rEL {ExtendedLaplace}R Documentation

Random Sample Generation of the Extended Laplace Distribution

Description

Generates random samples from the Extended Laplace distribution using the convolution representation: Y = X + U, where X \sim \text{Laplace}(\mu, \sigma) and U \sim \text{Uniform}(-\delta, \delta).

Usage

rEL(n, mu, sigma, delta)

Arguments

n

Integer. Sample size.

mu

Numeric. Location parameter.

sigma

Numeric. Scale parameter (must be > 0).

delta

Numeric. Uniform noise parameter (must be > 0).

Value

A numeric vector of random samples from the Extended Laplace distribution.

References

Saah, D. K., & Kozubowski, T. J. (2025). A new class of extended Laplace distributions with applications to modeling contaminated Laplace data. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2025.116588

Examples

rEL(10, mu = 0, sigma = 1, delta = 0.5)

[Package ExtendedLaplace version 0.1.6 Index]