%global __brp_check_rpaths %{nil} %global __requires_exclude ^libmpi %global packname visvaR %global packver 1.0.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 1.0.0 Release: 1%{?dist}%{?buildtag} Summary: Shiny-Based Statistical Solutions for Agricultural Research License: AGPL (>= 3) URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel Requires: R-core BuildArch: noarch BuildRequires: R-CRAN-agricolae BuildRequires: R-CRAN-bslib BuildRequires: R-CRAN-corrplot BuildRequires: R-CRAN-flextable BuildRequires: R-CRAN-ggcorrplot BuildRequires: R-CRAN-ggplot2 BuildRequires: R-CRAN-officer BuildRequires: R-CRAN-patchwork BuildRequires: R-CRAN-shiny BuildRequires: R-CRAN-tibble BuildRequires: R-CRAN-tidyr BuildRequires: R-CRAN-rlang BuildRequires: R-CRAN-dplyr BuildRequires: R-CRAN-DT BuildRequires: R-CRAN-readxl BuildRequires: R-CRAN-htmltools BuildRequires: R-utils BuildRequires: R-stats BuildRequires: R-graphics BuildRequires: R-grDevices Requires: R-CRAN-agricolae Requires: R-CRAN-bslib Requires: R-CRAN-corrplot Requires: R-CRAN-flextable Requires: R-CRAN-ggcorrplot Requires: R-CRAN-ggplot2 Requires: R-CRAN-officer Requires: R-CRAN-patchwork Requires: R-CRAN-shiny Requires: R-CRAN-tibble Requires: R-CRAN-tidyr Requires: R-CRAN-rlang Requires: R-CRAN-dplyr Requires: R-CRAN-DT Requires: R-CRAN-readxl Requires: R-CRAN-htmltools Requires: R-utils Requires: R-stats Requires: R-graphics Requires: R-grDevices %description Visualize Variance is an intuitive 'shiny' applications tailored for agricultural research data analysis, including one-way and two-way analysis of variance, correlation, and other essential statistical tools. Users can easily upload their datasets, perform analyses, and download the results as a well-formatted document, streamlining the process of data analysis and reporting in agricultural research.The experimental design methods are based on classical work by Fisher (1925) and Scheffe (1959). The correlation visualization approaches follow methods developed by Wei & Simko (2021) and Friendly (2002) . %prep %setup -q -c -n %{packname} # fix end of executable files find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; # prevent binary stripping [ -d %{packname}/src ] && find %{packname}/src -type f -exec \ sed -i 's@/usr/bin/strip@/usr/bin/true@g' {} \; || true [ -d %{packname}/src ] && find %{packname}/src/Make* -type f -exec \ sed -i 's@-g0@@g' {} \; || true # don't allow local prefix in executable scripts find -type f -executable -exec sed -Ei 's@#!( )*/usr/local/bin@#!/usr/bin@g' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css # remove buildroot from installed files find %{buildroot}%{rlibdir} -type f -exec sed -i "s@%{buildroot}@@g" {} \; %files %{rlibdir}/%{packname}