pro_applicability_matrix {dataquieR}R Documentation

Check applicability of DQ functions on study data

Description

Checks applicability of DQ functions based on study data and metadata characteristics

Usage

pro_applicability_matrix(
  study_data,
  item_level = "item_level",
  split_segments = FALSE,
  label_col,
  max_vars_per_plot = 20,
  meta_data_segment,
  meta_data_dataframe,
  flip_mode = "noflip",
  meta_data_v2,
  meta_data = item_level,
  segment_level,
  dataframe_level
)

Arguments

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

split_segments

logical return one matrix per study segment

label_col

variable attribute the name of the column in the metadata with labels of variables

max_vars_per_plot

integer from=0. The maximum number of variables per single plot.

meta_data_segment

data.frame – optional: Segment level metadata

meta_data_dataframe

data.frame – optional: Data frame level metadata

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

meta_data

data.frame old name for item_level

segment_level

data.frame alias for meta_data_segment

dataframe_level

data.frame alias for meta_data_dataframe

Details

This is a preparatory support function that compares study data with associated metadata. A prerequisite of this function is that the no. of columns in the study data complies with the no. of rows in the metadata.

For each existing R-implementation, the function searches for necessary static metadata and returns a heatmap like matrix indicating the applicability of each data quality implementation.

In addition, the data type defined in the metadata is compared with the observed data type in the study data.

Value

a list with:


[Package dataquieR version 2.5.1 Index]