predict_separable_2dim {RobustCalibration} | R Documentation |
Fast prediction when the test points lie on a 2D lattice.
Description
This function computes fast computation when the test points lie on a 2D lattice.
Usage
predict_separable_2dim(object, testing_input_separable,
X_testing=matrix(0,length(testing_input_separable[[1]])*
length(testing_input_separable[[2]]),1), n_thinning=10,
interval_est = NULL,math_model=NULL,test_loc_index_emulator=NULL,...)
Arguments
object |
an object of class |
testing_input_separable |
a list. The first element is a vector of the coordinate of the latitue and the second element is a vector of the coordinate of the longitude. |
X_testing |
a matrix of mean/trend for prediction. |
n_thinning |
number of points thinning the MCMC posterior samples. |
math_model |
a function for the math model to be calibrated. |
test_loc_index_emulator |
a vector of the location index from the ppgasp emulator to output. Only useful for vectorized output computer model emulated by the ppgasp emulator. |
Value
The returned value is a S4 CLass predictobj.rcalibration
.
Author(s)
Mengyang Gu [aut, cre]
Maintainer: Mengyang Gu <mengyang@pstat.ucsb.edu>
References
A. O'Hagan and M. C. Kennedy (2001), Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology, 63, 425-464.
Mengyang Gu. (2016). Robust Uncertainty Quantification and Scalable Computation for Computer Models with Massive Output. Ph.D. thesis. Duke University.
M. Gu and L. Wang (2017) Scaled Gaussian Stochastic Process for Computer Model Calibration and Prediction. arXiv preprint arXiv:1707.08215.
M. Gu (2018) Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection . arXiv preprint arXiv:1804.09329.