ishi_homma_fun {gsaot}R Documentation

Ishigami-Homma function evaluation

Description

Evaluates the Ishigami-Homma function. Input samples are drawn from a uniform distribution over [-\pi, \pi]^3

Usage

ishi_homma_fun(N, A = 2, B = 1)

Arguments

N

Number of input samples to generate.

A

(default: 2) Numeric, amplitude of the second sine component .

B

(default: 1) Numeric, coefficient of the interaction term.

Details

The Ishigami-Homma function is defined as:

Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)

where X_i \sim \mathcal{U}(-\pi, \pi).

Value

A list with two elements:

See Also

sobol_fun, gaussian_fun

Examples

result <- ishi_homma_fun(1000)
head(result$x)
head(result$y)


[Package gsaot version 1.1.0 Index]