Documentation for SimCommand.h and SimCommand.c
Steven Andrews, © 2004-2021

When writing simulation programs, it has proven useful to include a runtime
command interpreter in the program so that various commands can be executed at
specific times during the simulation. These commands are stored as strings and are
passed on to a parser and executer at the proper time. This library contains most of the
framework necessary for this interpreter. As a primary use of commands is to output
simulation results to text files, the command framework also manages a list of output
files.

Header and data structures

#ifndef __SimCommand_h

ftdefine SimCommand_h__

#include "queue.h"
#include "string2.h"

#define SCMDCHECK(CA,B) if(!(CA)) {if(cmd) strncpy(cmd->erstr,B,STRCHAR);return
CMDwarn;}

enum CMDcode
{CMDok , CMDwarn , CMDpause , C(MDstop , (MDabort , CMDnone , C(MDcontrol ,CMDobserve , CMD
manipulate,(CMDctr10Robs,CMDall};

typedef struct cmdstruct {
struct cmdsuperstruct *cmds; // owning command superstructure

struct cmdstruct *twin; // pointer to same command elsewhere
int listpos; // position in command list
char timing; // timing character (e.g. B, A, 1, @, x)
double on; // first command run time
double off; // last command run time
double dt; // time interval between commands
double xt; // multiplicative time interval
Q_LONGLONG ont; // first command run iteration
Q_LONGLONG offi; // last command run iteration
Q_LONGLONG dti; // iterations between commands
Q_LONGLONG invoke; // number of times command has run
char *str; // command string
char *erstr; // storage space for error string
int 11,i2,13; // integers for generic use
double f1,f2,f3; // doubles for generic use
void *v1,*v2, *v3; // pointers for generic use
void (*freefn)(struct cmdstruct*); // free command memory

} *cmdptr;

The structure cmdstruct, pointed to with cmdptr, contains the information for one
command. cmds is a pointer to the superstructure pointer that owns this command. twin is
a pointer either from the command template to the command in the queue, or vice versa

from the command in the queue to the template. 1istpos is the command's position in the
command list. timing is a single character that represents the command timing rules, of
which the options are listed below. on is the time that the command turns on, off is the
time that it turns off, dt is the time step between command executions, xt is the time
multiplier and is only used if xt > 1. oni, offi, and dti are used instead of on, of f, and dt
for commands in the integer queue; here, for example, a command is run every dti
iterations. invoke depends on whether the command is a template or in a queue; for the
template, it is O if the command has not been put in a queue and for a command in a
queue, it is the number of times that the command has been invoked so far (it equals one
during the first command call).

Command execution intervals are never shorter than dt but are sometimes longer
than dt because they can only be executed at the times when cmdcheck is called. If xt < 1,
the target command times are: on, on+dt, on+2dt, ..., of f; if xt > 1, target command times
are: on, on+dt, on+xt*dt, on+xt*dt+xt?dt, ..., of f.

str is the command string. Note that the cmdstruct owns the string, meaning that
the string is allocated when a cmdptr is allocated and freed when the cmdptr is freed.

The following elements only apply for commands in a queue and are not used by
templates at all. erstr is storage space for an error message that can be passed from the
command back to the calling program. There is additional storage space that can be used
by the command, although it does not have to be used, which is: 11, 12, i3, f1, f2, and f3;
these are all initialized to O and keep their values from one command call to the next.
Similarly, v1, v2, and v3 are general purpose void* pointers that are initialized to NULL. If
memory is allocated for any of these by the command, then the command should also
register the address of a function that will free the memory in *freefn. The memory will
automatically be freed, using this function, when the command will no longer be
executed.

typedef struct cmdsuperstruct {

int condition; // @=new, l=update time, 2=new command, 3=ready
int maxcmdlist; // allocated size of command list

int ncmdlist; // actual size of command list

cmdptr *cmdlist; // list of all added commands

queue cmd; // queue of normal run-time commands

queue cmdi; // queue of integer time commands

enum CMDcode (*cmdfn)(void*,cmdptr,char*); // function that runs commands
void *simvd; // void pointer to simulation structure

int iter; // number of times integer commands have run
double flag; // global command structure flag

int maxfile; // number of files allocated

int nfile; // number of output files

char root[STRCHAR]; // file path

char froot[STRCHAR]; // more file path, used after root

char **fname; // file name [fid]

int *fsuffix; // file suffix [fid]

int *fappend; // @ for overwrite, 1 for append [fid]

FILE **fptr; // file pointers [fid]

int precision; // precision for output commands

char outformat; // output format, 's' or 'c'

int maxdata; // number of data lists allocated

int ndata; // number of data lists used
char **dname; // data list names [did]
listptrdd *data; // data lists

} *cmdssptr;

cmdsuperstruct, which is pointed to by cmdssptr, is a structure that contains lists of
runtime commands, the address of a function that is supposed to execute them, and
information about the output files and data arrays.

condition is an integer that tells the status of the superstructure. O indicates that the
data structure is new and/or that it should be fully reinitialized before starting a new
simulation. 1 indicates that a simulation is ongoing, but that the time step changed, so all
commands in the queue need time updates; also, there may be new commands in the
template list that should be added to the queues. 2 indicates that there are new commands
in the template list that need to get added to the queues, but that other times don’t need
updating. 3 indicates that everything is ready to go.

cmdlist is the list of templates for all commands. It has allocated size maxcmdlist
and used size ncmdlist. These commands are unsorted and retained even if the simulation
is over. These commands are not run from here but are only archived here for copying
later into one of the two queues.

cmd 1s the floating-point (regular) queue of commands, sorted in order of their next
exection times. cmdi is the integer queue of commands that are run every iter iterations
and for which dt is ignored. In the queues, the object key is the on value of the command
and the object item is a pointer to the command structure.

cmdfn is a pointer to the function in the main program that is called to take care of
commands (set to docommand for Smoldyn, which is in smolecmd.c). It is sent the argument
simvd (void* pointer for the simulation structure), which is unchanged by the routines
here, the command, and the command string; see below.

maxfile is the number of allocated file spaces, nfile is the number of output files,
root is a root name used before froot, which is another root name and is used for all
output files, fname is a list of file names for the various output files, fsuffix is a list of
file name suffixes, and fptr is a list of file streams for the output files. Complete file
names are a concatenation of root, froot, the file name, and the suffix if there is one.
Usually, root is the directory in which the configuration file is located, and froot is a
subdirectory for output results. fappend is set to O for each file that should be overwritten
and 1 for files that should be appended. Output is printed to the file with precision
significant figures. outformat can be either ‘s’ or ‘c’ to indicate space or comma
delimited columns.

Data files are similar to file output, but store data within the command
superstructure rather than in files and are somewhat simpler. There are ndata arrays
stored here, of a total of maxdata that are allocated, each in a list called data and given a
name that is stored in dname. These data are only accessible, at present, through the
libsmoldyn interface. They are stored as a matrix of doubles, which is appropriate for
many data outputs but not ideal for some things, like species numbers and molecule
states.

The command superstructure owns all lists and memory pertaining to output files,
but cmdfn and simvd are merely pointers that are neither allocated nor freed in this library.

flag is simply a number that individual commands can read and/or set, for
communication between commands, and is not used in the command handling at all.

Control flow

The function in the main program that takes care of commands is called docommand
in Smoldyn. It separates the command string into the first word, which says what the
command is, and the rest of the string which contain the parameters for the command,
and then it calls the appropriate function to take care of the command. docommand is made
available to the SimCommand library by sending its address to scmdssalloc as
&docommand during initial structure setup. It is called later on, as needed, by scmdexecute.
In this calling, docommand is sent a void* type conversion of sim, which is a structure for
the entire simulation parameters and state, a pointer to the command that is to be
executed (cmd), and the command string. In this case, the command string is always equal
to cmd->str, and so is redundant. However, some commands can invoke other commands
directly, in which case they call docommand with a valid string but either the original
command or a NULL value for the cmd parameter. This means that all commands need to be
able to handle cmd being NULL or the command string in cmd being different from the string
in line. For example, the conditional command in Smoldyn called “ifno” first checks the
condition and then, if appropriate, it calls docommand with the remainder of the command
string.

Command timing

Command timing is encoded in a single character. The list is as follows. The
parameters are the values that the user inputs.

code parameters execution timing

? timing hasn’t been set yet
continuous time queue

b runs once, before simulation starts
a runs once, after simulation ends

@ time runs once, at = time

i on off dt runs every dt, from = on until < off
X on off dt xt geometric progression

integer queue

B runs once, before simulation starts

A runs once, after simulation ends

& I runs once, at iteration i

I,j onioffidti runs every dti iteration, from = oni to < offi
E,e run every time step

N,n n runs every n time steps

1/10/04
1/20/04

1/22/04

6/24/04

11/29/06

3/12/07
5/25/07
11/20/07
11/25/07
11/26/07
4/15/08
1/12/09
1/14/09
1/19/09
2/8/11

3/27/11
4/20/11

6/28/11
4/16/12

7/18/12
6/9/15

10/6/15
9/10/20
12/4/20

4/13/21

5/17/21

Routines moved to this library from Smoldyn

Added invoke member to command structure. Also changed declaration of
command executing function.

Made more changes to the command superstructure, added some functions,
and modified others.

Changed scmdstr2cmd so that it now allocates the command queue or expands
the queue as needed. Also added integer queue stuff to commands and
command superstructure and erstr to commands.

Added command storage i1, 12,13, f1, f2, f3, v1, v2, v3, and freefn to
command structure.

Added xt member to cmdstruct

Modified type ‘x’ command execution

Added and implemented enum CMDcode and added scmdcmdtype

Replaced all float data types with doubles

Added scmdcmdtime

Changed scmdexecute with the simdt input parameter

Added command timing options A, B, &, and I

Changed integer queue elements oni, offi, and dti from int to long long int
Fixed bugs with long long

Added dynamic memory allocation to the superstructure for files and rewrote
scmdsetfnames, added maxfiles and fappend to superstructure

Modified scmdsetfroot

Added flag to command superstructure, and functions scmdsetflag and
scmdreadflag

Added scmdaddcommand

Added optional smoldynfuncs.h dependency. This is required for the simLog
function. If it isn’t present, the library uses printf instead.

Edited scmdexecute and scmdoutput to optionally send text to simLog instead
of printf.

Added type casting to scmdsetfnames for good style and C++ compatibility.

Added scmdfprintf function and sigfig element.

Added scmdflush.

Edited scmdgetfptr to simplify stdout and stderr operation. Fixed some minor
bugs in scmdopenfiles, scmdoverwrite, and scmdincfile, all having to do with
tests for stdout and stderr.

Dilawar had converted scmdfprintf to a C++17 class, but it caused compile
errors and didn’t add functionality, so I reverted back to the original.

Added data element to command structure, rewrote scmdgetfptr, and more
updates. These functions now support NULL file pointers (meaning no output).

Added cmdlist to the command superstructure and timing to commands. Also
added twin and timing to commands and condition to the superstructure.
Substantial code overhaul.

Renamed cmdfnarg element of cmdsuperstruct to simvd. Also, included it in the
SCMDPRINTF macro, so that simulation flags are accounted for during output.
Also, exposed scmdalloc and scmdfree to header file.

11/21/22 Made it an error to enter non-integer timing parameters with integer timing
methods or to enter O or negative step values. Also added command 1istpos
element, now used as a sub-key in the command queue.

Utility functions

Internal: void scmdcatfname(cmdssptr cmds,int fid,char *str);
This concatenates all the portions of a file name together, for file number fid, into
the string str, which should already be allocated to size STRCHAR. If the total file
name is too long, it is truncated at size STRCHAR.

Internal: void scmdcopycommand(cmdptr cmdfrom,cmdptr cmdto);
Copies most elements of cmdfrom to cmdto. This does not copy i1, i2, i3, f1, f2, f3,
vl, v2, v3 values or freefn, all of which it sets to either O or NULL. It sets invoke to O
and puts an empty string into erstr. This function sets the twin element of cmdto to
point to cmdfrom but it does not change the twin element of cmdfrom. This function is
used by scmdupdatecommands for copying commands from their templates to the
command queues.

Internal: char *scmdcode2string(enum CMDcode code,char *string);
Converts enumerated command code to a string. string needs to be pre-allocated.
string is returned for easy function nesting.

Memory management

Internal: cmdptr scmdalloc(void);
scmdalloc allocates a command structure, including the string and the error string.
The strings are allocated to the fixed size STRCHAR, which is defined in the file
string2.h to be 256.

Internal: void scmdfree(cmdptr cmd);
scmdfree frees a command structure.

cmdssptr scmdssalloc(int (*cmdfn)(void*,cmdptr,char*),void *simvd,char *root);
scmdssalloc allocates a minimal command superstructure. cmdfn should be sent in
pointing to a function that can execute the commands and simvd is the first
argument of that function. For example, in the Smoldyn program, the cmdfn is sent
in as &docommand and simvd is sent in as (void*)sim, because sim is a structure that
contains all information about the current state of the simulation and is required for
most commands. root is the file directory root. The only memory that is allocated is
for the superstructure itself. In particular, the command queues are not allocated.

void scmdssfree(cmdssptr cmds);
scmdfree frees a command superstructure and all internal elements except for cmdfn
and simvd.

Internal: int scmdemdlistalloc(cmdssptr cmds,int newspaces);

Expands the cmdlist element of the command superstructure, where the expansion
amount is newspaces (which needs to be >0). This creates the initial list if needed.
Returns 0 for success or 1 for out of memory.

Internal: int scmdgalloc(cmdssptr cmds,int n);

scmdqalloc allocates the command queue to size n and sets up the queue indexing
parameters. It returns O for no error, 1 for insufficient memory, 2 for no cmds, or 3 if
a queue was already allocated (and thus should not be written over). This function is
called by scmdupdatecomamnds.

Internal: int scmdgalloci(cmdssptr cmds,int n);

void

scmdgalloci allocates the command queue cmdi to size n and sets up the queue
indexing parameters. It returns O for no error, 1 for insufficient memory, 2 for no
cmds, or 3 if a queue was already allocated. This function is called by
scmdupdatecommands.

scmdsetcondition(cmdssptr cmds,int cond,int upgrade);

Sets the command superstructure condition parameter, based on cond and upgrade.
If upgrade is 0, then this makes the condition no greater than cond, downgrading it if
needed but not upgrading it. If upgrade is 1, this makes the condition no less than
cond, upgrading it if needed but not downgrading it. If upgrade is 2, then this simply
sets the condition to cond.

int scmdaddcommand(cmdssptr cmds,char timing,double on,double off,double

step,double multiplier,const char *commandstring);

This adds a command into the cmdlist element (for templates) of the command
superstructure with minimal error checking. cmds is the command superstructure
and timing is the command code character (see scmdstr2cmd description). on, of f,
step, and multiplier are the command timing parameters, for when the command
should turn on, when it should turn off, its linear timestep, and its exponential
multiplier. Finally, commandstring is the actual string of the command. Not all
parameters are used for all command types. The function returns: O for no error, 1 if
memory allocation failed, 2 is cmds was set to NULL, 3 if the commandstring is
missing, 4 if the timing type is an integer type but the entered parameters are not
integers, 5 if the step size is less than or equal to O, or 6 if the timing type wasn’t
recognized. This downgrades the superstructure condition to 2 (or leaves it lower)
to indicate that this command needs to be added to a queue.

int scmdstr2cmd(cmdssptr cmds,char *1ine2,char **varnames,double *varvalues,int

nvar);

This takes in a string in 1ine2, parses it for a command type, timing, and command
string, and then sends those parameters off to scmdaddcommand to actually add the
command. The format of 1ine2 needs to have one of the following forms:

code parameters execution timing

continuous time queue

b runs once, before simulation starts
a runs once, after simulation ends

@ time runs once, at = time

i on off dt runs every dt, from = on until < off
X on off dt xt geometric progression

integer queue

B runs once, before simulation starts

A runs once, after simulation ends

& I runs once, at iteration i

I1,j onioffidti runs every dti iteration, from = oni to < offi
E,e run every time step

N,n n runs every n time steps

Returns O for success, 1 for failed memory allocation, 2 is cmds was set to NULL, 3 is
1ine2 missing or error in 1ine2 format or command string is missing from 1ine2, 6
if the command timing type character was not one of those recognized.

Internal: void scmddocommandtiming(cmdptr cmd,double tmin,double tmax,double dt)

This inputs a pointer to single command that is already in a command queue, in cmd,
and the simulation timing parameters tmin, tmax, and dt. This either computes or
recomputes the command timing parameters. It only works with timing parameters
for the relevant queue, leaving the others untouched. It also only modifies the
timing parameters that weren’t set up by scmdaddcommand.

int scmdupdatecommands(cmdssptr cmds,double tmin,double tmax,double dt);

void

enum

As necessary, this copies commands from the template list to the queues, and
updates the command timing information. Run this as often as desired, including
right before starting a simulation. Returns O for success, 1 for failure to allocate
memory, or 6 for unknown timing character (a bug). If tmax < tmin or dt <0, this
doesn’t do anything but just returns 0, meaning that it’s done all it can with the
available information, which is nothing.

scmdpop(cmdssptr cmds,double t);

scmdpop removes all commands from the regular queue that are for time t or before,
without executing them. The routine can be used after the simulation to avoid
executing simulation time commands after an early exit from the simulation loop. It
does not do anything to commands in the integer queue.

CMDcode scmdexecute(cmdssptr cmds,double time,double simdt,Q_LONGLONG
iter,int donow);

scmdexecute removes and executes all commands from the command queues that
have times that are less than or equal to time for the floating point queue, or
iteration counters less than or equal to iter for the integer queue. Integer queue
commands are performed first. If iter is set to -1 or less, an internal iteration
counter is used; this internal counter starts at O and is set to iter any time iter = 0.
simdt is the simulation time step; it is used so that floating point queue commands

enum

void

void

void

are executed no more often than once per simulation time step. Commands that
should be repeated in the future are put back in the proper queue with the execution
time or iteration updated to the previous requested value plus the command time
step and with the invoke member incremented. The return value codes are
essentially the same as those that are returned from the command executing
function given in cmdfn. It is the largest of the errors that are returned from cmdfn:
CMDok, CMDpause, CMDstop, CMDwarn, or CMDabort. If the return value is CMDwarn, an
error message is sent to stderr that says which command failed as well as what the
error string contains if it was used. This function sends all commands to the
command function listed in cmdfn. donow is a flag that produces normal operation,
described above, when it equals O0; when it is 1, all remaining commands in the
queue are executed immediately and are not put back in the queue.

CMDcode scmdcmdtype(cmdssptr cmds,cmdptr cmd);

Assuming command execution function, as well as the individual command
functions, are set up for this purpose, this returns the type of command that cmd is.
The calls the command execution function with 1ine equal to the command word
followed with the word “cmdtype”. Commands are supposed to return the
appropriate enumerated type. Possible return codes are C(MDnone, (MDcontrol,
(MDobserve, and CMDmanipulate.

scmdoutput(cmdssptr cmds);
scmdoutput displays the output files, data arrays, the queue of commands, and the
command timing parameters to stdout.

writecommands(cmdssptr cmds,FILE *fptr,char *filename);

This prints the contents of the command superstructure and the individual
commands to fptr using a format that can be read in by Smoldyn, taking the
commands from the command list, not from the queues. Items not written to the file
are: the iter counter and the root string in the superstructure, and the invoke and
internal data of individual commands. filename is optional; if it is included, the
printed line for output_files will not include any file called filename. This way,
one can run a saved simulation file without immediately overwriting the new
configuration file.

scmdsetflag(cmdssptr cmds,double flag);
Sets the command superstructure flag value to flag.

double scmdreadflag(cmdssptr cmds);

Returns the command superstructure flag value.

double scmdsetcondition(cmdsssptr cmds,int condition);

Sets the superstructure condition value to the number given here. The system is
that it’s O if the commands are not in the queues yet, or if the ones in there are out
of date (e.g. the time step was changed but commands have not been re-enqueued
yet), and 1 if the commands are in the queue and are ready to go.

void

scmdsetprecision(cmdssptr cmds,int precision);
Sets the precision. Use a negative number for automatic and a positive number for
that precision.

int scmdsetoutputformat(cmdssptr cmds,char *format);

Sets the output format. Reads a string in format, which should be either “ssv” or
“csv”. In the former case, this sets the outformat element to ‘s’ and in the latter
case, sets outformat to ‘c’. Returns O for success and 1 for unrecognized string.

Data functions

int scmdsetdnames(cmdssptr cmds,char *str);

void

This inputs a list of data names in str as words separated by spaces and creates a
new empty data array for each one. This updates the ndata, maxdata, and data
elements of the data structure as needed.

scmdappenddata(cmdssptr cmds,int dataid,int newrow, int narg, ...);
This appends data to the data element that is stored with the command, for
observation commands (dataid is the data list number, which comes from
scmdgetfptr). Enter newrow as 1 to start a new row in the data table, narg as the
number of arguments being entered, and then that many arguments, all of which
need to be doubles. This basically just calls ListAppendItemsDDv.

File functions

int scmdsetfroot(cmdssptr cmds,char *root);

scmdsetfroot sets the file root element of the command superstructure to the string
that is sent in. The function returns O for success or 1 if either cmds or root are NULL.

int scmdsetfnames(cmdssptr cmds,char *str,int append);

scmdsetfnames inputs a list of file names in str as words separated by spaces (if a
file name has a space in it, this routine won’t recognize the name correctly). Set
append to 0 if any existing file contents should be overwritten and to 1 if they
should be appended. It counts the number of names in the list, updates the nfile
element of the command superstructure, allocates the fname and fptr lists as
needed, and copies the names to fname. The files are not opened. The routine returns
0 for success, 1 for inability to allocate memory, 2 for a file name that could not be
read, or 4 if cmds is NULL.

int scmdsetfsuffix(cmdssptr cmds,char *fname,int i);

scmdsetfsuffix sets the file suffix number for file name fname to equal the integer
given in 1i. If the file name is not recognized, a 1 is returned to indicate an error;
otherwise a 0O is returned. scmdsetfnames has to have been called first.

int scmdopenfiles(cmdssptr cmds,int overwrite);

scmdopenfiles opens any output files that are listed in the nfile and fname elements
of the command superstructure. Any files that are open when this function is called

are first closed. The complete file name that is opened for each file is the string in
the root element of cmds, concatenated with the string in the froot element of cmds,
concatenated with the fname string for the file. If the name in fname is “stdout” or
“stderr” then the file pointer is set to point to stdout or stderr, respectively. If
overwrite is non-zero, any prior file is simply overwritten; otherwise, this routine
looks for existing files and asks the user if any existing files should be overwritten.
The function returns O for success and 1 for failure, where failure might arise from
the user saying that a file should not be overwritten or from the inability to open a
file for writing. If a file could not be opened, an error message is displayed to
stderr. Upon failure, structures are not freed.

int scmdoverwrite(cmdssptr cmds,char *1line2);

scmdoverwrite reads the first word in 1ine2, which is supposed to be a file name,
looks for that name in the fname list of file names, closes the file, and reopens it.
That way, the file is made empty for overwriting. The function stores the new file
pointer in the fptr list of cmds. It returns O for success or 1 for file not found, or 2
for failure to open for writing.

int scmdincfile(cmdssptr cmds,char *1line2);

scmdincfile reads the first word in 1ine2, which is supposed to be a file name,
looks for that name in the fname list of file names, closes the file, increments the
file name by one, and opens the new file. The function returns O for success, 1 for
file not found, and 2 for failure to open new file for writing. The new file pointer is
stored in the fptr list of cmds. This is useful for creating file stacks.

int scmdgetfptr(cmdssptr cmds,char *1line2,int outstyle,FILE **fptrptr,int

*dataidptr);

This is a utility routine for use by commands that save data to files and/or tabular
data tables. It reads the first one or two words from 1ine2 and determines if they are
file names or data table names by looking them up in the fname and dname lists in the
command superstructure. If they are, then the corresponding file pointer and/or data
ID number are returned in fptrptr and dataitptr. Send in outstyle as 1 if only a
file name is allowed, 2 if only a data table name is allowed, or 3 if both are allowed;
only one word is read from line2 in the former two cases and two words are read
from 1ine2 in the latter case. Returns the number of parsed objects, which can be 0,
1, or 2, or returns -1 if the first word is neither a filename nor a data table name.

int scmdfprintf(cmdssptr cmds,FILE *fptr,const char *format,...);

void

Output commands should use this function for printing output rather than the stdio
fprintf function. The reason is that this one edits the format string to reflect the
number of significant figures that were requested by the user and that are stored in
cmdss->sigfig. This also allows for either comma or space delimiters between
entries. If fptr is NULL, then this simply returns without doing anything. Returns the
number of characters printed, or a negative value for an error.

scmdflush(FILE *fptr);
This simply flushes the file.

Possible improvements

The command string is fixed at 256 characters, which could be too short for some
commands. In particular, a reasonable command might be “multicommand” whose
arguments are a list of commands that should be run sequentially. This would allow
a block structured command language.

Also, the setflag function could be made a lot more powerful using a broadcast message
function.

