Point Cloud Library (PCL)
1.9.1
ml
include
pcl
ml
impl
dt
decision_forest_trainer.hpp
1
/*
2
* Software License Agreement (BSD License)
3
*
4
* Point Cloud Library (PCL) - www.pointclouds.org
5
* Copyright (c) 2010-2011, Willow Garage, Inc.
6
*
7
* All rights reserved.
8
*
9
* Redistribution and use in source and binary forms, with or without
10
* modification, are permitted provided that the following conditions
11
* are met:
12
*
13
* * Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer.
15
* * Redistributions in binary form must reproduce the above
16
* copyright notice, this list of conditions and the following
17
* disclaimer in the documentation and/or other materials provided
18
* with the distribution.
19
* * Neither the name of Willow Garage, Inc. nor the names of its
20
* contributors may be used to endorse or promote products derived
21
* from this software without specific prior written permission.
22
*
23
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34
* POSSIBILITY OF SUCH DAMAGE.
35
*
36
*/
37
38
#ifndef PCL_ML_DT_DECISION_FOREST_TRAINER_HPP_
39
#define PCL_ML_DT_DECISION_FOREST_TRAINER_HPP_
40
41
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
42
template
<
class
FeatureType,
class
DataSet,
class
LabelType,
class
ExampleIndex,
class
NodeType>
43
pcl::DecisionForestTrainer<FeatureType, DataSet, LabelType, ExampleIndex, NodeType>::DecisionForestTrainer
()
44
: num_of_trees_to_train_ (1)
45
, decision_tree_trainer_ ()
46
{
47
48
}
49
50
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
51
template
<
class
FeatureType,
class
DataSet,
class
LabelType,
class
ExampleIndex,
class
NodeType>
52
pcl::DecisionForestTrainer<FeatureType, DataSet, LabelType, ExampleIndex, NodeType>::~DecisionForestTrainer
()
53
{
54
55
}
56
57
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
58
template
<
class
FeatureType,
class
DataSet,
class
LabelType,
class
ExampleIndex,
class
NodeType>
59
void
60
pcl::DecisionForestTrainer<FeatureType, DataSet, LabelType, ExampleIndex, NodeType>::train
(
61
pcl::DecisionForest<NodeType>
& forest)
62
{
63
for
(
size_t
tree_index = 0; tree_index < num_of_trees_to_train_; ++tree_index)
64
{
65
pcl::DecisionTree<NodeType>
tree;
66
decision_tree_trainer_.train (tree);
67
68
forest.push_back (tree);
69
}
70
}
71
72
#endif
pcl::DecisionTree
Class representing a decision tree.
Definition:
decision_tree.h:51
pcl::DecisionForest
Class representing a decision forest.
Definition:
decision_forest.h:53
pcl::DecisionForestTrainer::train
void train(DecisionForest< NodeType > &forest)
Trains a decision forest using the set training data and settings.
Definition:
decision_forest_trainer.hpp:60
pcl::DecisionForestTrainer::~DecisionForestTrainer
virtual ~DecisionForestTrainer()
Destructor.
Definition:
decision_forest_trainer.hpp:52
pcl::DecisionForestTrainer::DecisionForestTrainer
DecisionForestTrainer()
Constructor.
Definition:
decision_forest_trainer.hpp:43