relate.levels {vegclust} | R Documentation |
Relates two clustering level results
Description
Analyzes how lower level clusters are assigned into upper level ones. The analysis is made for several number of clusters.
Usage
relate.levels(
lower,
upper,
defuzzify = FALSE,
excludeFixed = FALSE,
verbose = FALSE,
...
)
Arguments
lower |
A list of objects of type |
upper |
A list of objects of type |
defuzzify |
A logical flag used to indicate whether the result of calling |
excludeFixed |
A logical used to indicate whether fixed clusters should be excluded from the comparison of levels. |
verbose |
A flag used to ask for extra screen output. |
... |
Additional parameters for function |
Details
For each pair of vegclust
(or vegclass
) objects in upper
and lower
, the function calls function crossmemb
and then, if asked, deffuzifies the resulting memberships (by calling function defuzzify
) and several quantities are calculated (see 'value' section).
Value
A list with several data frames (see below). In each of them, the rows are items of upper
and columns are items of lower
. The names of rows and columns are the number of clusters of each vegclust
(or vegclass
) object.
nnoise
: The number of low level clusters that are assigned to the Noise class (forupper
objects using Noise clustering).maxnoise
: The maximum membership value of low level clusters to the Noise class (forupper
objects using Noise clustering).minmaxall
: The minimum value (across upper level clusters) of the maximum membership value observed among the lower level clusters.minallsize
: The minimum value (across upper level clusters) of the sum of membership values across lower level clusters.empty
: The number of upper level clusters (mobile or fixed) that do not have any member among the lower level clusters.
Author(s)
Miquel De Cáceres, CREAF
See Also
Examples
## Loads data
data(wetland)
## This equals the chord transformation
wetland.chord <- as.data.frame(sweep(as.matrix(wetland), 1,
sqrt(rowSums(as.matrix(wetland)^2)), "/"))
## Create noise clustering from hierarchical clustering at different number of cluster
wetland.hc <- hclust(dist(wetland.chord),method="ward")
wetland.nc1 <- hier.vegclust(wetland.chord, wetland.hc, cmin=2, cmax=6, m = 1.2,
dnoise=0.75, method="NC")
wetland.nc2 <- hier.vegclust(wetland.chord, wetland.hc, cmin=2, cmax=4, m = 1.2,
dnoise=0.85, method="NC")
## Studies the assignment of levels
relate.levels(wetland.nc1, wetland.nc2, method="cut")