MIDASim.setup {MIDASim} | R Documentation |
Fitting MIDAS model to microbiome data
Description
Midas.setup estimates parameters from a template microbiome count dataset for downstream data simulation.
Usage
MIDASim.setup(otu.tab, n.break.ties = 100, mode = "nonparametric")
Arguments
otu.tab |
Numeric matrix of template microbiome count dataset. Rows are samples, columns are taxa. |
n.break.ties |
Number of replicates to break ties when ranking relative
abundances. Defaults to |
mode |
A character indicating the modeling approach for relative abundances.
If |
Value
Returns a list that has components:
mat01 |
Presence-absence matrix of the template data. |
lib.size |
Observed library sizes of the template data. |
n.taxa |
Number of taxa in the template data. |
n.sample |
Sample size in the template data. |
ids |
Taxa ids present in all samples in the template. |
tetra.corr |
Estimated tetrachoric correlation of the presence-absence matrix of the template. |
corr.rel.corrected |
Estimated Pearson correlation of relative abundances, transformed from Spearman's rank correlation. |
sample.1.prop |
Proportion of non-zero cells for each subject. |
taxa.1.prop |
Proportion of non-zeros for each taxon. |
mean.rel.abund |
Observed mean relative abundances of each taxon. |
rel.abund.1 |
Observed non-zero relative abundances of each taxon. |
taxa.names |
Names of taxa in the template. |
Author(s)
Mengyu He
Examples
data("throat.otu.tab")
otu.tab = throat.otu.tab[,colSums(throat.otu.tab>0)>1]
# use nonparametric model
fitted = MIDASim.setup(otu.tab)
# use parametric model
fitted = MIDASim.setup(otu.tab, mode = 'parametric')