interpret_oddsratio {effectsize} | R Documentation |
Interpret Odds Ratio
Description
Interpret Odds Ratio
Usage
interpret_oddsratio(OR, rules = "cohen1988", p0 = NULL, log = FALSE, ...)
Arguments
OR |
Value or vector of (log) odds ratio values. |
rules |
If |
p0 |
Baseline risk. If not specified, the d to OR conversion uses am approximation (see details). |
log |
Are the provided values log odds ratio. |
... |
Currently not used. |
Rules
Rules apply to OR as ratios, so OR of 10 is as extreme as a OR of 0.1 (1/10).
Cohen (1988) (
"cohen1988"
, based on theoddsratio_to_d()
conversion, seeinterpret_cohens_d()
)-
OR < 1.44 - Very small
-
1.44 <= OR < 2.48 - Small
-
2.48 <= OR < 4.27 - Medium
-
OR >= 4.27 - Large
-
References
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). New York: Routledge.
Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics-Simulation and Computation, 39(4), 860-864.
Sánchez-Meca, J., Marín-Martínez, F., & Chacón-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological methods, 8(4), 448.
Examples
interpret_oddsratio(1)
interpret_oddsratio(c(5, 2))