%global __brp_check_rpaths %{nil} %global packname quantkriging %global packver 0.1.0 %global rlibdir /usr/local/lib/R/library Name: R-CRAN-%{packname} Version: 0.1.0 Release: 3%{?dist}%{?buildtag} Summary: Quantile Kriging for Stochastic Simulations with Replication License: MIT + file LICENSE URL: https://cran.r-project.org/package=%{packname} Source0: %{url}&version=%{packver}#/%{packname}_%{packver}.tar.gz BuildRequires: R-devel >= 3.6.0 Requires: R-core >= 3.6.0 BuildArch: noarch BuildRequires: R-CRAN-ggplot2 >= 3.2.1 BuildRequires: R-CRAN-reshape2 >= 1.4.3 BuildRequires: R-Matrix >= 1.2.17 BuildRequires: R-CRAN-hetGP >= 1.1.1 BuildRequires: R-stats Requires: R-CRAN-ggplot2 >= 3.2.1 Requires: R-CRAN-reshape2 >= 1.4.3 Requires: R-Matrix >= 1.2.17 Requires: R-CRAN-hetGP >= 1.1.1 Requires: R-stats %description A re-implementation of quantile kriging. Quantile kriging was described by Plumlee and Tuo (2014) . With computational savings when dealing with replication from the recent paper by Binois, Gramacy, and Ludovski (2018) it is now possible to apply quantile kriging to a wider class of problems. In addition to fitting the model, other useful tools are provided such as the ability to automatically perform leave-one-out cross validation. %prep %setup -q -c -n %{packname} find -type f -executable -exec grep -Iq . {} \; -exec sed -i -e '$a\' {} \; %build %install mkdir -p %{buildroot}%{rlibdir} %{_bindir}/R CMD INSTALL -l %{buildroot}%{rlibdir} %{packname} test -d %{packname}/src && (cd %{packname}/src; rm -f *.o *.so) rm -f %{buildroot}%{rlibdir}/R.css %files %{rlibdir}/%{packname}