PPC-test-statistics {bayesplot} | R Documentation |
PPC test statistics
Description
The distribution of a (test) statistic T(yrep)
, or a pair of
(test) statistics, over the simulated datasets in yrep
, compared to the
observed value T(y)
computed from the data y
. See the
Plot Descriptions and Details sections, below, as
well as Gabry et al. (2019).
NOTE: Although the default test statistic is the mean, this is unlikely to detect anything interesting in most cases. In general we recommend using some other test statistic as discussed in Section 5 of Gabry et al. (2019).
Usage
ppc_stat(
y,
yrep,
stat = "mean",
...,
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE
)
ppc_stat_grouped(
y,
yrep,
group,
stat = "mean",
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
breaks = NULL,
freq = TRUE
)
ppc_stat_freqpoly(
y,
yrep,
stat = "mean",
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
freq = TRUE
)
ppc_stat_freqpoly_grouped(
y,
yrep,
group,
stat = "mean",
...,
facet_args = list(),
binwidth = NULL,
bins = NULL,
freq = TRUE
)
ppc_stat_2d(y, yrep, stat = c("mean", "sd"), ..., size = 2.5, alpha = 0.7)
ppc_stat_data(y, yrep, group = NULL, stat)
Arguments
y |
A vector of observations. See Details. |
yrep |
An |
stat |
A single function or a string naming a function, except for the 2D plot which requires a vector of exactly two names or functions. In all cases the function(s) should take a vector input and return a scalar statistic. If specified as a string (or strings) then the legend will display the function name(s). If specified as a function (or functions) then generic naming is used in the legend. |
... |
Currently unused. |
binwidth |
Passed to |
bins |
Passed to |
breaks |
Passed to |
freq |
For histograms, |
group |
A grouping variable of the same length as |
facet_args |
A named list of arguments (other than |
size , alpha |
For the 2D plot only, arguments passed to
|
Details
For Binomial data, the plots may be more useful if the input contains the "success" proportions (not discrete "success" or "failure" counts).
Value
The plotting functions return a ggplot object that can be further
customized using the ggplot2 package. The functions with suffix
_data()
return the data that would have been drawn by the plotting
function.
Plot Descriptions
ppc_stat()
,ppc_stat_freqpoly()
-
A histogram or frequency polygon of the distribution of a statistic computed by applying
stat
to each dataset (row) inyrep
. The value of the statistic in the observed data,stat(y)
, is overlaid as a vertical line. More details and example usage ofppc_stat()
can be found in Gabry et al. (2019). ppc_stat_grouped()
,ppc_stat_freqpoly_grouped()
-
The same as
ppc_stat()
andppc_stat_freqpoly()
, but a separate plot is generated for each level of a grouping variable. More details and example usage ofppc_stat_grouped()
can be found in Gabry et al. (2019). ppc_stat_2d()
-
A scatterplot showing the joint distribution of two statistics computed over the datasets (rows) in
yrep
. The value of the statistics in the observed data is overlaid as large point.
References
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. J. R. Stat. Soc. A, 182: 389-402. doi:10.1111/rssa.12378. (journal version, arXiv preprint, code on GitHub)
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian Data Analysis. Chapman & Hall/CRC Press, London, third edition. (Ch. 6)
See Also
Other PPCs:
PPC-censoring
,
PPC-discrete
,
PPC-distributions
,
PPC-errors
,
PPC-intervals
,
PPC-loo
,
PPC-overview
,
PPC-scatterplots
Examples
y <- example_y_data()
yrep <- example_yrep_draws()
ppc_stat(y, yrep, stat = "median")
ppc_stat(y, yrep, stat = "sd") + legend_none()
# use your own function for the 'stat' argument
color_scheme_set("brightblue")
q25 <- function(y) quantile(y, 0.25)
ppc_stat(y, yrep, stat = "q25") # legend includes function name
# can define the function in the 'stat' argument instead of
# using its name but then the legend doesn't include the function name
ppc_stat(y, yrep, stat = function(y) quantile(y, 0.25))
# plots by group
color_scheme_set("teal")
group <- example_group_data()
ppc_stat_grouped(y, yrep, group, stat = "median")
ppc_stat_grouped(y, yrep, group, stat = "mad") + yaxis_text()
# force y-axes to have same scales, allow x axis to vary
ppc_stat_grouped(y, yrep, group, facet_args = list(scales = "free_x")) + yaxis_text()
# the freqpoly plots use frequency polygons instead of histograms
ppc_stat_freqpoly(y, yrep, stat = "median")
ppc_stat_freqpoly_grouped(y, yrep, group, stat = "median", facet_args = list(nrow = 2))
# ppc_stat_2d allows 2 statistics and makes a scatterplot
bayesplot_theme_set(ggplot2::theme_linedraw())
color_scheme_set("viridisE")
ppc_stat_2d(y, yrep, stat = c("mean", "sd"))
bayesplot_theme_set(ggplot2::theme_grey())
color_scheme_set("brewer-Paired")
ppc_stat_2d(y, yrep, stat = c("median", "mad"))
# reset aesthetics
color_scheme_set()
bayesplot_theme_set()