28

39

40
41

Documentation for Geometry.h and Geometry.c
Steve Andrews
2006 - 2023

1 Header file: Geometry.h

/* Steven Andrews 2/17/06

See documentation called Geometry_doc.doc.

Copyright 2006-2007 by Steven Andrews. This work is distributed under the terms
of the Gnu Lesser General Public License (LGPL). x/

#ifndef __Geometry_h
#define __Geometry_h

// Center

void Geo_LineCenter (double **point,double *cent,int dim);
void Geo_RectCenter (double **point,double *cent,int dim);
void Geo_TriCenter (double **point,double *cent,int dim) ;

5 // Normal

double Geo_LineNormal (double *ptl,double *pt2,double *ans);
double Geo_LineNormal2D (double *ptl,double *pt2,double *point,double *ans);

; double Geo_LineNormal3D (double #*ptl,double *pt2,double *point,double *ans) ;

double Geo_LineNormPos (double *ptl,double #*pt2,double *point,int dim,double x*
distptr);

double Geo_TriNormal (double *ptl,double *pt2,double *pt3,double #*ans);

double Geo_SphereNormal (double #*cent,double *pt,int front,int dim,double *ans);

// Unit Vectors

double Geo_UnitCross (double *vistart,double *viend,double *v2start,double *v2end,
double *ans) ;

double Geo_TriUmnitVects (double *ptl,double #*pt2,double *pt3,double *unitO,double x*
unitl ,double *unit2) ;

; double Geo_SphereUnitVects(double *cent,double *top,double *point,int front,double

*unit0,double *unitl,double *unit2) ;

7 double Geo_CylUnitVects(double #*ptl,double *pt2,double *point,double *unitO,double

*unitl,double *unit2) ;
double Geo_DiskUnitVects(double *cent,double *front,double #*point,double *unitO,
double *unitl,double *unit2);

// Area

double Geo_LineLength(double *ptl,double *pt2,int dim);

double Geo_TriArea2(double #*ptl,double *pt2,double *pt3);

double Geo_TriArea3D(double *ptl,double *pt2,double *pt3);

double Geo_TriArea3(double *ptl,double *pt2,double *pt3,double *norm);

double Geo_QuadArea(double #*ptl,double *pt2,double *pt3,double *pt4,int dim);

// Inside point

double Geo_InsidePoints2(double *ptl,double *pt2,double margin,double *ansl,double
*ans2,int dim) ;

void Geo_InsidePoints3(double *ptl,double *pt2,double *pt3,double margin,double *
ansl,double *ans2,double *ans3);

void Geo_InsidePoints32(double **point,double margin,double **ans);

// Point in

60

61

62

63

64

66

68
69

70

int Geo_PtInTriangle (double *ptl,double *pt2,double *pt3,double *norm,double *test
);

int Geo_PtInTriangle2(double #**point,double *test);

int Geo_PtInSlab(double *ptl,double *pt2,double *test,int dim);

int Geo_PtInSphere (double *test,double *cent,double rad,int dim);

// Nearest

void Geo_NearestSlabPt (double #*ptl,double *pt2,double *point,double *ans,int dim);

int Geo_NearestLineSegPt (double *ptl,double *pt2,double *point,double #*ans,int dim
,double margin) ;

void Geo_NearestTriPt (double *ptl,double *pt2,double #*pt3,double *norm,double *
point ,double *ans);

void Geo_NearestTriPt2(double **point,double **edgenorm,double *norm,double *
testpt ,double *amns) ;

int Geo_NearestTrianglePt (double #*ptl,double *pt2,double *pt3,double *norm,double
*point ,double *ans);

int Geo_NearestTrianglePt2(double **point,double *norm,double *testpt,double *ans,
double margin) ;

double Geo_NearestSpherePt(double *cent,double rad,int front,int dim,double *point
,double *ans) ;

void Geo_NearestRingPt (double #*cent,double *axis,double rad,int dim,double *point,
double *ans);

void Geo_NearestCylPt(double *ptl,double *axis,double rad,int dim,double *point,
double =*ans);

int Geo_NearestCylinderPt (double *ptl,double *pt2,double rad,int dim,double *point
,double #*ans,double margin) ;

int Geo_NearestDiskPt (double *cent,double *axis,double rad,int dim,double *point,
double *ans,double margin) ;

double Geo_NearestLine2LineDist (double #*ptAl,double *ptA2,double *ptBl,double *
ptB2);

double Geo_NearestSeg2SegDist (double *ptAl,double *ptA2,double *ptBl,double *ptB2)

double Geo_NearestAabbPt (const double *bptl,const double #*bpt2,int dim,const
double *point,double *ans);

// To Rect

5 void Geo_Semic2Rect (double *cent,double rad,double *outvect ,double *rl,double *r2,

double *r3);
void Geo_Hemis2Rect (double *cent,double rad,double *outvect,double *rl,double *r2,
double *r3,double *r4);

7 void Geo_Cyl2Rect (double *ptl,double *pt2,double rad,double *rl,double *r2,double

*r3,double *r4);

// Cross

double Geo_LineXLine (double *11pl,double *11p2,double *12pl,double *12p2,double *
crss2ptr) ;

double Geo_LineXPlane (double #*ptl,double *pt2,double *v,double *norm,double x*
crsspt);

double Geo_LineXSphs(double *ptl,double *pt2,double *cent,double rad,int dim,
double *crss2ptr ,double *nrdistptr ,double *nrposptr);

double Geo_LineXCyl2s (double *ptl,double *pt2,double *cpl,double *cp2,double *norm
,double rad,double *crss2ptr,double #*nrdistptr ,double *nrposptr);

double Geo_LineXCyls(double *ptl,double *pt2,double *cpl,double *cp2,double rad,
double *crss2ptr,double *nrdistptr,double *nrposptr);

s // Reflection

double Geo_SphereReflectSphere(const double *al,const double *al,const double *bO0,
const double *bl,int dim,double radius2,double *alp,double *blp);

81

82

84

86

88

90

91

92

93

94

95
96

97

98

// Exit

double Geo_LineExitRect (double *ptl,double *pt2,double *front,double *cormnerl,
double *corner3,double *exitpt,int *exitside);

double Geo_LineExitLine2(double *ptl,double *pt2,double *endl,double *end2,double
xexitpt ,int *exitend) ;

void Geo_LineExitArc2(double #*ptl,double *pt2,double *cent,double radius,double *
norm,double *exitpt,int *exitend);

double Geo_LineExitTriangle (double *ptl,double *pt2,double *normal,double *vi,
double *v2,double *v3,double *exitpt,int *exitside);

double Geo_LineExitTriangle2(double *ptl,double *pt2,double **point,double *exitpt
,int *exitside);

double Geo_LineExitSphere (double *ptl,double *pt2,double #*cent,double rad,double x*
exitpt);

void Geo_LineExitHemisphere (double *ptl,double *pt2,double *cent,double rad,double
*normal ,double *exitpt);

double Geo_LineExitCylinder (double #*ptl,double *pt2,double *endl,double *end2,
double rad,double *exitpt,int *exitend);

// Cross aabbb

int Geo_LineXaabb2(double *ptl,double *pt2,double *norm,double *bptl,double *bpt2)

int Geo_LineXaabb (double *ptl,double *pt2,double *bptl,double *bpt2,int dim,int
infline) ;

int Geo_TriXaabb3 (double *ptl,double *pt2,double *pt3,double *norm,double *bptl,
double *bpt2);

int Geo_RectXaabb2(double #*rl,double *r2,double *r3,double #*bptl,double *bpt2);

int Geo_RectXaabb3(double *ril,double *r2,double *r3,double *r4,double *bptl,double
*bpt2) ;

int Geo_CircleXaabb2(double *cent,double rad,double *bptl,double *bpt2);

int Geo_SphsXaabb3(double *cent,double rad,double *bptl,double *bpt2);

int Geo_CylisXaabb3(double #*ptl,double *pt2,double rad,double *bptl,double *bpt2);

int Geo_DiskXaabb3(double #*cent,double rad,double *norm,double *bptl,double *bpt2)

// Approx. cross aabb
int Geo_SemicXaabb2(double #*cent,double rad,double *outvect,double *bptl,double *

bpt2);
int Geo_HemisXaabb3(double *cent,double rad,double *outvect,double *bptl,double x*
bpt2) ;
int Geo_CylsXaabb3(double *ptl,double *pt2,double rad,double *bptl,double *bpt2);
// Volumes

double Geo_SphVolume (double rad,int dim) ;
double Geo_SphOLSph(double *centl,double *cent2,double rl,double r2,int dim);

#endif

2 Description

These functions do a variety of things that are useful for 1-D, 2-D, and 3-D geometry manipulations.
A few functions do n-D geometry, but those are rare. Its sole current use is in Smoldyn.
Functions do not change input data arrays. Output arrays are written to but never read from.
It is often permissible to use the same input array for multiple inputs, but every output array needs
to be distinct from each other, and from each input array.
In general, functions include all boundaries as part of the region when testing whether a point
is in a region or not, or whether two regions overlap. An axis-aligned bounding box, called an aabb,

has its low corner (Zmin, Ymin, 2min) at bptl and its high corner (Tmaz, Ymaz, Zmaz) at bpt2.

3 Dependencies

Geometry.h, math2.h

4 History

2/06 Started.

12/06-2/07 Major rewrite and additions; included in this was a complete switch from floats to
doubles.

9/3/07 Added Center functions.

10/31/07 Added some nearest functions.

1/12/09 Added some area functions.

3/2/09 Added several nearest functions.

3/22/10 Added Geo_LineXaabb and fixed a bug in Geo_CylisXaabb3.

3/8/11 Fixed Geo NearestTriPt and Geo_NearestTrianglePt, in which they didn’t test nearest
corner points correctly.

6/24/11 Added Geo_InsidePoints2 and Geo_InsidePoints3.
4/11/12 Added Geo_TriArea3D.
12/15/12 Ye Li added Geo_Area3D to library. I improved it to use a more stable algorithm.

7/17/12 Added unit vector functions: Geo_TriUnitVects, Geo_SphereUnitVects, Geo CylUnitVects,
and Geo_DiskUnitVects.

5/10/13 Fixed a bug in Geo_Cyl2Rect.

7/20/15 Improved documentation.

8/15 | Wrote Geo_LineExit, etc. functions

9-10/15 Added EPSILON, added functions that use edge normals
1/8/16 Fixed a bug in Geo_NearestTrianglePt2

3/10/16 Replaced EPSILON with margin input in some cases
3/18/16 Added Geo_SphereReflectSphere.

4/11/16 Added Geo NearestAabbPt

7/19/19 Minor bug fix in Geo_CylisXaabb3

8/16/23 Converted documentation to LaTeX.

5 Bugs

Several of the functions that check crossings of 3-D objects with others (aabbs in particular) ignore
potential separation planes, so they report crossings when there aren’t any. These need to be fixed.
As it is, these functions can return false positives (they report non-existent crossings) but they
never return false negatives (they never ignore a crossing that actually exists).

Note that most functions do not work correctly with values that are close to DBL_MAX because
they can’t do math with these numbers without running into errors.

6 Math

Several functions use the cross-product of two vectors. As a reminder, ¢ = a X b is:

cx = ayb, —azby
cy = azby — azb,

¢, = azby — ayb,

The functions that test whether two objects intersect often make use of the separating axis
theorem. However, they also often use my own methods. Here is my understanding of the separating
axis theorem. Consider two convex polygons, in 2-D. A line segment is included as well, where this
can be seen as a two-sided polygon with 0 area. If the objects do not cross, then there must a be
at least one infinite line that separates them. One of these lines will be parallel and adjacent to
one of the sides of one of the polygons. To check for crossing, (1) choose a polygon edge on object
A, (2) find its outward normal, which does not have to normalized, (3) project a vertex of the test
edge onto this normal by taking the dot product of the vertex and the normal vector, (4) project all
vertices of polygon B onto this normal in the same way, (5) the objects do not cross if all projected
values of object B are larger than the projected value of the test edge. Repeat for all edges of both
objects; if all projections fail, then the objects must cross. If two edges are parallel, they will have
opposite normal vectors and some steps can be saved. There are faster methods, but the one listed
should work.

In three dimensions, if two convex polyhedra do not cross, then there must be an infinite plane
that separates them. Before, I thought that non-crossing polyhedra necessarily implied a separating
plane that is parallel to one of the faces on one of the objects. Now I see that that is sufficient
to prove separation, but that other potential separating planes need to be checked as well. Other
planes to test are those that are parallel to edges, including one edge from A and one vertex from
B and vice versa.

7 Functions for external use

Center functions

void Geo_LineCenter(double **point, double *cent,int dim);

Returns the center of the line for which the two ends are defined as point [0] [coordinate]
and point [1] [coordinate]. This works for all dimensionalities and simply returns the mean
of the point [0] and point[1] vectors.

void Geo_RectCenter(double **point, double *cent,int dim);

Returns the center coordinates of a rectangle. The rectangle corners are defined by point [corner]
[coordinate] and the result is returned in cent. dim is the dimensionality of space, not of
the surface. If dim is 1, then the “rectangle” is really a point with only one “corner” and one
coordinate; if dim is 2 then the rectangle is really a line with 2 corners (the two ends) and
two coordinates each; if dim is 3 then the rectangle is a genuine rectangle with 4 corners that
have three coordinates each. Results are undefined for other dim values.

void Geo_TriCenter(double **point, double *cent,int dim);

This returns the center coordinates of a triangle, where the triangle vertices are defined by
point [vertex] [coordinate] and the result is returned in cent. dim is the dimensionality of
space, not of the surface. If dim is 1, then the “triangle” is really a point with only one vertex
and one coordinate; if dim is 2 then the triangle is really a line with two vertices (the two
ends) and two coordinates each; and if dim is 3 then the triangle is a genuine triangle with 3
vertices that have 3 coordinates each. Results are undefined for other dim values.

Normal functions

double Geo_LineNormal(double *ptl, double *pt2, double *ans);

Finds the 2-D unit normal for line segment that goes from pt1 to pt2 (all 2-D) and puts it
in ans. The result vector is perpendicular to the line segment and points to the right, for
travel from pt1 to pt2. If ptl and pt2 are equal, the unit normal points towards the positive
x-axis. Returns the length of the line segment from pt1 to pt2.

double Geo_LineNormal2D(double *ptl, double *pt2, double *point, double *ans);

Identical to Geo_LineNormal3D, except that this is for a 2-D system. The returned vector is
either identical to or the negative of that which is returned by Geo_LineNormal. This returns
the perpendicular distance between the line and the point, and can handle multiple points
being equal to each other.

double Geo_LineNormal3D(double *ptl, double *pt2, double *point, double *ans);

Finds the 3-D unit normal for line that includes pt1 and pt2, and that includes the point
point, and puts it in ans. The result vector is perpendicular to the line. Returns the
perpendicular distance between the line and point. To decrease round-off error, this function
calculates the result using pt1 as a basis point, and then recalculates the result using the new
point. If ptl and pt2 are the same, this returns the normalized vector from ptl to point. If
point is on the line that includes pt1 and pt2, this returns the perpendicular unit vector that
is in the x, y-plane and that points to the right of the projection of the line in the x, y-plane,
if possible; if not, it returns the unit x-vector which, again, is perpendicular to the line.

double Geo_LineNormPos(double *ptl, double *pt2, double *point,int dim, double *distptr);

Given the line that includes points pt1 and pt2, this considers the normal of this line that
goes to point. The position of the intersection between the normal and the line is returned,
where it is scaled and offset such that pt1 is at 0 and pt2 is at 1. The unscaled length of the
normal segment, from the intersection to point, is returned in distptr, if that pointer is not
sent in as NULL. dim is the dimensionality of the system, which can be any positive value.

double Geo_TriNormal(double *ptl, double *pt2, double *pt3, double *ans);

Finds the 3-D unit normal for the triangle that is defined by the 3-D points pt1, pt2, and
pt3 and puts it in ans. If one looks at the triangle backwards along the unit normal, the
three points show counterclockwise winding; i.e. the right-hand rule for the points in sequence
yields the direction of the unit normal. The triangle area is returned. If the area is zero, ans
is returned in the x, y-plane. This finds the normal and the area using the cross-product of
the first two triangle edges.

double Geo_SphereNormal (double *cent, double *pt,int front,int dim, double *ans);

Returns the unit normal vector from the sphere center at cent to the point at pt. Enter front
as 1 for an outward normal and -1 for an inward normal. dim is the system dimensionality,
which can be any positive integer. The result is returned in ans and the distance between
cent and pt is returned by the function.

Unit vector functions

double Geo_UnitCross(double *vistart, double *vliend, double *v2start, double *v2end,
double *ans);

Computes the cross product between the vector that goes from vistart to viend and the
vector that goes from v2start to v2end, then normalizes this cross product to unit length
and returns it in ans. Everything is assumed to be in 3D. The length of the unnormalized
answer vector is returned directly. If this length result is 0, meaning that the two input
vectors were parallel, then 0 is returned and the vector in ans is set to (0,0,0). If either or
both of the input vectors starts at the origin, then enter the start value as NULL.

double Geo_ TriUnitVects(double *ptl, double *pt2, double *pt3, double *unitO, double
*unitl, double *unit2);

Returns the unit vectors of a 3-dimensional triangle that has its corners at pt1, pt2, and
pt3, in vectors unit0, unitl, and unit2. The first is the triangle normal, the second is
parallel to the edge from pt1 to pt2, and the third is orthogonal to the previous two, using a
right-handed coordinate system. Returns the triangle area. Behavior is undefined if the area
equals zero.

double Geo_SphereUnitVects(double *cent, double *top, double *point,int front, double
*unit0, double *unitl, double *unit2);

Returns the unit vectors of a 3-dimensional sphere that has its center at cent and its top (i.e.
where ¢ = 0, in a spherical coordinate system) at top, for the point point. Enter front as
1 for an outward normal and -1 for an inward normal. Results are returned in unitO, uniti,
and unit2. The first unit vector is the local sphere normal, the second points from point
towards top, but in the local plane of the sphere at point, and the third is orthogonal to the
previous two, using a right-handed coordinate system. Returns the distance from the center
to point. Behavior is undefined if the distance from cent to top is zero, or the distance from
cent to point is zero However, it’s ok for point and top to equal each other.

double Geo CylUnitVects(double *ptl, double *pt2, double *point, double *unitO, double
*unitl, double *unit2);

Returns the unit vectors of a 3-dimensional cylinder that has its axis along the line from pt1
to pt2, for the reference point point. Results are returned in unitO, unitl, and unit2. The
first unit vector is the local cylinder normal, the second is parallel to the cylinder axis, and
the third is orthogonal to the previous two using a right- handed coordinate system. Returns
the distance from the axis to point. Behavior is undefined if this distance, or if the distance
from pt1l to pt2, equals zero.

double Geo DiskUnitVects(double *cent, double *front, double *point, double *unitO,
double *unitil, double *unit2);

Returns the unit vectors of a 3-dimensional disk that has its center at cent and is oriented
perpendicular to the unit vector in front, for the reference point point. Results are returned
inunit0, unitl, and unit2. The first unit vector is simply copied over from front, the second
is in the direction from cent to point, and the third is orthogonal to the previous two using
a right-handed coordinate system. Returns the distance from cent to point. Behavior is
undefined if this distance is zero.

Length, area functions

double Geo_LineLength(double *ptl, double *pt2,int dim);
Returns the length of the line that extends from pt1 to pt2, and its dimensionality in dim.

double Geo_TriArea2(double *ptl, double *pt2, double *pt3);

Returns the area of the 2-D triangle that is defined by points pt1, pt2, and pt3. The returned
area will be positive if these are counter-clockwise (right-hand winding rule) and negative if
these are clockwise.

double Geo_TriArea3D(double *ptl, double *pt2, double *pt3);

VCell addition (Ye Li). This calculates the area of a 3-D triangle, defined by the points pt1,
pt2, and pt3. Unlike Geo_TriArea3, this does not require a unit normal. This always returns
a positive value. This uses Heron’s formula. I modified Ye’s original code to use a numerically
stable formula (see Wikipedia Heron’s formula).

double Geo TriArea3(double *ptl, double *pt2, double *pt3, double *norm);

Returns the area of a 3-dimensional triangle which is defined by the 3-D points pt1, pt2, and
pt3 and which has unit normal norm. The returned area will be positive if norm follows the
right-hand winding rule, and vice versa. The base is defined as the side from pt1 to pt2; the
cross product is found of the base and the unit normal to yield a triangle height vector that
has the length of the base and which points away from the triangle; the dot product of this
height and the side from pt1 to pt3, with a sign change and divided by 2, is the area.

double Geo_QuadArea(double *ptl, double *pt2, double *pt3, double *pt4,int dim);

Returns the area of the quadrilateral that is defined by points pt1, pt2, pt3, and pt4, in
dimension dim. Returns 0 if dim is not 2 or 3. The right-hand winding rule is used for the
sign of the answer, meaning that if the area is positive if the points cycle counterclockwise
for increasing point numbers. If dim is 3, all points are assumed to be coplanar.

This works by dividing the quadrilateral into two triangles and returning the sum of their
areas.

Inside point functions

double Geo_InsidePoints2(double *ptl, double *pt2, double margin, double *ansl, double
*ans2,int dim);

Takes two points in ptl and pt2, which are in 1, 2, or 3 dimensions (listed in dim), and
returns versions of these points, in ansl and ans2, that are moved together by absolute
distance margin on each side. For example, the 1-D points at 0 and 5 are moved to positions
1 and 4 if margin is 1. This function returns the separation between ptl and pt2; if this
length is smaller than twice margin, then ans1 will be closer to pt2 and ans2 will be closer
to ptl. It is permitted for ansl to equal ptl and for ans2 to equal pt2. Enter a negative
value for margin if you want to move points outwards.

Math: delta is the vector from ptl to pt2, which has length len. Dividing delta by len
yields a unit vector, and then multiplying it by margin yields a vector with length margin
that points in the direction from pt1 to pt2. The new points are found by adding delta to
ptl and subtracting delta from pt2.

void Geo_InsidePoints3(double *ptl, double *pt2, double *pt3, double margin, double
*ansl, double *ans2, double *ans3);

This takes in a triangle defined by its corners pt1, pt2, and pt3 and returns a smaller triangle
with corners ansi, ans2, and ans3. This smaller triangle is inscribed inside the original one
with distance margin between the original edges and the new edges. All edge lengths of the
original triangle must be greater than zero, which is not checked for in this function. Enter
margin as a negative number for a larger new triangle. It is not permitted for ans1, ans2, or
ans3 to occupy the same memory as ptl, pt2, and pt3.

Math: A triangle is defined by points pi, p1, and ps (ptl, pt2, and pt3 in the code). The
side lengths are l19, l23, and l3;. We want to find inside points s, s2, and s3 (ans1, ans2,
and ans3 in the code) so that the inner triangle is inscribed inside the original triangle with a
margin of size m on all sides. Consider corner 1. The vector that points from p; to s; bisects
the two edges that meet at p;. Thus, its direction is

P2 —P1 P1—P3

direction =
l12 l31

This equation is more obvious by putting a ‘4’ sign in the middle and reversing the order of
the last difference, but this form is easier for converting to other corners. The length of this
bisecting vector can be found using two applications of the law of cosines. The inside angle
of corner 1 is denoted ¢; (and likewise for the other corners). From the law of cosines and
the original triangle,

2[12l31 cosf = Z%Q + lgl - l%g

Now consider the triangle that is formed when two sides are added together to yield the
bisecting vector listed above. The lengths of the two sides that we added are 15 and l3; and

void

the exterior angle is 61; this means that the interior angle is 7 —#6; and cos(m — 61) = — cos 6;.
Now use the law of cosines to find the squared length of the bisecting vector to be

L? = Z%Q + l%l + 2112131 cos 64
= 2%, + 213, — I3

The length of the vector that points from p; to s; is found using the half-angle formula for

the law of cosines.
91 S(S — l23)
cos — = 4| ——=%
2 l12l31

where
< lig + 1oz + 131

2
This is from the Math CRC p. 176. For a margin of m (margin in the code), the length of

the vector from py to sq is
m

~ cos(61/2)
This simplifies to
lal31

di = e
! m S(S — l23)

Putting the whole works together, the vector from p; to s; is

S —py = <P2—P1 3 pl—ps)m lials:
112 l31 S(S — l23)(21%2 + 2[%1 - l§3)

For the other corners, indices can be simply incremented, modulo 3.

Geo_InsidePoints32(double **point, double margin, double **ans);

This is identical to Geo_InsidePoints3, but uses a little more information and runs much
faster. Enter point so that point[0...2] are the three triangle vertices and point[3...5]
are the three triangle edge normals. This returns ans[0. ..2] with the new triangle vertices.
New function Oct. 2015.

As before, assume that the three triangle vertices are pi, p2, and ps, and that the inside
points are s1, so, and s3. Of these, we only consider p; and s; since the others are analogous.
Also, assume that ejs, €3, and e3; are normalized outward-pointing normals for the three
edges. The inside angle of corner 1 is #;. Point s; is distance m from edge 12, measured
perpendicular to the edge. Suppose this line hits the edge at distance a from py. Then,

p m 1—cosbt

tan — = —
2 a sin 04
m sin 61
a=—-
1 —cosb;

The latter equality in the first equation is from the Math CRC p. 171. Now extend this line
by distance b, until a line drawn from the endpoint is perpendicular to edge 31. The angle
between this new line and edge 12 is 90° — #1, implying that the interior angle at the new

point is ;. For this angle,
tan 0 a sinf
1 = — =
Y70 7 cos 01

10

acos 01 m sin 01 cos 01 m cos 01

sinf; sin 61 (1 — cos 6y) ~1—cos 01

The distance between this new point and sy is [;, which is

l1:m+b:m<1—cosel cos 6,) m

1—cosf; 1-—cosb :1—00891

The new point, sq, is
s1 = p1 — lie31 — lier2

Finally,
cosfly = —e31 - e

The other corners are the same.

Point in functions To be copied.

Nearest functions To be copied.

To rect functions To be copied.

X (cross) functions To be copied.

Reflect function

double Geo_SphereReflectSphere(const double *a0, const double *al, const double *bO,
const double #bl, int dim, double radius2, double *alp, double *blp);

Reflects hard spheres off of each other while maintaining trajectory lengths for each of them
(this does not conserve momentum). Sphere A moves from a0 to al and sphere B moves from
b0 to bl. Enter dim as the system dimensionality and radius2 as the squared sum of their
radii. The reflected endpoints are returned in alp for sphere A and bip for sphere B. This
function assumes that the spheres collide at some point, creating an error if not (returning
NaN, Inf, -Inf, or some comparable error). Preferably, they collide at some point between
positions 0 and 1 (e.g. their separation is greater than the radius at positions 0 and is less
than the radius at positions 1). Returns the relative collision position, p (see below).

Here is the math. The first part is similar to that used in Geo_LineXSphs. Define p as the
relative collision position along the two trajectories, equal to 0 for positions 0, 1 for positions

11

1, and an intermediate value for other collision positions. Using this, define the A and B
positions along their trajectories at the collision time as

This last equation is identical in form to one from the Geo_LineXSphs derivation, so use that
solution,

a = (b1 —a; — by + ag)?
b:2(b0—ag)-(b1—a1—bo+a0)
C:(bo—ao)Q—R2

_ —bE Vb —dac
- 2a

p

The two solutions for p are for the time when the trajectories are first within R of each other
and the time when they are last within R of each other. If they do not cross, then there are
no solutions and the code will try to take the square root of a negative number. The negative
root is the one that is of interest.

Next, using the assumption that the trajectory lengths are not affected by the collision, the

trajectories from the collision times to the end times, meaning from a, to a; and from b, to

b1, are reflected across the plane that is perpendicular to the line that extends from a;, to b,.

This plane is the contact plane for the A and B spheres, regardless of the relative sphere radii.

From Wikipedia “Reflection (mathematics)”, section on “Reflection through a hyperplane in

n dimensions”, reflecting vector v across a plane with normal vector a is achieved with
v-a

vV=v-2—=
a-a

Applying this to the current problem leads to the equations

9 (a1 — ap)éQ(bp —ay) (

a'l—ap:(al—ap)— b, —a,)

(b1 —by) - (b, — a,)
bj —b, = (by —b,) -2 pR2 . p(bp_ap)
Here, twice the projection of the initial displacement on the reflection vector is subtracted
from the initial displacement to produce the final displacement. Note that (b, — ap)2 = R
These equations rearrange to

aj =aj — 2(1R_2p) (a1 —ag) - Ap] Ay
2(1 —

72]3) [(b1 —bo) - Ayl A

b =b =

where A, = b, — a,. These equations are in the code.

12

Extension added on 8/16/23. The above equations and logic are correct for spheres that are
hit front to front, such as 2 balls that collide head-on. This is all that I investigated in my
2017 paper. However, they are incorrect for a sphere that is hit in the back (relative to its
direction of motion). In this case, the direction of the reflected vector needs to be reversed,
causing a slight change to the equations from above,

(a1 —ap) - (bp — ap)(
2

ap —a) = (a; — ay) — 2 b, —ay)

(b1 —by) - (bp — ap)(

bp—bllz(bl_bp)—2 R2

b, —ay)
These rearrange to

2(1R_2p> [(a1 —ag) - Ap] Ay

b} = 2(1 — p)by + (2p —)by + 2(1R_2p) [(by — bo) - A,] A,

aj =2(1 —plag + (2p — Da; +

A sphere is hit from the front, in which the first set of equations should be used, if the dot
product of its trajectory and the collision vector is negative. Vice versa, a sphere is hit from
the back if this dot product is positive. Thus, the following equalities imply that it’s hit from
the front, in which case the first set of equations should be used.

(a1 —ao) - (ap — bp)

0
(b1 —bo) - (bp —ay) <0

VANVAN

Exit functions To be copied.

Xaabb functions To be copied.

Approximate Xaabb functions To be copied.

Volume functions To be copied.

13

