bayesRecon-package {bayesRecon} | R Documentation |
bayesRecon: Probabilistic Reconciliation via Conditioning
Description
Provides methods for probabilistic reconciliation of hierarchical forecasts of time series. The available methods include analytical Gaussian reconciliation (Corani et al., 2021) doi:10.1007/978-3-030-67664-3_13, MCMC reconciliation of count time series (Corani et al., 2024) doi:10.1016/j.ijforecast.2023.04.003, Bottom-Up Importance Sampling (Zambon et al., 2024) doi:10.1007/s11222-023-10343-y, methods for the reconciliation of mixed hierarchies (Mix-Cond and TD-cond) (Zambon et al., 2024) https://proceedings.mlr.press/v244/zambon24a.html.
Learn more
To learn more about bayesRecon
, start with the vignettes: browseVignettes(package = "bayesRecon")
Main functions
The package implements reconciliation via conditioning for probabilistic forecasts of hierarchical time series. The main functions are:
-
reconc_gaussian()
: reconciliation via conditioning of multivariate Gaussian base forecasts; this is done analytically; -
reconc_BUIS()
: reconciliation via conditioning of any probabilistic forecast via importance sampling; this is the recommended option for non-Gaussian base forecasts; -
reconc_MCMC()
: reconciliation via conditioning of discrete probabilistic forecasts via Markov Chain Monte Carlo; -
reconc_MixCond()
: reconciliation via conditioning of mixed hierarchies, where the upper forecasts are multivariate Gaussian and the bottom forecasts are discrete distributions; -
reconc_TDcond()
: reconciliation via top-down conditioning of mixed hierarchies, where the upper forecasts are multivariate Gaussian and the bottom forecasts are discrete distributions.
Utility functions
-
temporal_aggregation()
: temporal aggregation of a given time series object of class ts; -
get_reconc_matrices()
: aggregation and summing matrices for a temporal hierarchy of time series from user-selected list of aggregation levels; -
schaferStrimmer_cov()
: computes the Schäfer-Strimmer shrinkage estimator for the covariance matrix; -
PMF.get_mean()
,PMF.get_var()
,PMF.get_quantile()
,PMF.summary()
,PMF.sample()
: functions for handling PMF objects.
Author(s)
Maintainer: Dario Azzimonti dario.azzimonti@gmail.com (ORCID)
Authors:
Nicolò Rubattu nicolo.rubattu@idsia.ch (ORCID)
Lorenzo Zambon lorenzo.zambon@idsia.ch (ORCID)
Giorgio Corani giorgio.corani@idsia.ch (ORCID)
References
Corani, G., Azzimonti, D., Augusto, J.P.S.C., Zaffalon, M. (2021). Probabilistic Reconciliation of Hierarchical Forecast via Bayes' Rule. ECML PKDD 2020. Lecture Notes in Computer Science, vol 12459. doi:10.1007/978-3-030-67664-3_13.
Corani, G., Azzimonti, D., Rubattu, N. (2024). Probabilistic reconciliation of count time series. International Journal of Forecasting 40 (2), 457-469. doi:10.1016/j.ijforecast.2023.04.003.
Zambon, L., Azzimonti, D. & Corani, G. (2024). Efficient probabilistic reconciliation of forecasts for real-valued and count time series. Statistics and Computing 34 (1), 21. doi:10.1007/s11222-023-10343-y.
Zambon, L., Agosto, A., Giudici, P., Corani, G. (2024). Properties of the reconciled distributions for Gaussian and count forecasts. International Journal of Forecasting (in press). doi:10.1016/j.ijforecast.2023.12.004.
Zambon, L., Azzimonti, D., Rubattu, N., Corani, G. (2024). Probabilistic reconciliation of mixed-type hierarchical time series. Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, PMLR 244:4078-4095. https://proceedings.mlr.press/v244/zambon24a.html.
See Also
Useful links:
Report bugs at https://github.com/IDSIA/bayesRecon/issues