details on installing can be found on the REDUCE web site [1]. There are four different ways that
redcas can őnd the REDUCE executables (redcsl, redpsl). These are, in order of precedence:

1. explicitly specifying the path using the dirpath argument of redStart;

2. the environment variable REDUCE_EXEC exists and contains the path to a directory containing
one or both executables;

3. the R option reduce_exec exists and contains the path to a directory containing one or both
executables;

4. the executable is located in a directory listed in the PATH environment variable.

3 Controlling a REDUCE session from R

A REDUCE session is started using the redStart function. While the session is open, the redExec,
redSolve or asltx functions can be used to send commands to the REDUCE session and retrieve the
output. This allows direct handling of the output from a given command or set of commands and easy
separation of calculation and display. Finally, the redClose function shuts down the REDUCE session
and optionally retrieves the complete transcript. redSolve and asltx will be covered in sections 6 and
7, respectively.

3.1 Starting REDUCE

To start a REDUCE session load the package and call redStart:

> library(redcas)
> s1 <- redStart(dialect="csl", echo=TRUE)

This starts a CSL REDUCE session. CSL is the default dialect and does not need to be speciőed.
Sessions are started using a pipe which means they are interactive, i.e. the INT switch is on. The
ECHO switch is off by default as this is the REDUCE default. redStart provides the echo argument
to turn the switch on at the start of the session so that commands will appear in the REDUCE
transcript. redStart returns the identiőer for the session if successful, otherwise it terminates with stop.
The identifer is required by other redcas functions which communicate with the REDUCE session.

3.2 Executing REDUCE code

To execute REDUCE code we use the redExec function which takes as required arguments the identiőer
returned by redStart and a character vector containing REDUCE commands. As an example consider
a call with a single REDUCE command:

> o1 <- redExec(s1, "r2d2 := (987654321/15)^3;", drop.blank.lines=TRUE)

If redExec fails it returns FALSE. Otherwise it returns a list with three character vector elements:

out the output from the commands executed;

cmd the commands as written to the REDUCE transcript. This depends on the state of the ECHO
switch;

raw the portion of the REDUCE transcript produced by the call. This includes interspersed commands
and output.

2

We used the drop.blank.lines option to make the output more compact - the REDUCE transcript uses
blank lines generously. We can see the result by displaying the out element of o1:

> writeLines(o1[["out"]])
35682160321981318855871043

r2d2 := ----------------------------
125

As we can see, by default REDUCE uses exact, indeőnite precision arithmetic. To display as a ŕoat
we need to turn on the ROUNDED switch:

> cmd <- c("on rounded;",
+ "r2d2;",
+ "off rounded;")
> redExec(s1 , cmd , drop.blank.lines=TRUE)[["out"]]
[1] "2.85457282576e+23"

3.3 Closing REDUCE

The session is closed by calling the redClose function. The optional log argument saves the entire
REDUCE transcript to the speciőed location.

> redClose(s1 , log="controlling -reduce.clg")
[1] TRUE

See Appendix B for a discussion of the REDUCE transcript for this section.

4 Controlling output

In this section we consider some REDUCE features which control how expressions are displayed or
simpliőed. As an example consider the function f(x, y) = (x+ y)2 +1/(x+ y) which can be displayed
in various ways. Some are:

f(x, y) =
(x+ y)3 + 1

(x+ y)

=
x3 + 3x2y + 3xy2 + y3 + 1

(x+ y)

= (x+ y)2 + (x+ y)−1

= (x3 + 3x2y + 3xy2 + y3 + 1)(x+ y)−1

In addition to ROUNDED, the relevant REDUCE switches are EXP, FACTOR1, MCD, GCD, ALL-
FAC, RAT, DIV and LIST. Depending on what further processing will be done in R, we also need
to consider that redExec returns all output from the commands submitted. So we may want to split
execution of REDUCE commands into appropriate separate calls to redExec.

In this section we cover the EXP and MCD switches. For details of the others, see the Switch
Summary [2], the REDUCE Manual [3] or the second of the REDUCE interactive lessons [4]. In the
previous section we used a numeric example. In this and the next sections we deal with symbolic
entities, the primary reason why REDUCE is of interest. In REDUCE , variables do not need to be
declared. A variable can be used with or without assigning it a value. If no value has been assigned the
variable is termed indeterminate and stands for itself. It can, for example, be an independent variable
with respect to which an expression is differentiated. Variables with a value are known as bound. In
the following REDUCE statement f is bound and x and y are indeterminate:

f := (x + y)^2;

First we start a new REDUCE session and assign the bound variable f:

1turning FACTOR on turns EXP off automatically without notiőcation

3

> s2 <- redStart(echo=TRUE)
> expoff <- redExec(s2 , "off exp;")
> f <- redExec(s2, "f := (x + y)^2;", drop.blank.lines=TRUE)[["out"]]
> f
[1] " 2" "f := (x + y)"

We turned the EXP switch off to avoid expanding expressions for now. We have created a variable f

in both the REDUCE session and in R. We see that the resulting vector in R has two elements, even
though f is a single entity. This is due to the fact that by default REDUCE displays results in a way
that is close to the normal maths display. This is controlled by the switch NAT (natural) which is on
by default. We can see how it would appear in REDUCE if we use writeLines to display the variable:

> writeLines(f)
2

f := (x + y)

Alternatively We can also turn the switch NAT off to get

> redExec(s2 , c("off nat;", "f ; on nat;"), drop.blank.lines=TRUE)[["out"]]
[1] "(x + y)**2$" " on nat;"

Now the expression is written on a single line. For parsing results generated by redExec in R this is
much more suitable than with NAT on. Specialized functions such as asltx and redSolve handle this
internally.

We can now assign another bound variable, h, as a function of f:

> writeLines(h <- redExec(s2 , "h := f + 1/f;", drop.blank.lines=TRUE)[["out"]])
4

(x + y) + 1
h := --------------

2
(x + y)

Again we have chosen to use writeLines to display h as the default (and recommended) setting of
the switch MCD (Making Common Denominators) is on and this displays the expression as a fraction,
calculating a common denominator when rational functions are added as in this case. Since we turned
EXP off, the expressions in parentheses are not expanded. If we turn off MCD we get a product with
a negative exponent:

> writeLines(redExec(s2, c("off mcd ;", "h;"),
+ drop.blank.lines=TRUE)[["out"]])

4 -2
((x + y) + 1)*(x + y)

If we now turn both EXP and MCD on we get:

> writeLines(redExec(s2, c("on exp , mcd ;", "h;"),
+ drop.blank.lines=TRUE)[["out"]])

4 3 2 2 3 4
x + 4*x *y + 6*x *y + 4*x*y + y + 1

2 2

x + 2*x*y + y

where all sub expressions are expanded and common denominators are separated out.

5 Sourcing REDUCE őles: IN

The REDUCE command IN is the equivalent of the R source function. In contrast to the R function,
the REDUCE command has only two modes of operation: whether the commands are echoed or not:

4

in "some.file.red" ; %% commands from some.file.red are echoed
in "some.file.red" $ %% commands from some.file.red are not echoed

The IN statement suppresses the printing of statement numbers. This means that the redExec with
the split option cannot distinguish commands from output. If we need to split we can use the őle:

syntax in the input vector:

commands <- c("q1:=(x+y);", "file:some.file.red", "q2:=q1^2")
redExec(s2, x=commands)

Using this approach redExec inserts the contents of some.őle.red into the vector between the assign-
ments of q1 and q2 before submitting to REDUCE , effectively bypassing the use of the IN statement.

6 Solving a system of equations

The REDUCE operator solve [5] is a powerful tool for solving one or more simultaneous algebraic
equations in one or more variables, both linear and non-linear. Equations may contain arbitrary
constants. The operator takes two arguments: a list of the equations comprising the system and a list
of the unknowns. The latter is optional unless the equations contain arbitrary constants, such as c in
the following example. Here we őrst use redExec to call solve:

> code <- c("eq1:= x + y + z ;",
+ "eq2:= x^2 + y^2 + z^2 -9 ;",
+ "eq3:= x^2 + c*y^2 - z^2 ;",
+ "on rounded ;")
> def.eqn <- redExec(s3 , code) # to avoid printing the equations again
> sol1 <- redExec(s3 , "sol1:=solve ({eq1 , eq2 , eq3}, {x, y, z});")[["out"]]

which produces the following nested (REDUCE) list.

2.12132034356*c - 2.12132034356
sol1 := {{x=---------------------------------,

2 0.5
(c + 3)

4.24264068712
y=---------------,

2 0.5
(c + 3)

- 2.12132034356*(c + 1)
z=--------------------------},

2 0.5
(c + 3)

- 2.12132034356*c + 2.12132034356
{x=------------------------------------,

2 0.5
(c + 3)

-4.24264068712
y=----------------,

2 0.5
(c + 3)

2.12132034356*(c + 1)
z=-----------------------},

2 0.5
(c + 3)

{x=2.12132034356,y=0,z=-2.12132034356},

{x=-2.12132034356,y=0,z=2.12132034356}}

5

The top-level list has four elements, one for each solution, each of which is a list containing the
values of the unknowns. Note that the arbitrary constant c is part of the őrst two solutions. Even
turning NAT off, this can be very unwieldy so redcas provides the redSolve function which parses the
output and returns an object of class redcas.solve containing both inputs and outputs:

> soln <- redSolve(s3,

+ eqns=c("x + y + z = 0", "x^2 + c*y^2 + z^2 = 9",

+ "x^2 + y^2 - z^2 = 0"),

+ unknowns=c("x", "y", "z"),

+ switches <- "on rounded;")

> print(soln)

Equations:

x + y + z = 0

x^2 + c*y^2 + z^2 = 9

x^2 + y^2 - z^2 = 0

Number of solutions: 4

Solutions:

x y z

2.12132034356 0 -2.12132034356

-2.12132034356 0 2.12132034356

0 3.0/(c + 1)**0.5 (- 3)/(c + 1)**0.5

0 (- 3.0)/(c + 1)**0.5 3/(c + 1)**0.5

Unknowns: x,y,z

Switches: on rounded;

As can be seen, redcas provides a print method which attempts to display the solutions in as
compact a manner as possible but will not always be as neat as in this example. The individual slots
of the class can be accessed in the usual way using @. Note that the solutions slot is character since
values may contain variable names which may or may not exist in the R session. Even if they do exist,
using these values might not be what is intended. The object has another slot rsolutions which contains
evaluated versions of the solutions slot, if these are numbers including complex, otherwise character.
The print method does not display the rsolutions slot. In this particular case one could evaluate the
results for a speciőc value of c as follows:

> c <- 25

> sol25 <- lapply(soln@solutions,

+ function(x){unlist(lapply(x,

+ function(y){eval(str2expression(y))}))})

> print(sol25)

[[1]]

x y z

2.12132 0.00000 -2.12132

[[2]]

x y z

-2.12132 0.00000 2.12132

[[3]]

6

x y z

0.0000000 0.5883484 -0.5883484

[[4]]

x y z

0.0000000 -0.5883484 0.5883484

Switches can have a signiőcant effect on the result. As an example consider the following set
of equations with the ROUNDED switch on and then off. For convenience, redSolve has a switches

argument to allow turning switches on or off before calling solve:

> r.on <- redSolve(id=s3,

+ eqns=c("x+y+z = 0", "x^2 + y^2 + z^2 = 9", "x^2 + y^2 = z"),

+ unknowns=c("x", "y", "z"), switches="on rounded;")

> r.off <- redSolve(id=s3,

+ eqns=c("x+y+z = 0", "x^2 + y^2 + z^2 = 9", "x^2 + y^2 = z"),

+ unknowns=c("x", "y", "z"), switches="off rounded;")

With ROUNDED on, REDUCE returns a set of solutions containing only real and complex con-
stants (we have rounded to 6 digits to show the solutions as side-by-side columns):

Equations:

x+y+z = 0

x^2 + y^2 + z^2 = 9

x^2 + y^2 = z

Number of solutions: 4

Solutions:

x y z

1.77069 + 2 .21496i 1.77069 - 2 .21496i - 3.54138

- 1.27069 + 0 .58648i - 1.27069 - 0 .58648i 2.54138

- 1.27069 - 0 .58648i - 1.27069 + 0 .58648i 2.54138

1.77069 - 2 .21496i 1.77069 + 2 .21496i - 3.54138

Unknowns: x,y,z

Switches: on rounded;

and in this case the rsolutions slot contains complex or numeric types. With ROUNDED off we
get the same set of solutions but not simpliőed:

Equations:

x+y+z = 0

x^2 + y^2 + z^2 = 9

x^2 + y^2 = z

Number of solutions: 4

Solution 1:

x: (2*sqrt(- sqrt(37) - 7)*sqrt(3) + sqrt(74) + sqrt(2))/(4*sqrt(2))

y: (- 2*sqrt(- sqrt(37) - 7)*sqrt(3) + sqrt(74) + sqrt(2))/(4*sqrt(2))

7

z: (- (sqrt(37) + 1))/2

Solution 2:

x: (- 2*sqrt(- sqrt(37) - 7)*sqrt(3) + sqrt(74) + sqrt(2))/(4*sqrt(2))

y: (2*sqrt(- sqrt(37) - 7)*sqrt(3) + sqrt(74) + sqrt(2))/(4*sqrt(2))

z: (- (sqrt(37) + 1))/2

Solution 3:

x: (2*sqrt(sqrt(37) - 7)*sqrt(3) - sqrt(74) + sqrt(2))/(4*sqrt(2))

y: (- 2*sqrt(sqrt(37) - 7)*sqrt(3) - sqrt(74) + sqrt(2))/(4*sqrt(2))

z: (sqrt(37) - 1)/2

Solution 4:

x: (- 2*sqrt(sqrt(37) - 7)*sqrt(3) - sqrt(74) + sqrt(2))/(4*sqrt(2))

y: (2*sqrt(sqrt(37) - 7)*sqrt(3) - sqrt(74) + sqrt(2))/(4*sqrt(2))

z: (sqrt(37) - 1)/2

Unknowns: x,y,z

Switches: off rounded;

Although the expressions contain no variables, they do contain negative square roots which would
produce NaNs if evaluated. In this case, the expressions may be evaluated by substituting sqrt(-x)
with complex(imaginary=sqrt(x)). A future release of redcas may implement handling of such cases.

7 Producing LATEX output

The function asltx converts an array or expression previously deőned in the REDUCE session to
LATEXusing REDUCE features. If provided with appropiate mappings it can translate object names or
convert array arguments to indices and can enclose the result in a math environment speciőed by the
user.

As an example of an expression, consider the variable h which we used in section 4.

> s4 <- redStart()

> f <- redExec(s4, "f := (x + y)^2;", drop.blank.lines=TRUE)[["out"]]

> h <- redExec(s4, "h := f + 1/f;", drop.blank.lines=TRUE)[["out"]]

First with MCD off:

> dummy <- redExec(s4, "off mcd;")

> writeLines(asltx(s4, "h", mathenv="equation*")[["tex"]])

h =
(

x2 + 2x y + y2
)

−1 (

x4 + 4x3 y + 6x2 y2 + 4x y3 + y4 + 1
)

the function returns a list with the same three elements as redExec and a fourth, named łtexž,
containing the LATEX output . Since we only need the LATEX output here we select the łtexž list
element. We use writeLines to avoid printing the vector index numbers. With MCD on the same call
returns:

8

h =
x4 + 4x3 y + 6x2 y2 + 4x y3 + y4 + 1

x2 + 2x y + y2

Note that asltx is currently not vectorized.

asltx can also print arrays of any dimension. Unlike matrix printing in REDUCE it does not
attempt to display arrays of two dimensions as a matrix. Instead it prints each element of the array
along with its indices. As an example, consider the tensor

gij =









−ω1u
−2 0 0 0

0 (ux)2 0 0
0 0 g1,1 ∗ (sinx)

2 0
0 0 0 ω2u

2









where (t, x, y, z) is a coordinate system, u is an arbitrary constant and ω is a vector. In REDUCE we
deőne the tensor as follows:

> gm <- c("on nero; off exp;",

+ "operator omega;",

+ "array g(3,3) ;",

+ "g(0,0) := -omega(1)*u^(-2);",

+ "g(1,1) := (u*z)^2;",

+ "g(2,2) := g(1,1) * (sin(x))^2;",

+ "g(3,3) := omega(2)*u^2;")

> o4 <- redExec(s4, gm)$out

where the tensor is represented by an array. Since we have a sparse tensor, we have turned on
the NERO switch to suppress the zeroes. We now call asltx to display g as LATEXby using the mode

argument:

> writeLines(asltx(s4, "g", mathenv="dmath*", mode="fancy")[["tex"]])

g(0, 0) =
−ω (1)

u2

g(1, 1) = u2 z2

g(2, 2) = sin (x)2 u2 z2

g(3, 3) = ω (2) u2

Here we see that REDUCE variables with Greek letter names are automatically converted to the
corresponding LATEXcommand.

Finally, displaying the indices for a tensor using arguments is not the standard. We now show how
to deőne a mapping of the arguments to raised or lowered indices. We construct a list2 containing
a named vector called index with name being the identiőer and the value a series of underscores and
circumŕexes to indicate lowered and raised indices, respectively. This list is passed as the usermap

argument to asltx:

2because it may also contain a map for changing variable names

9

> writeLines(asltx(s4, "g", usermap=list(index=c(g="_^", "\\\\omega"="_")),

+ mathenv="dmath*", mode="fancy")[["tex"]])

g00 =
−ω1

u2

g11 = u2 z2

g22 = sin (x)2 u2 z2

g33 = ω2 u
2

We need to use four backslashes because the map is used as a regular expression which needs an
escaped backslash and a further escaped backslash to get it into the string.

Suppose we now want to change the name of g to Γ: we add a named vector called ident to the list
with the old name as element name and new name as element value:

> writeLines(asltx(s4, "g", mathenv="dmath*", usermap=list(ident=c(g="\\\\Gamma"),

+ index=c("\\\\Gamma"="_^", "\\\\omega"="_")))[["tex"]])

Γ0

0 =
−ω1

u2

Γ1

1 = u2 z2

Γ2

2 = sin (x)2 u2 z2

Γ3

3 = ω2 u
2

Note that the index element names must use the mapped identiőer name.

In our example, we have space for multi-column display, but asltx does only single column. We can
do multi-column, for example, using the align environment, by calling asltx without a mathenv value
and use R to format the output appropriately. We add alignment marks before the equals sign and
add some space:

> otex <- asltx(s4, "g",

+ usermap=list(ident=c(g="\\\\Gamma"),

+ index=c("\\\\Gamma"="_^", "\\\\omega"="_")))[["tex"]]

> otex <- sub("=", "&=", otex)

> writeLines(c("\\begin{align}",

+ sprintf("%s &%s\\\\", otex[1], otex[2]),

+ sprintf("%s &%s", otex[3], otex[4]),

+ "\\end{align}"))

Γ0

0 =
−ω1

u2
Γ1

1 = u2 z2 (1)

Γ2

2 = sin (x)2 u2 z2 Γ3

3 = ω2 u
2 (2)

10

References

[1] REDUCE Developers. How to Obtain and Run REDUCE [Online; accessed 2024-08-18]

[2] REDUCE Developers. Switch Summary [Online; accessed 2024-08-29]

[3] REDUCE Developers. REDUCE Manual [Online; accessed 2024-08-29]

[4] David Stoutemyer, Arthur Norman, Francis Wright Introductory tutorial [Online; accessed 2024-
08-29]

[5] REDUCE Developers. The SOLVE Operator [Online; accessed 2024-09-05]

11

http://www.reduce-algebra.com/obtaining.php
http://www.reduce-algebra.com/switches.php
http://www.reduce-algebra.com/manual/manual.html
http://www.reduce-algebra.com/tutorials.php
http://www.reduce-algebra.com/manual/manualse44.html#x56-1000007.17

A Known issues

A.1 redExec hangs

A.1.1 Operator prompt

Because REDUCE is started via a pipe, the session is interactive so if you forget to declare an operator,
REDUCE prompts and waits for the user to respond. redExec traps this, terminates the REDUCE
session, informs of the problem and writes the complete REDUCE transcript to the current working
directory.

A.1.2 Missing statement terminators

If you forget to insert a statement terminator3 on the last statement, the redExec function might4 not
return. To avoid this situation, redExec checks whether the last non-blank, non-comment element of
the input vector has a terminator. If not it stops with an appropriate message and returns FALSE.

Forgetting a terminator on a statement other than the last will most likely cause an error rather
than hanging, but hanging may still happen. You will know if the function will not return if it writes
a message

x seconds elapsed, reduce commands still executing.

every 10 seconds (by default). In this case you must interrupt the function and call redClose. Against
this eventuality you can set the timeout argument to a value other than zero.

A.2 Parsing REDUCE output

Splitting the REDUCE transcript into commands and output is not trivial. Some issue are described
in the following sections

A.2.1 Using the OUT statement

The REDUCE OUT statement redirects output to a named őle. redExec does not currently check
for this. If you use this option, none of the commands or output sent to the őle will be returned.
Furthermore, if you do not turn off the redirection in the same call to redExec, the end of submission
marker5 will not be seen and redExec with fail to return.

A.2.2 Using the OUTPUT switch

If the REDUCE OUTPUT switch is turned off, all output is suppressed. In order to prevent redExec

hanging, be sure to turn it back on at the latest in the last statement in the call.

A.2.3 Using the IN statement

The REDUCE IN statement suppresses the printing of statement numbers. This means that the
redExec split option will write both command and output to the out element of the returned list and
only comments will be written to the cmd element. Using the őle: syntax in the input vector instead
of an IN statement avoids this problem.

A.2.4 Commands with trailing comments

If a command has a comment after the terminator and ECHO is on, REDUCE prints it on a separate
line. If the command produces output, the comment comes after the output, for example

3semi-colon or dollar sign
4for example a LET statement without terminator hangs, but ON or OFF without terminator just generates an error

message
5see appendix ?? for details

12

df(x^2, x) ; % a demonstrative comment

produces

2: df(x^2, x) ;
2*x
% a demonstrative comment

This is handled correctly by redExec but may be confusing when viewing the transcript.

A.3 asltx issues

asltx may cause LATEX compilation to fail with either of the following messages:

! Double subscript.

! Double superscript.

LATEXdoes not permit more than one subscript or superscript command on a single item. For example,

\Gamma_{1}^{2}_{3}

will fail. One situation where this could occur is when a variable with a raised index is also raised to
a power, for example when the argument in x(2)^3 is converted to a raised index. asltx handles this
situation by converting to {x{^2}}^3. There may be other situations which cause this error.

B The REDUCE transcript

In this section we describe the full REDUCE transcript from section 3.

Session start

1 Reduce (CSL , rev 6860), 11-Aug -2024 ...
2

3 1:
4 2:
5 lisp_dialect
6

7 swget
8

9 swtoggle
10

11 asltx
12

13 exprltx
14

15 itoa
16

17 array2flatls
18

19 arrayltx
20

21 asltx_marker
22

23 3:
24

25 4: write "===== > submit number ", 0, " done <=====" ;
26 =====> submit number 0 done <=====

The őrst part of the transcript, up to the line containing submit number 0 done is generated by the
call to redStart which calls redExec to deőne some REDUCE functions required by the redcas package.
Lines 5-21 contain the names of these procedures. For reasons related to the use of a pipe to control the

13

REDUCE session, all code submitted writes a marker line to the transcript to indicate the execution
is complete. The marker command and output are lines 25 and 26, respectively and these are not
returned by redExec.

First redExec call

30

31 6: r2d2 := (987654321/15)^3;
32 35682160321981318855871043
33 r2d2 := ----------------------------
34 125
35

36

37 7: write "===== > submit number ", 1, " done <=====" ;
38 =====> submit number 1 done <=====

The results of the őrst (explicit) redExec call are shown in lines 30-38. redExec splits these into
commands and output by checking whether there is a command number or not. The marker command
and output are not returned.

Second redExec call

42

43 9: on rounded;
44

45 10: r2d2;
46 2.85457282576e+23
47

48

49 11: off rounded;
50

51 12: write "===== > submit number ", 2, " done <=====" ;
52 =====> submit number 2 done <=====

The results of the second redExec call are shown in lines 42-52.

C Testing

The packages redcas comes with 328 tests grouped as shown in Table 1. The 46 tests in the łRž column

Table 1: Tests
Group Tests CSL PSL R

01 Finding Reduce executables 11 0 0 11
02 Session handling 15 0 0 15
03 Output handling 17 0 0 17
04 Output: őle not found 6 3 3 0
05 Execution 78 39 39 0
06 Execution: prompts 3 3 0 0
07 Execution: long-running 3 3 0 0
08 Execution: Many redExec calls 16 8 8 0
09 Arrays 34 17 17 0
10 Expressions 8 4 4 0
11 asltx from REDUCE 40 20 20 0
12 asltx from R 21 9 9 3
13 Bug őxes 22 15 7 0
14 redSolve 54 27 27 0

All Groups 328 148 134 46

do not require a REDUCE installation. Of the remaining 282 tests, 134 are executed for both CSL
and PSL if they are both present while 14 tests are executed for CSL only. If either or both CSL and

14

PSL executables are absent, the relevant tests are skipped. In the directory where the tests are run,
the őle 99-test-results.Rout provides a summary of the results of these tests.

This release has been tested with R 4.4.1 using REDUCE releases 6860 and 6558 for both CSL and
PSL on Linux, and 6558 and 6339 for CSL on MacOS.

For 6339, 13 tests failed because of white space differences and, because the expression used is
rational, differences in the number of dashes in the line separating numerator and denominator:

6860 and 6558: 6339:

-1 - 1

g(0,0) := ---- g(0,0) := ------

2 2

u u

While the testing program checks for white space only differences, the dashes are a problem. Possibly
turning the MCD switch off might solve the issue.

While 99-test-results.Rout shows the expected and actual values if the test fails, it is not very
convenient for checking exactly how the two differ. For each set of tests there is an RData őle containing
two lists, expect and actual. To őnd this, open the Rout őle for the failing category - the RData őle
name is in the statement which prints and saves the results, for example, in 170-many-input.Rout the
line

> print(save.results('redMany',expect,actual))

indicates that redMany.RData contains the lists.

15

	Overview
	Finding REDUCE
	Controlling a REDUCE session from R
	Starting REDUCE
	Executing REDUCE code
	Closing REDUCE

	Controlling output
	Sourcing REDUCE files: IN
	Solving a system of equations
	Producing LaTeX output
	Known issues
	redExec hangs
	Operator prompt
	Missing statement terminators

	Parsing REDUCE output
	Using the OUT statement
	Using the OUTPUT switch
	Using the IN statement
	Commands with trailing comments

	asltx issues

	The REDUCE transcript
	Testing

