dfms-package {dfms} | R Documentation |
Dynamic Factor Models
Description
dfms provides efficient estimation of Dynamic Factor Models via the EM Algorithm — following Doz, Giannone & Reichlin (2011, 2012) and Banbura & Modugno (2014). Contents:
Information Criteria to Determine the Number of Factors
Fit a Dynamic Factor Model
Generate Forecasts
Fast Stationary Kalman Filtering and Smoothing
SKF()
— Stationary Kalman Filter
FIS()
— Fixed Interval Smoother
SKFS()
— Stationary Kalman Filter + Smoother
Helper Functions
.VAR()
— (Fast) Barebones Vector-Autoregression
ainv()
— Armadillo's Inverse Function
apinv()
— Armadillo's Pseudo-Inverse Function
tsnarmimp()
— Remove and Impute Missing Values in a Multivariate Time Series
em_converged()
— Convergence Test for EM-Algorithm
Data
BM14_M
— Monthly Series by Banbura and Modugno (2014)
BM14_Q
— Quarterly Series by Banbura and Modugno (2014)
BM14_Models
— Series Metadata + Small/Medium/Large Model Specifications
References
Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering. Journal of Econometrics, 164(1), 188-205. doi:10.1016/j.jeconom.2011.02.012
Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi-maximum likelihood approach for large, approximate dynamic factor models. Review of Economics and Statistics, 94(4), 1014-1024. doi:10.1162/REST_a_00225
Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160. doi:10.1002/jae.2306