Ixpq {DPQ} | R Documentation |
Normalized Incomplete Beta Function "Like" pbeta()
Description
Computes the normalized incomplete beta function, in pure R code, derived from Nico Temme's Maple code for computing Table 1 in Gil et al (2023).
It uses a continued fraction, similarly to bfrac()
in the TOMS 708
algorithm underlying R's pbeta()
.
Usage
Ixpq(x, l_x, p, q, tol = 3e-16, it.max = 100L, plotIt = FALSE)
Arguments
x |
numeric |
l_x |
|
p , q |
the two shape parameters of the beta distribution. |
tol |
positive number, the convergence tolerance for the continued fraction computation. |
it.max |
maximal number of continued fraction steps. |
plotIt |
a |
Value
a vector like x
or l_x
with corresponding
pbeta(x, *)
values.
Author(s)
Martin Maechler; based on original Maple code by Nico Temme.
References
Gil et al. (2023)
See Also
Examples
x <- seq(0, 1, by=1/16)
r <- Ixpq(x, 1-x, p = 4, q = 7, plotIt = TRUE)
cbind(x, r)
## and "test" ___FIXME__