bayesRecon-package {bayesRecon}R Documentation

bayesRecon: Probabilistic Reconciliation via Conditioning

Description

Provides methods for probabilistic reconciliation of hierarchical forecasts of time series. The available methods include analytical Gaussian reconciliation (Corani et al., 2021) doi:10.1007/978-3-030-67664-3_13, MCMC reconciliation of count time series (Corani et al., 2024) doi:10.1016/j.ijforecast.2023.04.003, Bottom-Up Importance Sampling (Zambon et al., 2024) doi:10.1007/s11222-023-10343-y, methods for the reconciliation of mixed hierarchies (Mix-Cond and TD-cond) (Zambon et al., 2024) https://proceedings.mlr.press/v244/zambon24a.html.

Learn more

To learn more about bayesRecon, start with the vignettes: browseVignettes(package = "bayesRecon")

Main functions

The package implements reconciliation via conditioning for probabilistic forecasts of hierarchical time series. The main functions are:

Utility functions

Author(s)

Maintainer: Dario Azzimonti dario.azzimonti@gmail.com (ORCID)

Authors:

References

Corani, G., Azzimonti, D., Augusto, J.P.S.C., Zaffalon, M. (2021). Probabilistic Reconciliation of Hierarchical Forecast via Bayes' Rule. ECML PKDD 2020. Lecture Notes in Computer Science, vol 12459. doi:10.1007/978-3-030-67664-3_13.

Corani, G., Azzimonti, D., Rubattu, N. (2024). Probabilistic reconciliation of count time series. International Journal of Forecasting 40 (2), 457-469. doi:10.1016/j.ijforecast.2023.04.003.

Zambon, L., Azzimonti, D. & Corani, G. (2024). Efficient probabilistic reconciliation of forecasts for real-valued and count time series. Statistics and Computing 34 (1), 21. doi:10.1007/s11222-023-10343-y.

Zambon, L., Agosto, A., Giudici, P., Corani, G. (2024). Properties of the reconciled distributions for Gaussian and count forecasts. International Journal of Forecasting (in press). doi:10.1016/j.ijforecast.2023.12.004.

Zambon, L., Azzimonti, D., Rubattu, N., Corani, G. (2024). Probabilistic reconciliation of mixed-type hierarchical time series. Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4078-4095. https://proceedings.mlr.press/v244/zambon24a.html.

See Also

Useful links:


[Package bayesRecon version 0.3.3 Index]