ggprentice {survstan} | R Documentation |
The Generalized Gamma Distribution (Prentice's alternative parametrization)
Description
Probability function, distribution function, quantile function and random generation for the distribution with parameters mu, sigma and varphi.
Usage
dggprentice(x, mu, sigma, varphi, log = FALSE)
pggprentice(q, mu = 0, sigma = 1, varphi, lower.tail = TRUE, log.p = FALSE)
qggprentice(p, mu = 0, sigma = 1, varphi, lower.tail = TRUE, log.p = FALSE)
rggprentice(n, mu = 0, sigma = 1, varphi, ...)
Arguments
x |
vector of (non-negative integer) quantiles. |
mu |
location parameter of the distribution. |
sigma |
scale parameter of the distribution (sigma > 0). |
varphi |
shape parameter of the distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
q |
vector of quantiles. |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of random values to return. |
... |
further arguments passed to other methods. |
Details
Probability density function:
f(x | \mu, \sigma, \varphi) =
\begin{cases}
\frac{|\varphi|(\varphi^{-2})^{\varphi^{-2}}}{\sigma x\Gamma(\varphi^{-2})}\exp\{\varphi^{-2}[\varphi w - \exp(\varphi w)]\}I_{[0, \infty)}(x), & \varphi \neq 0 \\
\frac{1}{\sqrt{2\pi}x\sigma}\exp\left\{-\frac{1}{2}\left(\frac{log(x)-\mu}{\sigma}\right)^2\right\}I_{[0, \infty)}(x), & \varphi = 0
\end{cases}
where w = \frac{\log(x) - \mu}{\sigma}
, for -\infty < \mu < \infty
, \sigma>0
and -\infty < \varphi < \infty
.
Distribution function:
F(x|\mu, \sigma, \varphi) =
\begin{cases}
F_{G}(y|1/\varphi^2, 1), & \varphi > 0 \\
1-F_{G}(y|1/\varphi^2, 1), & \varphi < 0 \\
F_{LN}(x|\mu, \sigma), & \varphi = 0
\end{cases}
where y = \displaystyle\left(\frac{x}{\sigma}\right)^\varphi
,
F_{G}(\cdot|\nu, 1)
is the distribution function of
a gamma distribution with shape parameter 1/\varphi^2
and scale
parameter equals to 1, and F_{LN}(x|\mu, \sigma)
corresponds to the
distribution function of a lognormal distribution with location parameter
\mu
and scale parameter \sigma
.
Value
dggprentice gives the (log) probability function, pggprentice gives the (log) distribution function, qggprentice gives the quantile function, and rggprentice generates random deviates.