RNLachrom {colourvision} | R Documentation |
Weber achromatic contrast for the Receptor Noise Limited Model (Vorobyev & Osorio 1998)
Description
Weber achromatic contrast for the Receptor noise limited model (Vorobyev & Osorio 1998; Vorobyev et al. 1998).
Usage
RNLachrom(R1, R2=Rb, Rb, I, C, e,
interpolate = TRUE, nm = seq(300, 700, 1))
Arguments
R1 |
Reflectance of observed objects. A data frame with first column corresponding to wavelength values and following columns with reflectance values. |
R2 |
Reflectance to be compared against R1. |
Rb |
Background reflectance. A data frame with two columns only: first column corresponding to wavelength values and second column with reflectance values. |
I |
Irradiance spectrum. A data frame with two columns only: first column corresponding to wavelength values and second column with irradiance values. Irradiance values must be in quantum flux units. |
C |
Photoreceptor sensitivity curves, from lowest to longest lambda-max. A data frame: first column corresponding to wavelength values and following columns with photoreceptor sensitivity values (see function |
e |
Noise of the photoreceptor. |
interpolate |
Whether data files should be interpolated before further calculations. See |
nm |
A sequence of numeric values specifying where interpolation is to take place. See |
Details
The Weber achromatic contrast for a single photoreceptor is calculated by:
\Delta S = |\frac{\ln(Qr_1)-\ln(Qr_2)}{e}|
where Qr_1
and Qr_2
are the relative photoreceptor quantum catches from stimulus 1 (R1
) and stimulus 2 (R2
).
Noise may be dependent of the intensity, but this possibility is not implement in colourvision
yet. Noise dependent of intensity usually holds for low light conditions only (Vorobyev et al. 1998).
Value
e1 |
Photoreceptor noise. |
Qr1_R1 |
Photoreceptor photon catch value from |
Qr1_R2 |
Photoreceptor photon catch value from |
E1_R1 |
Photoreceptor output from the stimulus ( |
E1_R2 |
Photoreceptor output from R2 |
deltaS |
Euclidean distance from R1 to R2. It represents the achromatic contrast of the stimulus ( |
Author(s)
Felipe M. Gawryszewski f.gawry@gmail.com
References
Vorobyev, M., and D. Osorio. 1998. Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society B 265:351-358.
Vorobyev, M., D. Osorio, A. T. D. Bennett, N. J. Marshall, and I. C. Cuthill. 1998. Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621-633.
See Also
RNLmodel
, photor
, RNLthres
, CTTKmodel
, EMmodel
, GENmodel
Examples
#1
## Photoreceptor sensitivity spectra
##with lambda max at 350nm, 450nm and 550nm:
C<-photor(lambda.max=c(350))
##Grey background
##with 7 percent reflectance from 300 to 700nm:
Rb <- data.frame(300:700, rep(7, length(300:700)))
## Read CIE D65 standard illuminant:
data("D65")
##Reflectance data of R1 and R2
R1.1<-logistic(x=seq(300,700,1), x0=500, L=50, k=0.04)
R1.2<-logistic(x=seq(300,700,1), x0=400, L=50, k=0.04)
w<-R1.1[,1]
R1.1<-R1.1[,2]+10
R1.2<-R1.2[,2]+10
R1<-data.frame(w=w, R1.1=R1.1, R1.2=R1.2)
R2<-logistic(x=seq(300,700,1), x0=550, L=50, k=0.04)
R2[,2]<-R2[,2]+10
plot(R1[,c(1,2)],type="l",
ylim=c(0,60))
lines(R1[,c(1,3)])
lines(R2[,c(1,2)],col="red")
lines(Rb,col="green")
## Run model
RNLachrom(R1=R1, R2=R2, Rb=Rb, I=D65, C=C,
e = 0.16)