simulated_function {GPEMR}R Documentation

Simulate and Estimate Parameters of Growth Models

Description

This function simulates data for independent trajectories based on specified growth models and estimates the model parameters. The simulation can be performed for several models, including Logistic, Exponential, Theta-logistic, Von Bertalanffy, and Gompertz. It also allows for calculation of global and local parameter estimates using the negative log-likelihood function.

Usage

simulated_function(
  time_points = 1:10,
  n = 10,
  window_size = 3,
  model,
  parameter,
  sigma2 = 2,
  rho = 0.5,
  x_0 = 10,
  cov = FALSE,
  Plot_est = FALSE
)

Arguments

time_points

A numeric vector representing the time points for which the data should be simulated.

n

An integer specifying the number of independent trajectories to simulate.

window_size

An integer specifying the window size for local estimation.

model

A character string specifying the growth model to use. Options include 'Logistic', 'Exponential', 'Theta-logistic', 'Von-bertalanffy', and 'Gompertz'.

parameter

A list of model-specific parameters required for the mean function.

sigma2

A numeric value for the variance of the process.

rho

A numeric value for the correlation coefficient.

x_0

A numeric value for the initial state.

cov

A logical value indicating whether to print the covariance matrix. Default is FALSE.

Plot_est

A logical value indicating whether to plot the parameter estimates. Default is FALSE.

Details

The function first checks if the parameters are provided as a list. It then calculates the mean function based on the specified model and forms the covariance matrix. Multivariate normal data for the specified number of trajectories is generated using the mvtnorm::rmvnorm function. The negative log-likelihood function is defined and minimized using the optim function to estimate global parameters. Local parameter estimation is performed using a sliding window approach.

The available models are:

Value

A list containing the simulated data, global parameter estimates, global covariance matrix, local parameter estimates, and optionally local covariance matrices.

Examples

res <- simulated_function(
 model = 'Logistic',
 parameter = list(r = 0.2, K = 100),
 cov = TRUE,
 Plot_est = TRUE)


[Package GPEMR version 0.1.0 Index]