summary {rbcc} | R Documentation |
Summary function of Risk-based Univariate and Multivariate Control Charts
Description
Print summary of Risk-based Univariate and Multivariate (shewhart, exponentially weighted moving average(EWMA), moving average (MA), Cummulative Sum (CUSUM), Hotteling's T2 control charts
Usage
## S3 method for class 'rbcc'
summary(object, digits = getOption("digits"), ...)
## S3 method for class 'rbcusumcc'
summary(object, digits = getOption("digits"), ...)
## S3 method for class 'rbmcc'
summary(object, digits = getOption("digits"), ...)
Arguments
object |
an object of class 'rbcc'. |
digits |
the number of significant digits to use when |
... |
additional arguments affecting the summary produced. |
Value
No return value, called for side effects
Author(s)
Aamir Saghir, Attila I. Katona, Zsolt T. Kosztyan*
e-mail: kzst@gtk.uni-pannon.hu
References
Katona, A. I., Saghir, A., Hegedűs, C., & Kosztyán, Z. T. (2023). Design of Risk-Based Univariate Control Charts with Measurement Uncertainty. IEEE Access, 11, 97567-97573.
Kosztyán, Z. T., & Katona, A. I. (2016). Risk-based multivariate control chart. Expert Systems with Applications, 62, 250-262.
See Also
data_gen
, rbcc
, rbcc_opt
, rbcusumcc
, rbcusumcc_opt
, rbewmacc
, rbewmacc_opt
, rbmacc
, rbmacc_opt
, rbmcc
, rbmcc_opt
, plot.rbcc
.
Examples
### EXAMPLES FOR UNIVARIATE CONTROL XBAR CHARTS
# Data Generation and Xbar chart.
## Example for generation of data vector X and measuremenet error vector UC.
obs <- 200 # Total number of observations of a process.
mu_X <- c(0) # Define data mean.
va_X <- c(1) # Define data standard deviation.
sk_X <- c(0) # Define data skewness.
ku_X <- c(3) # Define data kurtosis.
mu_UC <- c(0) # Define mean of measurement errors.
va_UC <- c(1) # Define standard deviation of measurement errors.
sk_UC <- c(0) # Define skewness of measurement errors.
ku_UC <- c(3) # Define kurtosis of measurement errors.
X <- data_gen (obs, mu_X, va_X, sk_X, ku_X) # Simulation of 200 obervations of 1 variable.
# Simulation of 200 muasurement erros related to 1 variable.
UC <- data_gen(obs,mu_UC, va_UC, sk_UC, ku_UC)
# Construction of risk-based Xbar chart with default vector of decision costs
C <- c(1,1,1,1) # vector of decision costs
H <- rbcc(X, UC, C, n=3, type="xbar") # for subgroups of size 3
summary(H) # summarize the results
# optimal risk-based xbar control chart
H_opt <- rbcc_opt(X, UC, C, n=3, type="xbar")
summary(H_opt)
### EXAMPLES FOR UNIVARIATE CUSUM CHARTS
# Data Generation and CUSUM chart.
## Example for generation of data vector X and measuremenet error vector UC.
obs <- 200 # Total number of observations of a process.
mu_X <- c(0) # Define data mean.
va_X <- c(1) # Define data standard deviation.
sk_X <- c(0) # Define data skewness.
ku_X <- c(3) # Define data kurtosis.
mu_UC <- c(0) # Define mean of measurement errors.
va_UC <- c(1) # Define standard deviation of measurement errors.
sk_UC <- c(0) # Define skewness of measurement errors.
ku_UC <- c(3) # Define kurtosis of measurement errors.
X <- data_gen (obs, mu_X, va_X, sk_X, ku_X) # Simulation of 200 obervations of 1 variable.
# Simulation of 200 muasurement erros related to 1 variable.
UC <- data_gen(obs,mu_UC, va_UC, sk_UC, ku_UC)
# Construction of risk-based CUSUM chart with default vector of decision costs
C <- c(1,1,1,1) # vector of decision costs
H <- rbcusumcc(X, UC, C, n=1,T=5, se.shift=1, K=5) # for subgroups of size 1
summary(H) # Summarizing the results
# optimal risk-based xbar control chart
H_opt <- rbcusumcc_opt(X, UC, C, n=1, T=5, se.shift=1, K_init=0, LKL=0, UKL=6)
summary(H_opt)
### EXAMPLES FOR MULTIVARIATE CONTROL CHARTS
# Data generation for matrix X
mu_X <- c(0,1,2) # vector of means.
va_X <- c(1,2, 0.5) # vector of standard deviation.
sk_X <- c(0,0.5, 0.8) # vector of skewness.
ku_X <- c(3,3.5, 4) # vector of kurtosis.
obs <- 200 # Total number of observations of a process.
X <- data_gen (obs, mu_X, va_X, sk_X, ku_X) # generate data pints
# Data generation for measurement error matrix UC.
mu_UC <- c(0,0,0) # vector of means of measurement errors.
va_UC <- c(1,2, 0.5) # vector of standard deviation of measurement errors.
sk_UC <- c(0,0,0) # Vector of skewness of measurement errors.
ku_UC <- c(3,3,3) # Vector of kurtosis of measurement errors.
# Example for generation of measurement error matrix of 3 variables.
UC <- data_gen(obs,mu_UC, va_UC, sk_UC, ku_UC)
# with default vector of decision costs
C <- c(1,1,1,1) # vector of decision costs
H <- rbmcc(X, UC, C) # for subgroups of size 1
summary(H) # summarize the results
H_opt <- rbmcc_opt(X, UC, C)# optimal risk-based multivariate control chart
summary(H_opt)
# with vector of proportional decision costs
C <- c(1, 5, 60, 5) # vector of decision costs
H <- rbmcc(X, UC, C) # for subgroups of size 1
H_opt <- rbmcc_opt(X, UC, C) # optimal risk-based multivariate control chart
summary(H_opt)
# with vector of proportional decision costs and sugbroup size 3
C <- c(1, 5, 60, 5) # vector of decision costs
H <- rbmcc(X, UC, C, 3) # for subgroups of size 3
H_opt <- rbmcc_opt(X, UC, C, 3)# optimal risk-based multivariate control chart
summary(H_opt) # summarize the results
# Example of considering the real sample
data("t2uc") # load the dataset
X <- as.matrix(t2uc[,1:2]) # get optical measurements ar "real" values
UC <- as.matrix(t2uc[,5:6]) # get measurement errors
C <- c(1,20,160,5) # define cost structure
# Fit optimized RBT2 control chart
R <- rbmcc_opt(X, UC, C, 1,confidence_level = 0.99)
summary(R) # summarize the results