
simple-websocket

Miguel Grinberg

Jan 18, 2025

CONTENTS

1 Getting Started 3
1.1 Installation . 3
1.2 Server Example #1: Flask . 3
1.3 Server Example #2: Aiohttp . 3
1.4 Server Example #3: ASGI . 4
1.5 Client Example #1: Synchronous . 4
1.6 Client Example #2: Asynchronous . 5

2 API Reference 7
2.1 The Server class . 7
2.2 The AioServer class . 8
2.3 The Client class . 10
2.4 The AioClient class . 11
2.5 Exceptions . 12

Index 13

i

ii

simple-websocket

Simple WebSocket server and client for Python.

CONTENTS 1

simple-websocket

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

simple-websocket includes a collection of WebSocket servers and clients for Python, including support for both tra-
ditional and asynchronous (asyncio) workflows. The servers are designed to be integrated into larger web applications
if desired.

1.1 Installation
This package is installed with pip:

pip install simple-websocket

1.2 Server Example #1: Flask
The following example shows how to add a WebSocket route to a Flask application.

from flask import Flask, request
from simple_websocket import Server, ConnectionClosed

app = Flask(__name__)

@app.route('/echo', websocket=True)
def echo():

ws = Server.accept(request.environ)
try:

while True:
data = ws.receive()
ws.send(data)

except ConnectionClosed:
pass

return ''

Integration with web applications using other WSGI frameworks works in a similar way. The only requirement is to
pass the environ dictionary to the Server.accept() method to initiate the WebSocket handshake.

1.3 Server Example #2: Aiohttp
The following example shows how to add a WebSocket route to a web application built with the aiohttp framework.

3

https://flask.palletsprojects.com
https://wsgi.readthedocs.io
https://aiohttp.readthedocs.io

simple-websocket

from aiohttp import web
from simple_websocket import AioServer, ConnectionClosed

app = web.Application()

async def echo(request):
ws = await AioServer.accept(aiohttp=request)
try:

while True:
data = await ws.receive()
await ws.send(data)

except ConnectionClosed:
pass

return web.Response(text='')

app.add_routes([web.get('/echo', echo)])

if __name__ == '__main__':
web.run_app(app, port=5000)

1.4 Server Example #3: ASGI
The next server example shows an asynchronous application that supports the ASGI protocol.

from simple_websocket import AioServer, ConnectionClosed

async def echo(scope, receive, send):
ws = await AioServer.accept(asgi=(scope, receive, send))
try:

while True:
data = await ws.receive()
await ws.send(data)

except ConnectionClosed:
pass

1.5 Client Example #1: Synchronous
The client example that follows can connect to any of the server examples above using a synchronous interface.

from simple_websocket import Client, ConnectionClosed

def main():
ws = Client.connect('ws://localhost:5000/echo')
try:

while True:
data = input('> ')
ws.send(data)
data = ws.receive()
print(f'< {data}')

except (KeyboardInterrupt, EOFError, ConnectionClosed):
ws.close()

(continues on next page)

4 Chapter 1. Getting Started

https://asgi.readthedocs.io

simple-websocket

(continued from previous page)

if __name__ == '__main__':
main()

1.6 Client Example #2: Asynchronous
The next client uses Python’s asyncio framework.

import asyncio
from simple_websocket import AioClient, ConnectionClosed

async def main():
ws = await AioClient.connect('ws://localhost:5000/echo')
try:

while True:
data = input('> ')
await ws.send(data)
data = await ws.receive()
print(f'< {data}')

except (KeyboardInterrupt, EOFError, ConnectionClosed):
await ws.close()

if __name__ == '__main__':
asyncio.run(main())

1.6. Client Example #2: Asynchronous 5

simple-websocket

6 Chapter 1. Getting Started

CHAPTER

TWO

API REFERENCE

2.1 The Server class
class simple_websocket.Server(environ, subprotocols=None, receive_bytes=4096, ping_interval=None,

max_message_size=None, thread_class=None, event_class=None,
selector_class=None)

This class implements a WebSocket server.

Instead of creating an instance of this class directly, use the accept() class method to create individual instances
of the server, each bound to a client request.

classmethod accept(environ, subprotocols=None, receive_bytes=4096, ping_interval=None,
max_message_size=None, thread_class=None, event_class=None,
selector_class=None)

Accept a WebSocket connection from a client.

Parameters

• environ – A WSGI environ dictionary with the request details. Among other things,
this class expects to find the low-level network socket for the connection somewhere in
this dictionary. Since the WSGI specification does not cover where or how to store this
socket, each web server does this in its own different way. Werkzeug, Gunicorn, Eventlet
and Gevent are the only web servers that are currently supported.

• subprotocols – A list of supported subprotocols, or None (the default) to disable sub-
protocol negotiation.

• receive_bytes – The size of the receive buffer, in bytes. The default is 4096.

• ping_interval – Send ping packets to clients at the requested interval in seconds. Set to
None (the default) to disable ping/pong logic. Enable to prevent disconnections when the
line is idle for a certain amount of time, or to detect unresponsive clients and disconnect
them. A recommended interval is 25 seconds.

• max_message_size – The maximum size allowed for a message, in bytes, or None for no
limit. The default is None.

• thread_class – The Thread class to use when creating background threads. The default
is the threading.Thread class from the Python standard library.

• event_class – The Event class to use when creating event objects. The default is the
threading.Event` class from the Python standard library.

• selector_class – The Selector class to use when creating selectors. The default is the
selectors.DefaultSelector class from the Python standard library.

7

simple-websocket

choose_subprotocol(request)
Choose a subprotocol to use for the WebSocket connection.

The default implementation selects the first protocol requested by the client that is accepted by the server.
Subclasses can override this method to implement a different subprotocol negotiation algorithm.

Parameters
request – A Request object.

The method should return the subprotocol to use, or None if no subprotocol is chosen.

close(reason=None, message=None)
Close the WebSocket connection.

Parameters

• reason – A numeric status code indicating the reason of the closure, as defined by the
WebSocket specification. The default is 1000 (normal closure).

• message – A text message to be sent to the other side.

receive(timeout=None)
Receive data over the WebSocket connection.

Parameters
timeout – Amount of time to wait for the data, in seconds. Set to None (the default) to wait
indefinitely. Set to 0 to read without blocking.

The data received is returned, as bytes or str, depending on the type of the incoming message.

send(data)
Send data over the WebSocket connection.

Parameters
data – The data to send. If data is of type bytes, then a binary message is sent. Else, the
message is sent in text format.

subprotocol

The name of the subprotocol chosen for the WebSocket connection.

2.2 The AioServer class
class simple_websocket.AioServer(request, subprotocols=None, receive_bytes=4096, ping_interval=None,

max_message_size=None)
This class implements a WebSocket server.

Instead of creating an instance of this class directly, use the accept() class method to create individual instances
of the server, each bound to a client request.

async classmethod accept(aiohttp=None, asgi=None, sock=None, headers=None, subprotocols=None,
receive_bytes=4096, ping_interval=None, max_message_size=None)

Accept a WebSocket connection from a client.

Parameters

• aiohttp – The request object from aiohttp. If this argument is provided, asgi, sock and
headers must not be set.

• asgi – A (scope, receive, send) tuple from an ASGI request. If this argument is provided,
aiohttp, sock and headers must not be set.

8 Chapter 2. API Reference

simple-websocket

• sock – A connected socket to use. If this argument is provided, aiohttp and asgi must
not be set. The headers argument must be set with the incoming request headers.

• headers – A dictionary with the incoming request headers, when sock is used.

• subprotocols – A list of supported subprotocols, or None (the default) to disable sub-
protocol negotiation.

• receive_bytes – The size of the receive buffer, in bytes. The default is 4096.

• ping_interval – Send ping packets to clients at the requested interval in seconds. Set to
None (the default) to disable ping/pong logic. Enable to prevent disconnections when the
line is idle for a certain amount of time, or to detect unresponsive clients and disconnect
them. A recommended interval is 25 seconds.

• max_message_size – The maximum size allowed for a message, in bytes, or None for no
limit. The default is None.

choose_subprotocol(request)
Choose a subprotocol to use for the WebSocket connection.

The default implementation selects the first protocol requested by the client that is accepted by the server.
Subclasses can override this method to implement a different subprotocol negotiation algorithm.

Parameters
request – A Request object.

The method should return the subprotocol to use, or None if no subprotocol is chosen.

async close(reason=None, message=None)
Close the WebSocket connection.

Parameters

• reason – A numeric status code indicating the reason of the closure, as defined by the
WebSocket specification. The default is 1000 (normal closure).

• message – A text message to be sent to the other side.

async receive(timeout=None)
Receive data over the WebSocket connection.

Parameters
timeout – Amount of time to wait for the data, in seconds. Set to None (the default) to wait
indefinitely. Set to 0 to read without blocking.

The data received is returned, as bytes or str, depending on the type of the incoming message.

async send(data)
Send data over the WebSocket connection.

Parameters
data – The data to send. If data is of type bytes, then a binary message is sent. Else, the
message is sent in text format.

subprotocol

The name of the subprotocol chosen for the WebSocket connection.

2.2. The AioServer class 9

simple-websocket

2.3 The Client class
class simple_websocket.Client(url, subprotocols=None, headers=None, receive_bytes=4096,

ping_interval=None, max_message_size=None, ssl_context=None,
thread_class=None, event_class=None)

This class implements a WebSocket client.

Instead of creating an instance of this class directly, use the connect() class method to create an instance that
is connected to a server.

receive(timeout=None)
Receive data over the WebSocket connection.

Parameters
timeout – Amount of time to wait for the data, in seconds. Set to None (the default) to wait
indefinitely. Set to 0 to read without blocking.

The data received is returned, as bytes or str, depending on the type of the incoming message.

send(data)
Send data over the WebSocket connection.

Parameters
data – The data to send. If data is of type bytes, then a binary message is sent. Else, the
message is sent in text format.

subprotocol

The name of the subprotocol chosen for the WebSocket connection.

classmethod connect(url, subprotocols=None, headers=None, receive_bytes=4096, ping_interval=None,
max_message_size=None, ssl_context=None, thread_class=None,
event_class=None)

Returns a WebSocket client connection.

Parameters

• url – The connection URL. Both ws:// and wss:// URLs are accepted.

• subprotocols – The name of the subprotocol to use, or a list of subprotocol names in
order of preference. Set to None (the default) to not use a subprotocol.

• headers – A dictionary or list of tuples with additional HTTP headers to send with the
connection request. Note that custom headers are not supported by the WebSocket protocol,
so the use of this parameter is not recommended.

• receive_bytes – The size of the receive buffer, in bytes. The default is 4096.

• ping_interval – Send ping packets to the server at the requested interval in seconds. Set
to None (the default) to disable ping/pong logic. Enable to prevent disconnections when the
line is idle for a certain amount of time, or to detect an unresponsive server and disconnect.
A recommended interval is 25 seconds. In general it is preferred to enable ping/pong on
the server, and let the client respond with pong (which it does regardless of this setting).

• max_message_size – The maximum size allowed for a message, in bytes, or None for no
limit. The default is None.

• ssl_context – An SSLContext instance, if a default SSL context isn’t sufficient.

• thread_class – The Thread class to use when creating background threads. The default
is the threading.Thread class from the Python standard library.

10 Chapter 2. API Reference

simple-websocket

• event_class – The Event class to use when creating event objects. The default is the
threading.Event` class from the Python standard library.

close(reason=None, message=None)
Close the WebSocket connection.

Parameters

• reason – A numeric status code indicating the reason of the closure, as defined by the
WebSocket specification. The default is 1000 (normal closure).

• message – A text message to be sent to the other side.

2.4 The AioClient class
class simple_websocket.AioClient(url, subprotocols=None, headers=None, receive_bytes=4096,

ping_interval=None, max_message_size=None, ssl_context=None)
This class implements a WebSocket client.

Instead of creating an instance of this class directly, use the connect() class method to create an instance that
is connected to a server.

async classmethod connect(url, subprotocols=None, headers=None, receive_bytes=4096,
ping_interval=None, max_message_size=None, ssl_context=None,
thread_class=None, event_class=None)

Returns a WebSocket client connection.

Parameters

• url – The connection URL. Both ws:// and wss:// URLs are accepted.

• subprotocols – The name of the subprotocol to use, or a list of subprotocol names in
order of preference. Set to None (the default) to not use a subprotocol.

• headers – A dictionary or list of tuples with additional HTTP headers to send with the
connection request. Note that custom headers are not supported by the WebSocket protocol,
so the use of this parameter is not recommended.

• receive_bytes – The size of the receive buffer, in bytes. The default is 4096.

• ping_interval – Send ping packets to the server at the requested interval in seconds. Set
to None (the default) to disable ping/pong logic. Enable to prevent disconnections when the
line is idle for a certain amount of time, or to detect an unresponsive server and disconnect.
A recommended interval is 25 seconds. In general it is preferred to enable ping/pong on
the server, and let the client respond with pong (which it does regardless of this setting).

• max_message_size – The maximum size allowed for a message, in bytes, or None for no
limit. The default is None.

• ssl_context – An SSLContext instance, if a default SSL context isn’t sufficient.

async receive(timeout=None)
Receive data over the WebSocket connection.

Parameters
timeout – Amount of time to wait for the data, in seconds. Set to None (the default) to wait
indefinitely. Set to 0 to read without blocking.

The data received is returned, as bytes or str, depending on the type of the incoming message.

2.4. The AioClient class 11

simple-websocket

async send(data)
Send data over the WebSocket connection.

Parameters
data – The data to send. If data is of type bytes, then a binary message is sent. Else, the
message is sent in text format.

subprotocol

The name of the subprotocol chosen for the WebSocket connection.

async close(reason=None, message=None)
Close the WebSocket connection.

Parameters

• reason – A numeric status code indicating the reason of the closure, as defined by the
WebSocket specification. The default is 1000 (normal closure).

• message – A text message to be sent to the other side.

2.5 Exceptions
class simple_websocket.ConnectionError(status_code=None)

Connection error exception class.

class simple_websocket.ConnectionClosed(reason=CloseReason.NO_STATUS_RCVD, message=None)
Connection closed exception class.

• search

12 Chapter 2. API Reference

INDEX

A
accept() (simple_websocket.AioServer class method), 8
accept() (simple_websocket.Server class method), 7
AioClient (class in simple_websocket), 11
AioServer (class in simple_websocket), 8

C
choose_subprotocol() (simple_websocket.AioServer

method), 9
choose_subprotocol() (simple_websocket.Server

method), 7
Client (class in simple_websocket), 10
close() (simple_websocket.AioClient method), 12
close() (simple_websocket.AioServer method), 9
close() (simple_websocket.Client method), 11
close() (simple_websocket.Server method), 8
connect() (simple_websocket.AioClient class method),

11
connect() (simple_websocket.Client class method), 10
ConnectionClosed (class in simple_websocket), 12
ConnectionError (class in simple_websocket), 12

R
receive() (simple_websocket.AioClient method), 11
receive() (simple_websocket.AioServer method), 9
receive() (simple_websocket.Client method), 10
receive() (simple_websocket.Server method), 8

S
send() (simple_websocket.AioClient method), 11
send() (simple_websocket.AioServer method), 9
send() (simple_websocket.Client method), 10
send() (simple_websocket.Server method), 8
Server (class in simple_websocket), 7
subprotocol (simple_websocket.AioClient attribute), 12
subprotocol (simple_websocket.AioServer attribute), 9
subprotocol (simple_websocket.Client attribute), 10
subprotocol (simple_websocket.Server attribute), 8

13

	Getting Started
	Installation
	Server Example #1: Flask
	Server Example #2: Aiohttp
	Server Example #3: ASGI
	Client Example #1: Synchronous
	Client Example #2: Asynchronous

	API Reference
	The Server class
	The AioServer class
	The Client class
	The AioClient class
	Exceptions

	Index

