hypoglycemia_01_population {nemsqar} | R Documentation |
Hypoglycemia-01 Populations
Description
Filters data down to the target populations for Hypoglycemia-01, and categorizes records to identify needed information for the calculations.
Identifies key categories related to diabetes/hypoglycemia incidents in an EMS dataset, specifically focusing on cases where 911 was called for diabetes/hypoglycemia distress, certain medications were administered, and a weight is taken. This function segments the data into pediatric populations, computing the proportion of cases that have a documented weight.
Usage
hypoglycemia_01_population(
df = NULL,
patient_scene_table = NULL,
response_table = NULL,
situation_table = NULL,
vitals_table = NULL,
medications_table = NULL,
procedures_table = NULL,
erecord_01_col,
incident_date_col = NULL,
patient_DOB_col = NULL,
epatient_15_col,
epatient_16_col,
eresponse_05_col,
esituation_11_col,
esituation_12_col,
evitals_18_col,
evitals_23_col,
evitals_26_col,
emedications_03_col,
eprocedures_03_col
)
Arguments
df |
A data frame or tibble containing emergency response records.
Default is |
patient_scene_table |
A data.frame or tibble containing at least
epatient and escene fields as a fact table. Default is |
response_table |
A data.frame or tibble containing at least the
eresponse fields needed for this measure's calculations. Default is |
situation_table |
A data.frame or tibble containing at least the
esituation fields needed for this measure's calculations. Default is
|
vitals_table |
A data.frame or tibble containing at least the evitals
fields needed for this measure's calculations. Default is |
medications_table |
A data.frame or tibble containing at least the
emedications fields needed for this measure's calculations. Default is
|
procedures_table |
A data.frame or tibble containing at least the
eprocedures fields needed for this measure's calculations. Default is
|
erecord_01_col |
Column representing the unique record identifier. |
incident_date_col |
Column that contains the incident date. This
defaults to |
patient_DOB_col |
Column that contains the patient's date of birth. This
defaults to |
epatient_15_col |
Column representing the patient's numeric age agnostic of unit. |
epatient_16_col |
Column representing the patient's age unit ("Years", "Months", "Days", "Hours", or "Minute"). |
eresponse_05_col |
Column containing response type codes. |
esituation_11_col |
Column for primary impression fields, containing ICD-10 codes. |
esituation_12_col |
Column for secondary impression fields, containing ICD-10 codes. |
evitals_18_col |
Column for blood glucose levels. |
evitals_23_col |
Column for Glasgow Coma Scale (GCS) scores. |
evitals_26_col |
Column for AVPU alertness levels. |
emedications_03_col |
Column for administered medications. |
eprocedures_03_col |
Column for procedures performed. |
Value
A list that contains the following:
a tibble with counts for each filtering step,
a tibble for each population of interest
a tibble for the initial population
a tibble for the total dataset with computations
Author(s)
Nicolas Foss, Ed.D., MS
Examples
# create tables to test correct functioning
# patient table
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01",
"2025-01-01", "2025-06-01")),
patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01",
"2023-01-01", "1970-06-01")),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5)
)
# situation table
situation_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
esituation_11 = c(rep("E13.64", 3), rep("E16.2", 2)),
esituation_12 = c(rep("E13.64", 2), rep("E16.2", 3))
)
# medications table
medications_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
emedications_03 = c(372326, 376937, 377980, 4850, 4832),
)
# vitals table
vitals_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_18 = c(60, 59, 58, 57, 56),
evitals_23 = c(16, 15, 14, 13, 12),
evitals_26 = c("Alert", "Painful", "Verbal", "Unresponsive", "Alert")
)
# procedures table
procedures_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eprocedures_03 = rep("710925007", 5)
)
# test the success of the function
result <- hypoglycemia_01_population(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
medications_table = medications_table,
vitals_table = vitals_table,
procedures_table = procedures_table,
erecord_01_col = erecord_01,
incident_date_col = incident_date,
patient_DOB_col = patient_dob,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
emedications_03_col = emedications_03,
evitals_18_col = evitals_18,
evitals_23_col = evitals_23,
evitals_26_col = evitals_26,
eprocedures_03_col = eprocedures_03
)
# show the results of filtering at each step
result$filter_process