ResIN_boots_prepare {ResIN} | R Documentation |
ResIN_boots_prepare
Description
Prepare a ResIN-based bootstrap analysis
Usage
ResIN_boots_prepare(
ResIN_object,
n = 10000,
boots_type = "resample",
resample_size = NULL,
weights = NULL,
save_input = FALSE,
seed_boots = 42
)
Arguments
ResIN_object |
A ResIN object to prepare bootstrapping workflow. |
n |
Bootstrapping sample size. Defaults to 10.000. |
boots_type |
What kind of bootstrapping should be performed? If set to "resample", function performs row-wise re-sampling of raw data (useful for e.g., sensitivity or power analysis). If set to "permute", function will randomly reshuffle raw item responses (useful e.g., for simulating null-hypothesis distributions). Defaults to "resample". |
resample_size |
Optional parameter determining sample size when |
weights |
An optional weights vector that can be used to adjust the re-sampling of observations. Should either be NULL (default) or a positive numeric vector of the same length as the original data. |
save_input |
Should all input information for each bootstrap iteration (including re-sampled/permuted data) be stored. Set to FALSE by default to save a lot of memory and disk storage. |
seed_boots |
Random seed for bootstrap samples |
Value
A list object containing n re-sampled or permuted copies of the raw data, along with a list of instructions for how to perform the ResIN analysis and what outputs to generate.
Examples
## Load the 12-item simulated Likert-type toy dataset
data(lik_data)
# Apply the ResIN function to toy Likert data:
ResIN_obj <- ResIN(lik_data, cor_method = "spearman", network_stats = TRUE,
generate_ggplot = FALSE)
## Not run:
# Prepare for bootstrapping
prepped_boots <- ResIN_boots_prepare(ResIN_obj, n=5000, boots_type="permute")
# Execute the prepared bootstrap list
executed_boots <- ResIN_boots_execute(prepped_boots, parallel = TRUE, detect_cores = TRUE)
# Extract results - here for example, the network (global)-clustering coefficient
ResIN_boots_extract(executed_boots, what = "global_clustering", summarize_results = TRUE)
## End(Not run)