body_fat {ODRF} | R Documentation |
Body Fat Prediction Dataset
Description
Lists estimates of the percentage of body fat determined by underwater weighing and various body circumference measurements for 252 men. Accurate measurement of body fat is inconvenient/costly and it is desirable to have easy methods of estimating body fat that are not inconvenient/costly.
Format
A data frame with 252 rows and 15 covariate variables and 1 response variable
Details
The variables listed below, from left to right, are:
Density determined from underwater weighing
Age (years)
Weight (lbs)
Height (inches)
Neck circumference (cm)
Chest circumference (cm)
Abdomen 2 circumference (cm)
Hip circumference (cm)
Thigh circumference (cm)
Knee circumference (cm)
Ankle circumference (cm)
Biceps (extended) circumference (cm)
Forearm circumference (cm)
Wrist circumference (cm)
Source
https://www.kaggle.com/datasets/fedesoriano/body-fat-prediction-dataset
References
Bailey, Covert (1994). Smart Exercise: Burning Fat, Getting Fit, Houghton-Mifflin Co., Boston, pp. 179-186.
See Also
Examples
data(body_fat)
set.seed(221212)
train <- sample(1:252, 60)
train_data <- data.frame(body_fat[train, ])
test_data <- data.frame(body_fat[-train, ])
forest <- ODRF(Density ~ ., train_data, split = "mse", parallel = FALSE, ntrees = 50)
pred <- predict(forest, test_data[, -1])
# estimation error
mean((pred - test_data[, 1])^2)
tree <- ODT(Density ~ ., train_data, split = "mse")
pred <- predict(tree, test_data[, -1])
# estimation error
mean((pred - test_data[, 1])^2)