// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Ported to Java from Mozilla's version of V8-dtoa by Hannes Wallnoefer. // The original revision was 67d1049b0bf9 from the mozilla-central tree. // Ported to C# from the Mozilla "Rhino" project by Anders Rundgren. using System.Diagnostics; /// /// This is an internal part of a ES6 compatible JSON Number serializer. /// namespace Org.Webpki.Es6NumberSerialization { // Helper functions for doubles. class NumberDoubleHelper { const long kSignMask = -0x8000000000000000L; const long kExponentMask = 0x7FF0000000000000L; const long kSignificandMask = 0x000FFFFFFFFFFFFFL; const long kHiddenBit = 0x0010000000000000L; public static NumberDiyFp AsDiyFp(long d64) { Debug.Assert(!IsSpecial(d64)); return new NumberDiyFp(Significand(d64), Exponent(d64)); } // this->Significand() must not be 0. public static NumberDiyFp AsNormalizedDiyFp(long d64) { long f = Significand(d64); int e = Exponent(d64); Debug.Assert(f != 0); // The current double could be a denormal. while ((f & kHiddenBit) == 0) { f <<= 1; e--; } // Do the final shifts in one go. Don't forget the hidden bit (the '-1'). f <<= NumberDiyFp.kSignificandSize - kSignificandSize - 1; e -= NumberDiyFp.kSignificandSize - kSignificandSize - 1; return new NumberDiyFp(f, e); } public static int Exponent(long d64) { if (IsDenormal(d64)) return kDenormalExponent; int biased_e = (int)(((d64 & kExponentMask) >> kSignificandSize) & 0xffffffffL); return biased_e - kExponentBias; } public static long Significand(long d64) { long significand = d64 & kSignificandMask; if (!IsDenormal(d64)) { return significand + kHiddenBit; } else { return significand; } } // Returns true if the double is a denormal. public static bool IsDenormal(long d64) { return (d64 & kExponentMask) == 0L; } // We consider denormals not to be special. // Hence only Infinity and NaN are special. public static bool IsSpecial(long d64) { return (d64 & kExponentMask) == kExponentMask; } public static bool IsNan(long d64) { return ((d64 & kExponentMask) == kExponentMask) && ((d64 & kSignificandMask) != 0L); } public static bool IsInfinite(long d64) { return ((d64 & kExponentMask) == kExponentMask) && ((d64 & kSignificandMask) == 0L); } public static int Sign(long d64) { return (d64 & kSignMask) == 0L ? 1 : -1; } // Returns the two boundaries of first argument. // The bigger boundary (m_plus) is normalized. The lower boundary has the same // exponent as m_plus. public static void NormalizedBoundaries(long d64, NumberDiyFp m_minus, NumberDiyFp m_plus) { NumberDiyFp v = AsDiyFp(d64); bool significand_is_zero = (v.F() == kHiddenBit); m_plus.SetF((v.F() << 1) + 1); m_plus.SetE(v.E() - 1); m_plus.Normalize(); if (significand_is_zero && v.E() != kDenormalExponent) { // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but // at a distance of 1e8. // The only exception is for the smallest normal: the largest denormal is // at the same distance as its successor. // Note: denormals have the same exponent as the smallest normals. m_minus.SetF((v.F() << 2) - 1); m_minus.SetE(v.E() - 2); } else { m_minus.SetF((v.F() << 1) - 1); m_minus.SetE(v.E() - 1); } m_minus.SetF(m_minus.F() << (m_minus.E() - m_plus.E())); m_minus.SetE(m_plus.E()); } private const int kSignificandSize = 52; // Excludes the hidden bit. private const int kExponentBias = 0x3FF + kSignificandSize; private const int kDenormalExponent = -kExponentBias + 1; } }