unitCube_BFN3-class {multIntTestFunc} | R Documentation |
An S4 class to represent the function \prod^{n}_{i=1} T_{\nu(i)}(2x_i-1)
on [0,1]^n
Description
Implementation of the function
f \colon [0,1]^n \to (-\infty,\infty),\, \vec{x} \mapsto f(\vec{x}) = \prod^{n}_{i=1} T_{\nu(i)}(2x_i-1)
,
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain C_n = [0,1]^n
and T_k
is the Chebyshev polynomial of degree k
and \nu(i) = (i \mod 4) + 1
.
The integral is known to be
\int_{C_n} f(\vec{x}) d\vec{x} = 0.
Details
The instance needs to be created with one parameter representing the dimension n
.
Slots
dim
An integer that captures the dimension
Author(s)
Klaus Herrmann
Examples
n <- as.integer(3)
f <- new("unitCube_BFN3",dim=n)
[Package multIntTestFunc version 0.3.0 Index]