ishi_homma_fun {gsaot} | R Documentation |
Ishigami-Homma function evaluation
Description
Evaluates the Ishigami-Homma function.
Input samples are drawn from a uniform distribution over [-\pi, \pi]^3
Usage
ishi_homma_fun(N, A = 2, B = 1)
Arguments
N |
Number of input samples to generate. |
A |
(default: |
B |
(default: |
Details
The Ishigami-Homma function is defined as:
Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)
where X_i \sim \mathcal{U}(-\pi, \pi)
.
Value
A list with two elements:
-
x
: a numeric matrix of sizeN x 8
containing the input samples. -
y
: a numeric vector of lengthN
with the corresponding function outputs.
See Also
Examples
result <- ishi_homma_fun(1000)
head(result$x)
head(result$y)
[Package gsaot version 1.1.0 Index]