%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname manydist %global packver 0.4.3 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.4.3 Release: 1%{?dist}%{?buildtag} Summary: Unbiased Distances for Mixed-Type Data License: GPL-3 URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 4.1.0 Requires: R-core >= 4.1.0 BuildArch: noarch BuildRequires: R-CRAN-entropy BuildRequires: R-CRAN-Matrix BuildRequires: R-CRAN-fastDummies BuildRequires: R-CRAN-data.table BuildRequires: R-CRAN-philentropy BuildRequires: R-CRAN-cluster BuildRequires: R-CRAN-purrr BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-forcats BuildRequires: R-CRAN-tibble BuildRequires: R-CRAN-magrittr BuildRequires: R-CRAN-fpc BuildRequires: R-CRAN-recipes BuildRequires: R-CRAN-rsample BuildRequires: R-CRAN-Rfast BuildRequires: R-CRAN-readr BuildRequires: R-CRAN-distances Requires: R-CRAN-entropy Requires: R-CRAN-Matrix Requires: R-CRAN-fastDummies Requires: R-CRAN-data.table Requires: R-CRAN-philentropy Requires: R-CRAN-cluster Requires: R-CRAN-purrr Requires: R-CRAN-dplyr Requires: R-CRAN-tidyr Requires: R-CRAN-forcats Requires: R-CRAN-tibble Requires: R-CRAN-magrittr Requires: R-CRAN-fpc Requires: R-CRAN-recipes Requires: R-CRAN-rsample Requires: R-CRAN-Rfast Requires: R-CRAN-readr Requires: R-CRAN-distances %description A comprehensive framework for calculating unbiased distances in datasets containing mixed-type variables (numerical and categorical). The package implements a general formulation that ensures multivariate additivity and commensurability, meaning that variables contribute equally to the overall distance regardless of their type, scale, or distribution. Supports multiple distance measures including Gower's distance, Euclidean distance, Manhattan distance, and various categorical variable distances such as simple matching, Eskin, occurrence frequency, and association-based distances. Provides tools for variable scaling (standard deviation, range, robust range, and principal component scaling), and handles both independent and association-based category dissimilarities. Implements methods to correct for biases that typically arise from different variable types, distributions, and number of categories. Particularly useful for cluster analysis, data visualization, and other distance-based methods when working with mixed data. Methods based on van de Velden et al. (2024) "Unbiased mixed variables distance". %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}