irdc_simple {FORD} | R Documentation |
Simple Estimator of the Integrated R-squared Dependence Coefficient (irdc_simple) for 1 Dimensional continuous X and Y
Description
The Simple Integrated R-squared Dependence Coefficient (irdc_simple) is a measure of dependence between a continuous random variables Y and X, based on an i.i.d. sample of (Y, X). The estimated coefficient is asymptotically guaranteed to lie between 0 and 1. The measure is asymmetrical; that is, irdc_simple(X, Y) != irdc_simple(Y, X). The measure equals 0 if and only if X is independent of Y, and it equals 1 if and only if Y is a measurable function of X. This coefficient has several applications; for example, it can be used for independence test. This coefficient only implemented for the 1-Dimensional continuous random variable X and Y.
Usage
irdc_simple(Y, X, na.rm = TRUE)
Arguments
Y |
A vector of length n. |
X |
A vector of length n. |
na.rm |
Logical; if TRUE, missing values (NAs) will be removed. Default is TRUE. |
Details
The value returned by 'irdc_simple' can be positive or negative for finite samples, but asymptotically, it is guaranteed to be between 0 and 1. A small value indicates low dependence between Y and X, while a high value indicates strong dependence. The 'irdc_simple' function is used for testing the independence of variables.
Value
The Simple Integrated R-squared Dependence Coefficient (irdc_simple) between Y and X.
Author(s)
Mona Azadkia, Pouya Roudaki
References
Azadkia, M. and Roudaki, P. (2025). A New Measure Of Dependence: Integrated R2 http://arxiv.org/abs/2505.18146.
See Also
irdc
, codec
, xicor
, KPCgraph
, KPCRKHS
Examples
n = 1000
x <- matrix(runif(n * 3), nrow = n)
y <- (x[, 1] + x[, 2])
irdc_simple(y, x[, 1])
irdc_simple(y, x[, 2])
irdc_simple(y, x[, 3])