
Documentation for List.h and List.c

Steven Andrews, © 2015

Description

This library supports basic list management for sorted and unsorted lists. These lists

are designed to be very simple to use, somewhat like the Python list data type. They use
dynamic memory allocation, so that they expand themselves as needed.

The code that calls these lists should call the functions here for adding elements to
lists and manipulating lists. However, it is fine for the code to read the list directly rather
than through functions.

Currently supported list types are as follows

abbreviation list
li long integers
v void*
dd double, double
ULVD4 unsigned long long int, void*, double[4]

Dependencies

List.h
string2.h

History

10/7/15 Started. Wrote support for long integers.
8/22/16 Updated. Added void* list type.
12/3/20 Added double-double list type.
5/13/21 Added ULVD4 list type.

Data structures

typedef struct liststructli{
 int max;
 int n;
 long int *xs;
 } *listptrli;

typedef struct liststructv{
 int max;
 int n;
 void **xs;
 } *listptrv;

typedef struct liststructdd{
 int maxrow;
 int nrow;
 int maxcol;
 int ncol;
 double **data;
 } *listptrdd;

typedef struct liststructULVD4{
 int max;
 int n;
 unsigned long long *dataul;
 void **datav;
 double *datad4[4];
 } *listptrULVD4;

In the data structure, max gives the allocated size of the list. It is allowed to equal 0, in
which case xs is equal to NULL. n is the number of elements currently in the list. xs is the
actual list, which is allocated to size max and filled from element 0 to element n-1. The dd
data structure is for a matrix of doubles, with nrow rows (allocated to maxrow) and ncol
columns (allocated to maxcol). The data are stored in a single array (row*maxcol+col),
rather than a vector of vectors.

Code documentation

Internal functions

int List_ExpandLI(listptrli list,int spaces);
 Expands memory allocated for existing list list by spaces spaces, without

changing list contents. spaces is allowed to be negative for list shrinking. The list
can be shrunk sufficiently that some contents are lost. Returns 0 for success or 1 for
unable to allocate memory.

int List_ExpandV(listptrv list,int spaces);
 Expands memory allocated for existing list list by spaces spaces, without

changing list contents. spaces is allowed to be negative for list shrinking. The list
can be shrunk sufficiently that some contents are lost. Returns 0 for success or 1 for
unable to allocate memory.

int ListExpandDD(listptrdd list,int addrows,int addcols)
 Expands or shrinks memory allocated for new or existing list list by addrows rows

and addcols columns without changing list contents. Inputs are allowed to be
negative for list shrinking, possibly with loss of data. Returns 0 for success or 1 for
inability to allocate memory.

int ListExpandULVD4(listptrULVD4 list,int addrows);

 Expands or shrinks memory allocated for new or existing list list by addrows rows
without changing list contents. Inputs are allowed to be negative for list shrinking,
possibly with loss of data. Returns 0 for success or 1 for inability to allocate
memory.

Memory management

listptrli List_AllocLI(int max);
 Allocates a new empty list, set up for max spaces. max is allowed to equal 0. Returns

the list or NULL if unable to allocate memory.

listptrv List_AllocV(int max);
 Allocates a new empty list, set up for max spaces. max is allowed to equal 0. Returns

the list or NULL if unable to allocate memory.

listptrdd ListAllocDD(int maxrow,int maxcol)
 Allocates a new empty double-double list, set up for maxrow rows and maxcol

columns, either or both of which are allowed to equal 0. Returns the list or NULL if
unable to allocate memory.

listptrdd ListAllocULVD4(int max)
 Allocates a new empty list, set up for max spaces. max is allowed to equal 0. Returns

the list or NULL if unable to allocate memory.

void List_FreeLI(listptrli list);
 Frees all memory allocated for list list. list is allowed to be NULL, in which case

this does nothing.

void List_FreeV(listptrv list);
 Frees all memory allocated for list list. list is allowed to be NULL, in which case

this does nothing.

void ListFreeDD(listptrdd list)
 Frees all memory allocated for list list. list is allowed to be NULL, in which case

this does nothing.

void ListFreeULVD4(listptrULVD4 list)
 Frees all memory allocated for list list. list is allowed to be NULL, in which case

this does nothing.

Reading lists

int List_MemberLI(const listptrli list,long int x);
 Tests to see if x is a member of list list, returning 1 if so and 0 if not. Does not

assume list is sorted.

Adding elements to lists

listptrli List_ReadStringLI(char *string);
 Reads a string of elements of the given type (e.g. long integers for the LI suffix)

from string and returns them in a newly created list. Returns the list for success or
NULL for failure, where this failure could arise from a memory allocation error
(unlikely) or a string reading error (likely).

listptrv ListAppendItemV(listptrv list,void *newitem);
 Appends item newitem to end of list list, returning list on success or NULL on

failure to allocate memory. If list is entered as NULL, then a new list is created and
is returned.

listptrdd ListAppendItemsDDv(listptrdd list, int newrow, int narg, va_list

items);
listptrdd ListAppendItemsDD(listptrdd list, int newrow, int narg, ...);
 Appends one or more items to end of list list, returning list on success or NULL on

failure to allocate memory. If list is entered as NULL, then a new list is created and
is returned. Send in newrow as 1 to start a new row in the data table or to 0 to append
to the end of the last row. Send in the number of items in narg and then that many
items, each of which should be a double. This automatically allocates memory as
needed. Also, the number of columns in the list is automatically expanded to be the
longest row length. These two functions are essentially the same (and in fact the
latter version simply calls the former version), except that the variable arguments
are pre-grouped in the former version.

int List_InsertItemULVD4(listptrULVD4 list,unsigned long long xdataul,void

*xdatav,const double *xdatad4,int mode)
 This tests to see if an element is in the list, which is assumed to be sorted in

ascending order for the dataul component, and can insert it in the correct place if
not. The new or test element has the three components xdataul, xdatav, and
xdatad4. If mode is 0, then this simply looks for this test element, based solely on the
xdataul value, and returns the index within the list of the element if it’s found or -1
if it’s not found. If mode is 1, then this looks for the test element, returns the index if
it’s found, and adds it and returns its index if it wasn’t found; it can also return -2
for out of memory. If mode is 2, then this adds the new element, whether it was
found or not, again returning its index or -2 for out of memory. Note that the
xdatad4 component is a const variable, so it gets copied over into the data structure.

Removing elements

void List_CleanULVD4(listptrULVD4 list);
 Scans through a list and looks for void* pointers, in the datav element, that are

equal to NULL. These values are fully erased, and the list is compacted so that all the
blank entries are at the end of the list, and the list->n value is then reduced to the
number of used entries. The order of the list is not changed otherwise.

Combining lists

int List_AppendListLI(listptrli list,const listptrli newstuff);
 Appends the contents of the list newstuff to the end of the existing list list,

expanding list as needed. Returns 0 for success or 1 for memory allocation error.

int List_RemoveListLI(listptrli list,const listptrli remove);
 Removes items that are in the list remove from the list list. For each item that is in

remove, if it is in list in multiple copies, then only the last copy is removed. If an
item that is in remove is not found in list, then this simply continues on to the next
item. Returns the number of items that were removed from list list.

void ListClearDD(listptrdd list);
 Clears the contents of the list but without freeing any memory. All this really does

is to set the number of row and columns to 0 (along with the nextcol element).

List output

void ListPrintDD(listptrdd list);
 Prints out all of the list data structure values to stdout. As written currently, this

function is designed strictly for debugging, although it could be usefully repurposed
for output. I’m not aware of any functions that call this function.

