class SolarEventCalculator
Public Class Methods
new(date, latitude, longitude)
click to toggle source
# File lib/solareventcalculator.rb, line 7 def initialize(date, latitude, longitude) @date = date @latitude = latitude @longitude = longitude end
Public Instance Methods
compute_astronomical_sunrise(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 186 def compute_astronomical_sunrise(timezone) put_in_timezone(compute_utc_solar_event(108, true), timezone) end
compute_astronomical_sunset(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 190 def compute_astronomical_sunset(timezone) put_in_timezone(compute_utc_solar_event(108, false), timezone) end
compute_civil_sunrise(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 162 def compute_civil_sunrise(timezone) put_in_timezone(compute_utc_solar_event(96, true), timezone) end
compute_civil_sunset(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 166 def compute_civil_sunset(timezone) put_in_timezone(compute_utc_solar_event(96, false), timezone) end
compute_cosine_sun_declination(sinSunDeclination)
click to toggle source
# File lib/solareventcalculator.rb, line 63 def compute_cosine_sun_declination(sinSunDeclination) cosDec = BigDecimal(Math.cos(Math.asin(sinSunDeclination)).to_s) cosDec.round(4) end
compute_cosine_sun_local_hour(sunTrueLong, zenith)
click to toggle source
# File lib/solareventcalculator.rb, line 68 def compute_cosine_sun_local_hour(sunTrueLong, zenith) cosZenith = BigDecimal(Math.cos(degrees_as_rads(BigDecimal(zenith.to_s))).to_s) sinLatitude = BigDecimal(Math.sin(degrees_as_rads(@latitude)).to_s) cosLatitude = BigDecimal(Math.cos(degrees_as_rads(@latitude)).to_s) sinSunDeclination = compute_sin_sun_declination(sunTrueLong) top = cosZenith - (sinSunDeclination * sinLatitude) bottom = compute_cosine_sun_declination(sinSunDeclination) * cosLatitude cosLocalHour = top / bottom cosLocalHour.round(4) end
compute_lnghour()
click to toggle source
# File lib/solareventcalculator.rb, line 13 def compute_lnghour lngHour = @longitude / BigDecimal("15") lngHour.round(4) end
compute_local_hour_angle(cosSunLocalHour, isSunrise)
click to toggle source
# File lib/solareventcalculator.rb, line 81 def compute_local_hour_angle(cosSunLocalHour, isSunrise) acosH = BigDecimal(Math.acos(cosSunLocalHour).to_s) acosHDegrees = rads_as_degrees(acosH) localHourAngle = (isSunrise) ? BigDecimal("360") - acosHDegrees : acosHDegrees localHourAngle = localHourAngle / BigDecimal("15") localHourAngle.round(4) end
compute_local_mean_time(sunTrueLong, longHour, t, sunLocalHour)
click to toggle source
# File lib/solareventcalculator.rb, line 90 def compute_local_mean_time(sunTrueLong, longHour, t, sunLocalHour) h = sunLocalHour ra = put_ra_in_correct_quadrant(sunTrueLong) parens = BigDecimal("0.06571") * t time = h + ra - parens - BigDecimal("6.622") utcTime = time - longHour utcTime = put_in_range(utcTime, 0, 24, 24) utcTime.round(4) end
compute_longitude_hour(isSunrise)
click to toggle source
# File lib/solareventcalculator.rb, line 18 def compute_longitude_hour(isSunrise) minuend = (isSunrise) ? BigDecimal("6") : BigDecimal("18") longHour = @date.yday + ((minuend - compute_lnghour) / BigDecimal("24")) longHour.round(4) end
compute_nautical_sunrise(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 178 def compute_nautical_sunrise(timezone) put_in_timezone(compute_utc_solar_event(102, true), timezone) end
compute_nautical_sunset(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 182 def compute_nautical_sunset(timezone) put_in_timezone(compute_utc_solar_event(102, false), timezone) end
compute_official_sunrise(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 170 def compute_official_sunrise(timezone) put_in_timezone(compute_utc_solar_event(90.8333, true), timezone) end
compute_official_sunset(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 174 def compute_official_sunset(timezone) put_in_timezone(compute_utc_solar_event(90.8333, false), timezone) end
compute_right_ascension(sunTrueLong)
click to toggle source
# File lib/solareventcalculator.rb, line 40 def compute_right_ascension(sunTrueLong) tanL = BigDecimal(Math.tan(degrees_as_rads(sunTrueLong).to_f).to_s) ra = rads_as_degrees(BigDecimal(Math.atan(BigDecimal("0.91764") * tanL).to_s)) ra = put_in_range(ra, 0, 360, 360) ra.round(4) end
compute_sin_sun_declination(sunTrueLong)
click to toggle source
# File lib/solareventcalculator.rb, line 57 def compute_sin_sun_declination(sunTrueLong) sinL = BigDecimal(Math.sin(degrees_as_rads(sunTrueLong).to_f).to_s) sinDec = sinL * BigDecimal("0.39782") sinDec.round(4) end
compute_sun_mean_anomaly(longHour)
click to toggle source
# File lib/solareventcalculator.rb, line 24 def compute_sun_mean_anomaly(longHour) constant = BigDecimal("0.9856") ((longHour * constant) - BigDecimal("3.289")).round(4) end
compute_sun_true_longitude(meanAnomaly)
click to toggle source
# File lib/solareventcalculator.rb, line 29 def compute_sun_true_longitude(meanAnomaly) mAsRads = degrees_as_rads(meanAnomaly) sinM = BigDecimal(Math.sin(mAsRads.to_f).to_s) sinTwoM = BigDecimal(Math.sin((2 * mAsRads).to_f).to_s) firstParens = BigDecimal("1.916") * sinM secondParens = BigDecimal("0.020") * sinTwoM trueLong = meanAnomaly + firstParens + secondParens + BigDecimal("282.634") trueLong = put_in_range(trueLong, 0, 360, 360) trueLong.round(4) end
compute_utc_astronomical_sunrise()
click to toggle source
# File lib/solareventcalculator.rb, line 150 def compute_utc_astronomical_sunrise convert_to_datetime(compute_utc_solar_event(108, true)) end
compute_utc_astronomical_sunset()
click to toggle source
# File lib/solareventcalculator.rb, line 154 def compute_utc_astronomical_sunset convert_to_datetime(compute_utc_solar_event(108, false)) end
compute_utc_civil_sunrise()
click to toggle source
# File lib/solareventcalculator.rb, line 126 def compute_utc_civil_sunrise convert_to_datetime(compute_utc_solar_event(96, true)) end
compute_utc_civil_sunset()
click to toggle source
# File lib/solareventcalculator.rb, line 130 def compute_utc_civil_sunset convert_to_datetime(compute_utc_solar_event(96, false)) end
compute_utc_nautical_sunrise()
click to toggle source
# File lib/solareventcalculator.rb, line 142 def compute_utc_nautical_sunrise convert_to_datetime(compute_utc_solar_event(102, true)) end
compute_utc_nautical_sunset()
click to toggle source
# File lib/solareventcalculator.rb, line 146 def compute_utc_nautical_sunset convert_to_datetime(compute_utc_solar_event(102, false)) end
compute_utc_official_sunrise()
click to toggle source
# File lib/solareventcalculator.rb, line 134 def compute_utc_official_sunrise convert_to_datetime(compute_utc_solar_event(90.8333, true)) end
compute_utc_official_sunset()
click to toggle source
# File lib/solareventcalculator.rb, line 138 def compute_utc_official_sunset convert_to_datetime(compute_utc_solar_event(90.8333, false)) end
compute_utc_solar_event(zenith, isSunrise)
click to toggle source
# File lib/solareventcalculator.rb, line 102 def compute_utc_solar_event(zenith, isSunrise) longHour = compute_lnghour eventLongHour = compute_longitude_hour(isSunrise) meanAnomaly = compute_sun_mean_anomaly(eventLongHour) sunTrueLong = compute_sun_true_longitude(meanAnomaly) cosineSunLocalHour = compute_cosine_sun_local_hour(sunTrueLong, zenith) if(cosineSunLocalHour > BigDecimal("1") || cosineSunLocalHour < BigDecimal("-1")) return nil end sunLocalHour = compute_local_hour_angle(cosineSunLocalHour, isSunrise) localMeanTime = compute_local_mean_time(sunTrueLong, longHour, eventLongHour, sunLocalHour) timeParts = localMeanTime.to_f.to_s.split('.') mins = BigDecimal("." + timeParts[1]) * BigDecimal("60") mins = mins.truncate() mins = pad_minutes(mins.to_i) hours = timeParts[0] Time.utc(@date.year, @date.mon, @date.mday, hours, pad_minutes(mins.to_i)) end
convert_to_datetime(time)
click to toggle source
# File lib/solareventcalculator.rb, line 158 def convert_to_datetime(time) DateTime.parse("#{@date.strftime}T#{time.hour}:#{time.min}:00+0000") unless time == nil end
degrees_as_rads(degrees)
click to toggle source
# File lib/solareventcalculator.rb, line 232 def degrees_as_rads(degrees) pi = BigDecimal(Math::PI.to_s) radian = pi / BigDecimal("180") degrees * radian end
get_utc_offset(timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 208 def get_utc_offset(timezone) tz = TZInfo::Timezone.get(timezone) noonUTC = Time.gm(@date.year, @date.mon, @date.mday, 12, 0) tz.utc_to_local(noonUTC) - noonUTC end
pad_minutes(minutes)
click to toggle source
# File lib/solareventcalculator.rb, line 214 def pad_minutes(minutes) if(minutes < 10) "0" + minutes.to_s else minutes end end
put_in_range(number, lower, upper, adjuster)
click to toggle source
# File lib/solareventcalculator.rb, line 222 def put_in_range(number, lower, upper, adjuster) if number > upper then number -= adjuster elsif number < lower then number += adjuster else number end end
put_in_timezone(utcTime, timezone)
click to toggle source
# File lib/solareventcalculator.rb, line 194 def put_in_timezone(utcTime, timezone) tz = TZInfo::Timezone.get(timezone) # puts "UTCTime #{utcTime}" local = utcTime + get_utc_offset(timezone) # puts "LocalTime #{local}" offset = (get_utc_offset(timezone) / 60 / 60).to_i offset = (offset > 0) ? "+" + offset.to_s : offset.to_s timeInZone = DateTime.parse("#{@date.strftime}T#{local.strftime('%H:%M:%S')}#{offset}") # puts "CALC:timeInZone #{timeInZone}" timeInZone end
put_ra_in_correct_quadrant(sunTrueLong)
click to toggle source
# File lib/solareventcalculator.rb, line 48 def put_ra_in_correct_quadrant(sunTrueLong) lQuadrant = BigDecimal("90") * (sunTrueLong / BigDecimal("90")).floor raQuadrant = BigDecimal("90") * (compute_right_ascension(sunTrueLong) / BigDecimal("90")).floor ra = compute_right_ascension(sunTrueLong) + (lQuadrant - raQuadrant) ra = ra / BigDecimal("15") ra.round(4) end
rads_as_degrees(radians)
click to toggle source
# File lib/solareventcalculator.rb, line 238 def rads_as_degrees(radians) pi = BigDecimal(Math::PI.to_s) degree = BigDecimal("180") / pi radians * degree end