MODEL RAILWAY
~— SIGNALLING

https://www.model-railway-signalling.co.uk/
© DCC Model Railway Signalling. All Rights Reserved.

Signalling Application Quick-start Guide
Version 6 — April 2025

This guide is intended to provide an introduction to the Model Railway Signalling Application and
the art of the possible in terms of the signalling configurations that can be achieved.

All of the example layouts used in this guide (and other example layout files) are packaged with the
application. These can be accessed by selecting File => Examples from the Main Menubar and then
selecting the appropriate file.

Other documentation (such as the Application Networking Guide) is also packaged with the
application (Select Help => Docs from the Main Menu Bar):

DEC %% File Mode:Run Automation:On SPROG:Disconnected MQTT:Connected Utilities Settings Styles Help

Goods Yard

Layout
. -
T FeFuelling 2 1P = = = = — oo T Branch o Goods |
S| |—{ e S— Branch to Platform 3
~—
Goods o Branch | CETE \ . \ ozl i e
latform 3 anr.h‘] = =] J’ _ RN =] ‘Readshunt Platform 3 to Bi anr.h‘
poco0d c | - i
/ —_— T AN
e g T) emd INLH E— -
= — =T o
- ecod” 04 ecco fe<es) -
- = I /] \ . .
oo — — _—— [1] . oy
ey ecee (1] \ csow /] Sesew 03] I -+ e
FY Entry L J _
‘ ‘ = J _Flst form 1 Lat £ 2 e é
| | _ | |
Up to Platiem 2 Avotding to Down | own o Avoiding |
—— — N — .
-« — — - —

https://www.model-railway-signalling.co.uk/

Table of Contents

INEEOAUCTION. ...ttt ettt bt s e s bt et e e st e bt et esaeesbe et e sut e seesabeesaseesnnesneenans 3
The iMmportance Of TESEATCH........ccviiiiieieeiieceeceeeee ettt ettt e st e e saeesteesbeessbaeeesssseessssaaeenns 4
The SCheMALIC AILOT........eeiiiirieeieteetee ettt sttt a et s e sb e s e saeesbeeaneenee s 5
Quick start example 1 — colour light Signals..........cccceeeiuiiriiiiriiieireeeeeee e e 7
Drawing your 1ayout SCREMALIC.......cccueerieriiiiiieeieeiteeie ettt see e sre e s ssaeeenans 7
Planning your signalling SCREME...........ccouiiiiiiiiiiiececeee et e e e aae e e e s 8
Adding signals t0 the SChemMALIC.........ccceiriiriiiiiiieieeeeeee e e e s saaee s 9
Configuring basic iNterlOCKING.........cccueeeiieriieiieiieeiteee ettt et e e ste e e sra e e e ssveeeeraeeeensaeeas 11
Testing basiC INtETIOCKING.cccuviiiiiiiieieeteeeeee ettt st e s bae e e saaaee s 14
Configuring the DCC DUS OUEPUL......ccuieiuiieiieiiieeieecieete e eteesieeereeseeeeaeesreeesbeessaessaesssaeassssseans 16
Configuring track OCCUPANCY.......c.eieciierieriieeiieeie ettt s et e st e e e e saeesaaessbeessaessaesnneees 18
TeStiNG traCK OCCUDPAICYcccuvieeierieeiieeeiieeeiieeeitteesteeesreeesseeessseesssseessssessssseessssesssseessssaessssessnsnes 20
Automating signals based on track OCCUPANCY........coccueriiirieriiienieeitenre et ee e s e s 22
Enabling Signal Passed At Danger (SPAD) WaIniNgS........cccccueerueeenieeeiieensieenseeessereeesesssnneeeeeens 23
Using external sensors to drive traCk OCCUPANCY.......cceuververrieriieenienieenresseeestesseesseessseeseeessnnes 24
Configuring interlocking with occupied track SeCtionS...........cccveeeuieeieereeriieecieeie e 26
Configuring ‘one-click’ route SEtHNE.cceerierrieriieriieeieeterite et eete st steeseteessbeeessnreeesssseeesnns 28
Saving and 10ading YOUT LY OUL.........cccuiiriiiiiriieeiee ettt etee e sae e e sae e e e s aaae e e e s eseens 34
Quick start example 2 — semaphore SIGNAlS..........ccceerieriiiirieniieieeieee et e e e s saeee e 35
Quick start example 3 — signal DOX LEVETS.......ccccuiiiiiiiiiieiiiecee e 37
Simulated signal DOX LEVETS..........covviiiiiiiiiiieeiece ettt te e s sbe e s saeeenaes 37
PhySical SWItCRES/IEVETS.ciieuiiiiieiieecieeeieeete ettt et e e st e e s ae e e s beeesabaeesesssareaeseasssnaeaeens 39
Quick start example 4 - MOTe AULOMALION..........eevvtirierrrierierrieenierseesteeteestessseesseeesssraesssssaessseeesns 42
Configuring iNterlOCKING.c.cvieiuiieiieiieeieeeeete ettt ettt ete e e e ae e s aeebeesraeesve e saesnseensnans 42
Configuring traCk OCCUPANCY.......c.eieciieriirieeiieeieeeeete ettt s et e st e e aeesaeesaaessbeessaessaesanneeas 43
Configuring basic aUtOMAtION........c.cccviirieeiiieeieeieeete ettt et ste et eereesteeebeesbaessseesseessseenseaens 43
Configuring timed SIGNAlS.......c.cueiriiiiiiirieeiieeeee ettt ettt et e e st esae e sneesaee s 44
Configuring approach CONLTOL............iccuiiiiieiiiieieeieece ettt et see v e sae e steeste e reessseeeensaeeas 45
Testing the competed 1aYOUL..........occuiiriiriieieeeeeeeee ettt e e e s eae e e saneees 46
Quick start example 5 — intermediate traCk SENSOTS.......c.ueeerueeriiierririeeeiieerieeesireeesteeessrreeeeesssnseeees 47
Quick start example 6 — DCC accesSOry SWItChes........c.coeierriiirieriieenieeieerieeieesie e eree e e eaeee e 49
STIL L0 QISCOVET ...ttt ettt st sb e et e s bt e st e e bt e sat e e bt e eabe e bt esneeenseesnneeesans 51
Appendix 1 — How track 0CCUPANCY WOTKS.........cocuiirieiiiiinieniteriieeieeste sttt ee e e e 52
Appendix 2 — Using ‘track circuit’ / ‘block’ SENSOTS........cccvieeriieriieeniieerieeerieeesieeesree e seveeee e e 53
Appendix 3 — The DCC programming ULtcccceereueriieriierrienieniieenieeseeste e see e e snessreesieeesaes 54
One-touch DCC Pro@rammIMliNg........c.ueeeeueeerueersueersieesseeeesreeessseesssseesssseessssesssssesssssessssssssssssssssseens 54

DCC CV PIrOGraImMITINE.cceeeruueeererureeeeenireeeeeaieeeesessreeeaesraeesssssseessssssseessssseeesssssssessssssssseseeeeeees 55

Introduction

The application enables users to easily create, configure and control prototypical interlocked
signalling schemes for model railway layouts, without the need for complex layout wiring. All
layout configuration and control is achieved via the application’s graphical user interface, avoiding
the need for specialist computer skills (if you use PC applications, you should be able to use this).

The application has primarily been developed to run on a Raspberry Pi computer, hosting a Pi-
SPROG DCC programmer controller:

* The Raspberry Pi is a low-cost single-board computer which provides a “Windows-like”
user experience (and versions of all the usual applications you would expect, such as web-
browser, email, office-type applications etc).

* The Pi SPROG DCC programmer controller connects directly to the Raspberry and provides
a DCC ‘accessory bus’ output to control the points and signals out on the layout.

The use of a separate ‘accessory bus’ makes the system suitable for use with layouts that use DCC
or analogue for control of trains (when used with DCC layouts, the accessory bus for control of
the signals/points needs to be electrically separated from the main DCC track bus).

Several manufactures now provide DCC signals (e.g. Train-Tech from Gaugemaster) and point
motors (e.g. Cobalt from DCC Concepts), making this method of control ideal for ‘new-build’
layouts. There are also numerous DCC signal/point decoders available for those wishing to upgrade
to DCC control without the expense of wholesale replacement of their existing units.

The application uses the flexibility of the Raspberry Pi General Purpose Input/Output (GPIO)
interface to provide feedback on train location. Simple sensors providing a ‘normally-open’ output
(momentarily closed when triggered) can be connected directly to the appropriate GPIO pins to
generate ‘signal passed’ events as the passing train triggers the sensor (e.g. the slim vertical
magnetic sensors from DCC Concepts). These events can then be configured within the application
to provide a ‘mimic’ diagram of train location and provide a level of signal automation.

Note that other sensor types (providing a switched voltage) should never be connected directly
to the GPIO pins as this could damage the Raspberry-Pi. In these cases, external opto-
isolators should be used - I’ve been using the PC817 2, 4 or 8 channel opto-isolator modules
(available from several Ebay sellers) for my layout. Connection of these is relatively straight
forward, but if you have any doubts then seek expert advice.

For added flexibility, the software enables multiple signalling applications to be networked together,
making it ideal for control of larger layouts (where the layout gets broken down into multiple
signalling areas) or splitting smaller layouts down to individual signal boxes (with simulated block
instruments) for real ‘true to prototype’ operation. Note that in this case only one instance of the
application needs to be running on a Raspberry Pi (the instance providing the interface to the DCC
bus and track sensor inputs from the GPIO pins). As the application has been designed to be
platform independent, other instances can be hosted on Windows or Linux as required.

The importance of research

This is probably the most important (and potentially time consuming) part of the process. If you’re
reading this document and planning to use the application to develop a signalling scheme for your
model railway then I’d recommend building familiarity with British railway signalling practice.
There are lots of great resources out there, but some of the best I’ve come across are:

* https://signalbox.org/ - Comprehensive information on signal types and the ‘Block System’
and a vast library of signal box diagrams for you to draw inspiration.

* https://en.wikipedia.org/wiki/UK railway signalling — Its Wikipedia (enough said).

* http://www.railway-technical.com/signalling/ - A section of the Railway Technical Website
covering signalling. There are many great resources on these pages including:

o http://www.railway-technical.com/signalling/infopaper-6-basic-railway.pdf — A paper
(downloadable pdf format) on Basic Railway Signalling.

o http://www.railway-technical.com/signalling/british-signalling--what.pdf — A paper
(downloadable PDF) on “What the driver sees”.

But Beware — Railway modeling is always about compromise and that is definitely going to be the
case for whatever signalling scheme you design and implement for your layout. Although the
application has been developed to add a touch of realism to the operation of your layout, it will
never measure up to the million-pound-plus signalling systems of the ‘real thing’.

And never forget - Rule 1 of Railway Modelling applies — it’s your layout and its therefore entirely
up to you how you signal your layout. Hopefully the features provided by the application will
enable you to achieve whatever level of realism you want to achieve.

http://www.railway-technical.com/signalling/british-signalling--what.pdf
http://www.railway-technical.com/signalling/infopaper-6-basic-railway.pdf
http://www.railway-technical.com/signalling/
https://en.wikipedia.org/wiki/UK_railway_signalling
https://signalbox.org/

The schematic editor

The application opens in ‘Edit’ mode with a blank drawing canvas. The panel on the left contains
the buttons to add schematic drawing objects to the canvas, whilst the Menubar across the top of the
window contains various controls and options for configuring the application.

File Save
and Load

Edit/Run mode, layout reset
and automation controls

SPROG DCC

controls

Networking
controls

GO HERE
FIRST !!!

S i File Mode:Edit

oy

SPROG:Disconnected

b

l v A X

MQTT:Disconnected Utilities Settings Styles Help

[Feeror] |[—— Text Boxes |

—

Q

‘C] Route Lines |

Signals (main types) I

4 %j Points (main types) I

J Track Sections |

M/ Track sensors |

Block Instruments |

A/I Schematic Routes |

M""I DCC Switches |

|

Dropdown menus
for further selections

H Signal box Levers |
_ M

Open the Help Window from the Main Menubar (Help => Help) to familiarise yourself with the
basic Schematic Editor functions and then practice creating, moving and deleting objects:

* Add objects to the canvas by left-clicking the buttons on the left hand side, drag them to the
required position on the canvas and then ‘place’ them via another left-click.

* Select objects by left-clicking on them (small circles will be displayed at each end of lines
to show they are selected - a border will be displayed around other drawing objects)

* Move selected objects by dragging and dropping (left-click => move => left-release).

* Move the ends of a line by selecting the line and then dragging and dropping the line ends

* Rotate selected objects (points and signals) by pressing the ‘r’ key

* Delete selected objects by using the backspace key

P

/I Line is selected I

Drag and drop line end
with left mouse button

L

n|l eses
2}

ﬂ
I Point is selected H _

Once you are happy with the basic schematic editor functions, try double clicking on some of the
objects you have created to bring up their configuration windows. Although the number of settings
and options may look daunting, don’t worry — The application has built-in help in the form of ‘tool-
tips’ which provide more information on what the settings are for and what type of information
should be entered. To bring up the tool-tip for a setting, just hover the cursor over it.

For many schematic objects, the configuration windows allow you to change the type (and
sometimes sub-type) of the object. This is particularly important for signals and it allows you to
select the most appropriate signals for your layout (most UK signal types are supported):

Signal 1 v x

Tabs for the signal Confioration | FET— p— Signal Type selectionl
Configuration (click on the -"’ ST '°“] nterlocking | Automation

required tab to select)

Signal ID - Signal Type
’7 # Colour Light © GroundPos © Semaphore Ground Disc S|gna| Subtype selection
(available selections will

Signal Subtype
[© 2AspG/R 2AspG/Y | 2AspY/R | 3Aspect = 4Aspect 4/ Change dependlng on
Signal type selection)

1

The unique ID for the
Signa| (no two signals General Config -Route Indications
Can share the same ID) { | fotared H None © Routefeathers (Theatreindicator K

"Control buttons

Route indications
‘ Supported by this
Signal type/subtype

" Hidden Button X offset: Button Y offset:

rDCC command sequences for Colour Light signal aspects
DCC command sequences Danger I] I | | |
For each available aspect | b Proceed O e e e e
Caution O o e e e
Prelim Caution J J J J J J
Flash Caution J J J J J J
Flash Prelim J J J J J J
Buttons to apply "~ subsidarysignal [Thel;outes ‘anegd'
The Updated Configuration \ﬁnesto be controlled by the Main Signal }SI'OI?I ?l?lgt;?gﬁal
e [TLH1T [H2 [RH1 [RH2

ok Apply | Reset

Cancel ‘

Similarly for points, the type and sub-type options allows you to represent complex track
formations (such as single/double slips, scissor crossovers, and trap points). Hover the cursor over
the point sub-type selection for further information

- Paint v e 8 Default colour for the point I
'_I'abs f_or the_pomt "Cl)nﬁguratiunl Inteﬂm:king] /I
Conflgl."atlon (click on the Point ID-; -Line colour ne width
required tab to select)

1 (- Change H Pixels: | 3

Point Type selection I

Line sty
The unique ID for the (
Point (no two points J J J J J J
Can share the same |D) DCC Address and logic Point Typ
) 8 H SRR LA YRoint Point subtype selection
. Point Subtyp: (available selections will
DCC address of the point (@ Norm © TRP SS1 §52 DSI I DS2 sx‘ﬂ\ Change depending on
Control button: Point type selection)
’V [~ Hidden Button X offset: Button Y offset: ‘
General configuration . ’
I Other point attributes H [~ Rotated I Facing point lock | Reversed ‘ ‘SWit'(Dig::(;SV\Etal.]r? g&g?gg?nl{rse??toc:ntt): —
Automation _—"| also be configured to switch other points
(Switch point: I switched with | ﬁ (that are configured as ‘switched with’)

ﬂ Apply ‘ Reset ‘ Cancel |

In the following sections, we’ll create an example schematic to demonstrate the main features of the
application. Before we begin, we need to clear down the schematic (from the Main Menubar select
File => New) to give ourselves a blank canvas.

Quick start example 1 - colour light signals

Drawing your layout schematic

For the Quick Start Example 1, we are going to create a simple layout comprising a single track line
serving a small double platformed terminus station (with no run round facilities):

The rest of /

the world - ﬂ 1
Point 1 (left hand point) can be added straight to the layout and moved into the appropriate position.
To create point 2, either add another left hand point to the layout or, alternatively, select point 1
(Left Click on the point) and then copy/place (Ctrl-c then move/place). When items are created,
they are assigned the next available ‘one-up’ identifier so in this case the added / pasted point will
be created as Point 2. Whilst Point 2 remains selected, press the ‘r’ key to rotate by 180 degrees, it
can then be moved into position to form the required crossover.

Now add the track lines to the schematic. To add end-stops or arrows to the lines, double-left-click
on the line to bring up the line configuration dialog. A different line end style can then be selected
and applied to one or both ends. Once the required selection has been made, click the OK button to
apply the changes and close the configuration dialog.

Text boxes can be added to annotate the schematic. Once created, double-left click on the ‘Text’ to
bring up the configuration dialog and edit the contents. Note that text boxes will always be sized to
fit their contents, but padding (extra lines or spaces) can be used if required. In this example, text
boxes with padding before and after the text have been used for the two ‘platforms’.

To complete the track layout, we’ll configure the points to switch together and add a facing point
lock. Firstly, double-left-click on point 2 to bring up the configuration dialog, set it to be fully
automatic and then OK/Apply the changes. Now double-left-click on Point 1, configure it to
switch Point 2 and select the facing point lock. We’ll also configure the DCC address we’re going
to use to switch the points out on the layout (as both points are switched together, we only need a
single address to switch both points). Again, click OK/Apply for the changes to take effect.

| Point 2 @ o 8 Point 2 has already been — :
Conflgumtlon] Interlocklngl

Line width

Point ID- -Line colour- Line width

Cunflgumtlon] Inteﬂm:klng] / rotated on the schematic

Point ID- -Line colour
E

’V - Change |

’V Pixels: 3

’V Il chenge ’V Pixels: | 3 A Set the DCC
Line styl i Address ’—Une styl
—gggﬂ---/---- |

Point 1 has a DCC Address and logic ’—Point Type

T RH @& LH Y-Point

DCC Address and logic Point Typ
[r*/a(' % LH © Y-Point

Control buttan / / ‘switched with’ to Switch CUW
|| I Hidden yéx offset: Button Y offset: A Another point Point 2 \(iy Button X offset: Button Y offset:

|-General corMmtlor 7~ ral conﬁguf*..
v Rotated [Wéd | . . . med v Facing point lock [Reversed
Indication that Point 2

7 Automation

 rAErE | is now configured to be L))
Switch point: Switched with ’747 | ‘switched’ with point 1 Switch point: | 2 [Switched with ’7

’V Facing Point Lock 1000 I Reversed logic g 5
Point Subtyp / Point Subtyps
|’V « Norm ¢ TRP (" 55%552 DSl DS2 5;(‘ Set Point 2 to be Set Point 1 ¢ Norm © TRP © S51 © 852 DS1 © DS2 © SX

| ﬂ Apply ‘ Reset ‘ cancel | (on re-loading window) ﬂ Apply | Reset ‘ Cancel |

The schematic should now look as follows. Point 2 no longer has a control button as it will now be
switched with Point 1, and Point 1 now has an additional ‘L’ button for the facing point lock (FPL).
When this is active, then the main point control button is ‘greyed out’ and unresponsive. To switch
the point, first click on the ‘L’ button to release the FPL. Once the FPL has been released, you can
switch the point and then re-activate the FPL to lock the point in the switched position.

Siding Platform 2

The rest of /

the world L J 1
Platform 1

Planning your signhalling scheme

The next step is to plan your signalling scheme in terms of the possible train movements on the
layout. For this example, the main movements we want to signal are:

* Rest of the world => Platform 1
¢ Rest of the world => Platform 2
e Platform 1 => Rest of the world
¢ Platform 2 => Rest of the world

We also want to signal the following shunting movements:

* Platform 2 => Siding
* Siding => Platform 2

This planning, together with the knowledge gleaned from our research in the previous section,
allows us to define the signals we want to add to the layout and where they should be positioned.

Adding signals to the schematic

Use the buttons on the left hand side of the window to add signals to the schematic and move them
into position (rotating as required). The signals are initially created as four aspect but we’ll change
them to two aspect as we configure them. Signal 4 will be a ground position (shunting) signal.

| | | | | | | | | | |
1
Siding

o4

The rest of J. 8200 ﬂ. 8200 |
the world T T IT_J = ﬂ

To signal the train movements we have defined, we need to edit Signal 1 to provide a route
indication (to differentiate between the routes into Platform 1 and Platform2). At the same time,
we’ll change it to a two-aspect signal and configure the DCC addresses. As before, double-left-
click to bring up the configuration dialog and use Apply or OK to save the changes

Sign

w
<
x

Configuration] Interlocking l Automation]

[

rSignal Subtype

* ColourLight © GroundPos ¢ Semaphore Ground Disc

~Signal ID "SignalTypc

Select feathers
Change the signal to L to provide the
Two-aspect (green/red) * 2AspG/R T 2AspG/Y 2AspY/R T 3Aspect 4ﬂy route indication

/

" MNone % Routefeathers Theatreindicator

General Config -Route Indications
’V [Rotated ’7

rControl buttons

Example configuration " Hidden Button X offset: Button Y offset:
for a 2 aspect signal

rDCC command sequences for Colour Light signal aspects

that uses a single DCC . .
e g e i e \ Danger 100 0FF| |_ |_ |_ |_J
to set the aspect RESESSC oo jon |]
Caution R S
Prelim Caution | | | | | J
Flash Cation |: |: |: |: |:J The feather for the
No feather is RlashiReeliny | | | | | _ diverging route is
pr.ov(lgefd fcl)tr) thet I subsidary signal controlled (On or Off)
main (default) route ;
rFeather Route Indications and associated DCC command sequences by a Smgle DCC .
e O W oFF | | [—— | Address. Note that this
Configure a single (Barky L = —— needs to be set Off when
feather indication maN [101 ore | < | I ‘_ |_J The signal is at Danger
For the diverging P th1 ¥ 101 | ON | |_ |_ _ |_J (gllsec;zg'zlggifl)ﬁgg t?:ed
Left hand route th2 |_ |_ |_ ‘_ |_J Main route is set
RH1 T R S s
RH2 [| | | | -
[~ Auto inhibit route indications on DANGER

Ok ‘ Apply ‘ Reset ‘ Cancel ‘

We also need to add a subsidiary aspect to Signal 2 to signal the shunting move from platform 2
into the siding (we’ll also change this one to a two aspect signal and set up the DCC addresses).

Note that we don’t need route indications for Signal 2 as the only route controlled by the main
aspect is the departure out to the rest of the world (the MAIN route for this signal). The subsidiary
aspect controls the shunting move back into the siding, which is effectively a right hand divergence
from the main route (the RH1 route for this signal).

Change the signal to
Two-aspect (green/red)

The 2 aspect signal
uses a single DCC
Address (toggle on/off)
to set the aspect

The only route
Controlled by the

Qinnal ?
algna

Configuration] Interlocking] Automation]

rSignal ID "SignalTyp:
2

® ColourLight © GroundPos ¢ Semaphore ¢ Ground Disc

rSignal Subtype
* 2AspG/R T 2AspG/Y 2AspY/R 3Aspect 4 Aspect

T~

General Config | Route Indications
[¥ Rotated [

* None ! Routefeathers © Theatreindicator

rControl buttons

Select to add a
Co-located subsidiary

Flash Caution I—J
Flash Prelim ,74,7

W Subsidary signal | 201

\

[Hidden Button X offset: Button Y offset: /'/ Signal
rDCC nd sequences for Colour Light signal aspects
panger 200 OF J J The subsidiary aspect
Proceed 200 | ON J J Uses a single DCC
Caution I N address (toggle On/Off)
Prelim Caution ,—JI—J,—_
o

~Routes to be controlled by the Main Signal

Main signal aspect
Is out to the rest
Of the world

= [TLH1 T LH2 " RH1 [RH2

rRoutes to be controlled by the Subsidary Signal

["MAIN [LH1 [LH2 W RH1 | RH2 /

ok ‘ Apply ‘ Reset ‘ Cancel ‘

The shunting
Movement back into
The siding is a Right

Hand divergence
From the main route

Signals 3 and 5 also need to be edited to change them to two-aspect signals and have their DCC
addresses configured. Note that Signal 5 should be configured as a two-aspect Green/Yellow signal
to act as the distant signal for our layout (as this is a terminus station, we’ll configure it as a fixed
distant when we specify the interlocking later on).

Signal 4 has been created as a shunting signal and only needs to control a single route (back into
Platform 2). We therefore only need to specify the DCC addresses to complete the configuration.

Once all signal configurations have been applied, the schematic should look like this:

The rest of

= joe 1]

The subsidiary aspect is for
The RH1 route into the siding

. 4 .

o 5| |

o /

the world

g Y e e e e

Distant Signal

Single feather indication is for for Platform 2

(no feather indication for the main route into platform 1)

Configuring basic interlocking

The application allows signals to be interlocked with points, conflicting signals, track sections, and
block instruments. Initially, we’ll configure interlocking with points and conflicting signals. In this
context, ‘conflicting signals’ are any other signals that control a route that would conflict with a
route controlled by the signal we are configuring.

All interlocking is defined via the configuration dialog of the appropriate signals. Double-left-click
on a signal to bring up the configuration dialog and select the Interlocking tab.

Signal 1

From the schematic on the previous page, Signal 1 needs to be interlocked with Point 1, but there
are two possible routes (into platform 1 and into platform 2). To enable Signal 1 to be cleared for
the MAIN route (into platform 1), Point 1 needs to be NORMAL. To enable Signal 1 to be cleared
for the LH1 route (into platform2), Point 1 need to be SWITCHED. We do not have to interlock the
signal with Point 2 as we have already configured this to be ‘switched with’ Point 1.

Each ‘route’ from Signal 1 also needs to be interlocked with any signals that could clear conflicting
movements, in this case Signals 2 and 3. Both of these signals only have a single route controlled
by the main signal aspect (out to the rest of the world), so we only need to interlock with the MAIN
routes controlled by these two signals.

The MAIN route for Signal 1 (into Platform 1) therefore needs to be interlocked with the MAIN
route (departing from Platform 1) for Signal 3. Similarly, The LH1 route for Signal 1 (into platform
2) needs to be interlocked with the MAIN route (departing from Platform 2) for Signal 2.

Signal 1 ~ »

Configuration] Interlocking] Automation]

rSignal routes and point interlocking
The MAIN route for /’H" 1 ﬂ J J J J J Sig: Blk:
Signal 1 into Platform 1 LH1 |1 |t o o] sies Blk:
Requires Point 1 O T se e
ma [T |se Blkc
wo [~ | I | e[ew[
The LH1 route for rInterlock with occupied track sections
Signal 1 into Platform 2 B “LH1 “LH2 “RH1 “RH2
Requires Point 1 | | ‘ i | | | i | | | i
to be SWITCHED
rConflicting signals not locked by the above point selections
MAIN Route - interlocking with conflicting signals
The MAIN route for
Signal 1 into Platform 1 3 |MAIN LH1 | LH2| RH1 | RH2| N [T ‘
Is interlocked with the ~LH1 Route - interlocking with conflicting signals
MAIN route for Signal 3 + ‘
(to rest of the world) 2 |MATN MMME |JJJJ 2
The LH1 route for
Signal 1 into Platform 2
Is interlocked with the
MAIN route for Signal 2
(to rest of the world)

ok ‘ Apply ‘ Reset ‘ Cancel ‘

Signal 2

Signal 2 also needs to be interlocked with Point 1, but in this case, the only valid route for the main
signal (as opposed to the subsidiary signal) is out from Platform 2 to the rest of the world. Point 1
therefore needs to be SWITCHED to allow Signal 2 to be cleared for the MAIN route.

When Signal 2 was initially configured (see earlier), the subsidiary aspect was configured to allow a
shunting move is back into the siding (which is a right-hand diverging route). Point 1 therefore
needs to be NORMAL to enable the subsidiary signal to be cleared for the RH1 route.

For the MAIN route (departure from Platform 2 to the rest of the world), Signal 2 needs to be
interlocked with the LH1 route of Signal 1. For the RH1 route (back into the siding), Signal 2 needs
to be interlocked with the MAIN route of Signal 4.

The MAIN route for ' Signal 2 v x
O?It?'lr;a\:vgrtlg trZZLr:?rzts Configuration] Interlocking} Automation]
Point 1 to be SWITCHED \— ignal routes and point interlocking
Main T J J J J J Sig: Blk:
The RH1 (shunting) route Sl ’_J’_J’_J’_J’_J’_J Sig: Blkc|
for Signal 2 back into the LH2]_J]_J]_J]_J]_J]_J sig: Blk:|
siding requires Point 1 RH1 J J J Blk:
to be SWITCHED
mszFJFJFJFJFJwT__mF
The MAIN route for Signal rInterlock with occupied track sections
2 to the rest of the world rMain i [LH1 rLH2 ~RH1 rRH2
is interlocked with the T [] T
LH1 route for Signal 1 \
rConflicting signals not locked by the above point selections
The RHL (shunting) route -%AIN Route - interlocking with conflicting signals
for Signal 2 back ignto the 1 MAIN|LH1 LH2 | RH1 | RH2| I Y
Siding is interlockeq with \ ~RH1 Route - interlocking with conflicting signals
the MAIN route for Signal 4 = PR 1| 2| R | Re2 | I e
Signal 3

Signal 3 controls a single MAIN route (from Platform 1 out to the rest of the world) which needs to
be interlocked with Point 1 (Point 1 needs to be NORMAL to allow Signal 3 to be cleared). The
signal also needs to be interlocked with the MAIN route of Signal 1.

Signal 3 v x

Configuration] Interlocking 1 Automation]

The MAIN route for rSignal routes and point |nter|ockmg

Signal 3 to the rest Main | 1 J J J J Sig: Blk:

S e, o I e
we [e Blkc|
o [e Blk:|
m2 [[[[[Jse[e[

rInterlock with occupied track sections

e ; Main ~LH1 rLH2 ~RH1 ~RH2
e route for

Signal 3 to the rest | | | | | | | | | | | ’_
Of the world Is

rConflicting signals not locked by the above point selections
Interlocked with the \ . . . L

. r MAIN Route - interlocking with conflicting signals
MAIN route for Signal 1 g gs19

WA Lk | Lz | it e e

Signal 4

Signal 4 controls a single shunting route (from the siding to Platform 2) which needs to be

interlocked with Point 1 (Point 1 needs to be NORMAL to allow Signal 4 to be cleared). The signal
also needs interlocking with the RH1 route of Signal 2 (the shunting route into the siding).

The MAIN route for
Signal 4 into Platform 2
requires Point 1
to be NORMAL

The MAIN route for
Signal 4 into Platform 2

is interlocked with the
RH1 route for Signal 2

Signal 5

As mentioned earlier, Signal 5 will be configured as a ‘fixed distant’. In this case we can just pick
any point and configure the signal such it is only unlocked when the point is both SWITCHED and

Signal 4

Configuration] Interlocking] Automation]

I R
[Ise[e
we [[[e[em]
Rt [T fse[e
iz [[[[s Bike|
N1 1) o O
rConflicting signals not locked by the above point selections
T v el L e

NORMAL (which can never happen, meaning the signal is always locked at Caution).

The MAIN route for
Signal 5 requires Point 1

Signal 5

Configuration] Interlocking] Automation]

rSignal routes and point interlocking

o be both NORMAL | ——— : O

E and SWITCHED -} Main ’Tﬂ1_| T _J’_J’_J’_J Sig: I Blk: ’_
we [T se |
we [~ [s |
o [se |
wa [| [[| se |

rInterlock with occupied track sections

rMain 7 rLH1 1 [LH2 1 [RH1 rRH2
15 1 o

Conflicting signals not locked by the above point selections

e s

MAIN Route - interlocking with conflicting signals

| e]

Testing basic interlocking

Once configured, the basic interlocking can be tested. If a signal or point is ‘locked’ then the
associated control buttons will be ‘greyed out’ and unresponsive.

Firstly, ensure the layout is in a default state by selecting Mode => Reset from the Main Menubar
and selecting OK in the pop-up dialog to confirm. This will reset all signals to ‘ON** and reset all
points to NORMAL with their Facing Point Locks (FPLs) ACTIVE.

Signal 5 will be locked as we configured this as a ‘fixed distant’. The main aspect of Signal 2 will
also be locked as the route controlled by this signal is out from Platform 2 to the rest of the world
and the points are currently set back into the siding. The subsidiary aspect of signal 2 (controlling
the shunting route back into the siding) will be unlocked.

Signals 5 (fixed Signal 2 main aspect locked
Distant) locked Signal 2 subsidiary aspect unlocked
1 I = [
' S/ ood c |
The rest of J. <o ﬂ. oo) 1
the world T T LJ "t 1

uﬂ_

FPL Active (‘L' Button)

In this state, the interlocking with conflicting signals can be tested. If Signal 4 is switched ‘OFF’
then the subsidiary aspect of Signal 2 will be locked, and vice versa. Similarly, if signal 1 is
switched ‘OFF’ then Signal 3 will be locked, and vice versa. Note that when a signal is set to ‘OFF’
the points are locked and cannot be changed until the signals are returned to ‘ON’.

Signal 4 is OFF Subsidiary Signal 2 is Locked
: ca? | :
/ esd ||
The rest of J e o) e) 1
the world / J oe J _ 1
Signal 1 is OFF Point 1 is Locked Signal 3 is Locked

Once all signals have been returned to ‘ON’ then the points can be changed to test the other signal
routes. Click on the ‘L’ button to ‘release’ the Facing Point Lock (FPL) and enable the main point
control button. The point can then be switched .

Note that as soon as the point FPL is ‘released’ then Signals 1, 2, 3 and 4 will be locked, to prevent
a train movement being cleared ‘through’ the points, and will remain locked until the point FPL is
‘reactivated’ (after the points have been switched).

1 When a signal is ‘ON’, it is displaying its most restrictive aspect (DANGER for Home signals or CAUTION for
distant signals). When a signal is ‘OFF’ it is displaying its least restrictive aspect (PROCEED for most signal types)

Once Point 1 has been switched (and the FPL re-activated) the layout should be as follows:

Signal 2 main aspect unlocked
Signal 2 subsidiary aspect locked

Signal 4 locked (no route)

| | | \\\\I | \ | | | | | | |
L - % %w
J 1
I o | |7
_The rest of J. <o ﬂ. oo |.
the world X| T |T|—i— - _‘J
| A .(FFFFH. o

Point 1 switched

Signal 1 unlocked with FPL active

Signal 3 locked (no route)

The interlocking with conflicting signals can now be tested in this configuration. If signal 1 is set to
‘OFF’ then Signal 2 will be locked and vice-versa. Note that when Signal 1 is ‘OFF’ it will display
the appropriate route indication (in this case a left hand feather).

Signal 2 locked

|

|
P
oy jov a— |

The rest of
the world

Point 1 locked

Signal 1 cleared for Platform 2

Although interlocking is defined via the signal configuration dialog , the resultant Point interlocking
can be viewed (as read only) via the Interlocking tab of the point configuration dialog. This shows
all the signals/routes which (when cleared for a movement) would lock the point.

Point 1 v oA X

Configration l Interlocking]

We've used Point 1 to ‘lock’ Signal 5 Signals interlocked with point

at caution (to make it a fixed distant). - - .
This means it can never be cleared o [2 | R F;O'tnt Il 'i a(;jdl'ttlmﬁ"y
so will never be able to lock Point 1 "] nterlocked with the
_LH1 | RH1 route of signal 2
| (Platform 2 => Siding)
.4 \ ﬁ>|.
~—

e

Point 1 is interlocked
with the MAIN route
of all signals

0Ok | Apply | Reset | Cancel |

Point 1 is additionally
Interlocked with the
LH1 route of signal 1
(Into Platform 2)

Configuring the DCC bus output

Once you are happy with your layout configuration you can ‘lock’ the schematic to prevent further
editing by setting RUN mode. Either use the keyboard shortcut to toggle into RUN Mode (Cntl-a)
or select via the Menubar (Mode => Run). This also removes the grid lines and the schematic
object buttons down the left hand side of the window.

If you are running the application on a Raspberry-Pi with a Pi-SPROG DCC programmer controller
then controlling the signals and points out on the layout is simple.

¢ Select SPROG => Connect from the Menubar. If connection is successful then the
Menubar will show a SPROG status of CONNECTED and the Menubar DCC Power
selection will be enabled.

* Select DCC Power => ON from the Menubar to enable DCC Power. If the power was
successfully enabled then the Menubar will show a DCC Power Status of ON.

The default configuration should work ‘out of the box’ for the Pi-SPROG 3 v2 (as long as it has
been installed correctly following the instructions provided). If you are using an earlier Pi-SPROG
then the baud rate will need reducing - Menubar => Settings => SPROG)

examplel-temp.sig v & &

D.. c“&";: File Mode:Run Automation:On SPROG:Connected DCCPower:On MQTT:Disconnected Utilities Settings Styles Help

N \ 1

RUN Mode SPROG is CONNECTED with
DCC Power to the Accessory Bus ON

=

Siding | Platform 2

ﬂ! ; ,
cod =°| |
The rest of J‘ oo ot) eo” /)

the world ~ — T
[e |

Flatform 1

[

All changes you make to signals or points in the application will now send out the required DCC
commands to change the signals and points on the layout accordingly.

Note that the state of the signals and points on the layout may not initially reflect the state of the

points and signals shown in the application. To synchronise everything you may need to operate

each signal or point on the schematic in turn - to send out the required DCC commands to set the
initial state of the signals and points on your layout.

Alternatively, you can save and re-load the layout with the SPROG set to auto connect and apply
power on layout load. The application will then send out the required DCC commands to
synchronise your physical layout with the loaded state of your schematic. This can be configured
via the SPROG settings dialog (from the Main Menubar select Settings => SPROG):

w x
SPROG Configuration
Select these two checkboxes Port: | /dewserialo Baud: 460800 — |
Prior to saving the layout to enable
Automatic connect/power on on [Enhanced SPROG debug logging

Next layout load (this will then — [———wu—____| -
) . —-} v
Automatically send out the required v Initialise SPROG on layout load

DCC commands to synchronise V¥ Enable DCC power on layout load
Your layout with the application

DCC Address Offsets

* MoOffset © Plus4Offset © Minus4 Offset

Extended help for this setting ‘
You may need to apply an address

Offset to all DCC commands sent
Out if transitioning from another
DCC system that uses an
Offset addressing mode

Test SPROG connectivity ‘

Ok ‘ Apply ‘ Reset ‘ Cancel ‘

When transitioning from other DCC systems to this application (or swapping between the two) you
may find that the DCC commands sent out to the accessory bus (by this system) don't align with the
DCC addresses you have previously programmed for your accessories (with your other system).

The reason for this is that some DCC equipment manufacturers have interpreted the NMRA DCC
Specification slightly differently, specifically how DCC addresses are encoded into the DCC packet.

If all works as expected then the default setting (No Offset) can be left selected. If you experience a
discrepancy in the addressing then you should select either '+4' or -4' as appropriate (click on the
extended help button for more information on address offsets).

If you are still having problems, then you can change the application logging level to DEBUG to
see what’s going on ‘under the hood’. This can be configured via the Logging settings dialog (from
the Main Menubar select Settings => Logging and then select the required level

A typical log output (in the Terminal window) would be:

File Edit Tabs

Help
= 11 ——

Log Messages showing DCC commands
Being sent out by the application

Configuring track occupancy

Now we have a schematic that provides basic interlocking of signals / points, and DCC control of
the signals and points out on the layout. The next step is to add ‘track sections’ to provide a ‘mimic’
diagram of where the trains are on your layout.

Firstly (in EDIT mode), add ‘track sections’ to the schematic and position them accordingly. Track
sections should be provided for all positions a train could occupy within the signalling scheme. In
this case, trains could occupy Platform 1, Platform 2, the Siding, the section of track between the
distant and home signals and the ‘fiddle yard’. For this example we’re going to represent a
‘cassette’ fiddle yard, so we’ll also add track sections to represent the other cassettes.

Siding
ca,’
Fiddle

1 05 L
e | -\ ||| =a, JJ/V
Th t of o1 [=]] <o =] Lo 03
the woria — — ' P — A s IR

Stockbox
| 08 _J 07 J 06 |

Track Sections

Each signal then needs to be edited to define the track section ‘behind’ the signal (i.e. the track
section that would be ‘cleared’ when the signal is passed) and the track section ‘ahead of’ the signal
(i.e. the track section that would be set to ‘occupied’ when the signal is passed). For signals
controlling multiple routes, the track section ‘ahead’ needs to be defined for each route. This
configuration is defined via the Automation tab of the signal configuration dialog.

Signal 1 controls two routes (into platform 1 and into platform 2) so the configuration would be:

Section 4 will be OCCUPIED Signa voax
when Signal 1 is passed with Configration] Interlocking Automation]
the route into Platform 1 set Track sensors to associate with signal
\k Signal 'passed' sensor: Signal 'approached' sensor:
Section 3 will be OCCUPIED Tr%upancy changes -~General setting
when Signal 1 is passed with MAIN == | 4 [~ Fully automatic signal (no control button)
The route into Platform 2 set == r
2 == LH2==> 0 n n 0 q
[~ Override signal to ON if section(s) ahead occupied

RH1 =>

RH2 => o
Section 2 will be CLEARED | —

when Signal 1 is passed ~Trigger timed signal sequence
in the direction of travel MAIN T Signal to trigger: Start delay: Time delay:

LH1 i Signaltotrigger:l_ Start delay: l_ Time delay:l_
Routes to ;) X
trigger LH2 [~ Signal to trigger: Start delay: Time delay:

RH1 [~ Signal to trigger: Start delay: Time delay:

RH2 [~ Signal to trigger: Start delay: Time delay:

~Approach control selections

MAIN [Releaseon: o o

Rboutes LHL I PReleaseon: o i

subject to - B - o
approach LH2 [~ Release on:

control RH1 [~ Releaseon: o o

RH2 [~ Releaseon: o o

ok | Apply | Reset | Cancel ‘

Signal 2 similarly controls two routes (the MAIN route from platform 2 out to the rest of the world
and the RH1 shunting route from platform 2 back into the siding) so the configuration would be:

Section 2 will be OCCUPIED
when Signal 2 is passed with

Signal 2 v oA X

the route set out to the Configration] Interlocking | Automation
Rest of the world Track sensors to associate with signal
\I: Signal 'passed' sensor: Signal 'approached' sensor:
Section 3 will be CLEARED Ncupan(y changes - ~General settings
when Signal 2 is passed MAIN == | 2 I Fully automatic signal (no control button)
in the direction of travel LH1 => -
3 = LH2 = . . . g g
= = [~ Override signal to ON if section(s) ahead occupied

RH1 =>

5
RH2=> [[[| E

Section 5 will be OCCUPIED
when Signal 2 is passed with
The route set into the siding

All other signals control a single (MAIN) route, so the configuration is straightforward:

* Signal 3 — Section behind is Section 4, Section Ahead is Section 2
* Signal 4 — Section behind is Section 5, Section Ahead is Section 3
* Signal 5 — Section behind is Section 1, Section Ahead is Section 2

Once the sections ‘ahead of’ and ‘behind’ each signal have been defined, the resultant configuration
of each track section can be viewed (as read only) via the Automation tab of the relevant track
section configuration dialog. This shows the signals/routes that provide access into the section, and
the signals/routes that control access out of the section.

As an example, for Section 3 (Platform 2), there are 2 signals that provide access into the section,
the MAIN route from signal 4 (from the siding into Platform 2) and the LH1 route from Signal 1
(from the rest of the world into Platform 2). There are also two routes out of the section (into the
siding or out to the rest of the world), both of which are controlled by signal 2 (MAIN and RH1).

Track Section3 ~ x

Configuration] Interlocking] Automation
Signals controllipg access.i n—;

[4 | RH1| RH2 |
,_ | !:t=l; | Signal 1 LH1 Route - from the rest of the world

Signals controlling access out of section—

"] Signal 4 MAIN Route - from the siding

Sensors controlling access T

Nothing configured ——_| Signal 2 MAIN Route - out to the rest of the world

Signal2 RH1 route — back into the siding

Sensors controlling access out of section
MNothing configured ‘

L 0 L 0L 70 L 7

Sigs overridden when section occupied—;
MNothing configured ‘

Ok | Apply | Reset | Cancel |

Testing track occupancy

Once all signals have been configured, track occupancy can be tested (in RUN mode). Although we
haven’t configured any external GPIO sensors yet, the ‘signal passed’ events to trigger track
occupancy changes can be simulated by clicking on the small buttons at the base of each signal.

On entering RUN mode, all track sections will initially show as CLEAR. To set up the initial track
occupancy, right-click on a track section and enter an appropriate train designator. Once entered,
this will set the track section to OCCUPIED (white text on a black background). Track sections can
also be toggled between OCCUPIED and CLEAR by left-clicking on them.

We’ll first set up the trains in our cassette fiddle yard. We’ll use designators of ‘HST1’, ‘HST2’ and
‘DMU’ to keep things simple (although for your layout you can use any designators you want).

Note that if you want to use longer train designators then you can globally adjust the width of the
track section objects via the ‘styles’ menubar item (from the Main Menubar select Styles => Track
Sections) to bring up the available options.

Siding | Platform 2
- , & — '
Fiddle -
I - 1
Yard / “‘ jJ
The rest of J oo ﬂ “/
the world T 2 L £ = = L i
Stockbox e | Platform 1
o | \
Right-click to enter a train Other track sections
Designation code and set the remain CLEAR
track section to OCCUPIED

We can then choose the next train we want to run on the layout run into the layout by ‘dragging and
dropping’ its designator from it’s ‘stock-box’ Track Section to the fiddle-yard entry/exit Track
Section (left-click => move => left-release).

Drag and drop HST1 from the stock box
to the fiddle yard departure section

Stockbox Platform 1

Siding | Platform 2
e/ —¥ : ——
Yard U ol ° | .
The rest of J <o ﬂ o /
: : . 1
the world 5 g E 2 i
£ WwWor LJ o8 J |

L Jen] oo

To simulate a train movement from the Fiddle yard into Platform 2, first configure the route into
platform 2 (ensure all signals are ‘ON’, release the FPL for point 1, switch the point and then re-
activate the FPL and then clear the route by setting Signal 1 to ‘OFF’).

Fiddle | \]
— - : / — ———— - !
The rest of J ce B o
: - — - :
- X

Route set and cleared from the
Fiddle Yard into Platform 2

Next, trigger a ‘signal passed’ event for Signal 5 by left-clicking on the small button at the base of
the signal to ‘pass’ the train onto the next track section.

Track Section

Is now CLEAR
Fiddle 1 (|
Rar — - T — |
The rest of qu 1
the world 1
-
Click on the button to simulate Next Track Section
A ‘signal passed’ event Is now OCCUPIED

Finally, trigger a ‘signal passed’ event for Signal 1 to ‘pass’ the train into Platform 2 and then a
‘signal passed’ event for Signal 2 (as this signal will also be passed by the train as it heads into
Platform 2) — Note that this second event will not trigger a change the track occupancy (the
software recognises the signal is controlling a movement in the other direction)

]

Fiddle 1 HST1

e R

The rest of J <o 0,1-\ f
I L 2 L 2 = L
Stockbox
|

Track Section Click on the button to simulate Next Track Section
Is now CLEAR A ‘signal passed’ event Is now OCCUPIED

At completion of the train movement, all signals should be returned to ‘ON’, ready for the next
movement. Other movements you could test would be:

* Platform 2 back into the siding
* From the siding into Platform 2
e Platform 2 to the Fiddle Yard

* Fiddle Yard to Platform 1

e Platform 1 to the Fiddle Yard

Automating signals based on track occupancy

Once we have proved that we have correctly configured track occupancy for the schematic, we can
now automate the signals such that they are overridden to DANGER once a train has passed (and
will remain overridden to DANGER as long as the Track Section ahead is occupied).

In EDIT Mode, Double-left-click on Signal 1 to bring up the configuration dialog and select the
Automation tab. Then select the ‘Override signal to on if section(s) ahead are occupied tab’.

Signal 1 v X
Confi uration] Interlocki]Automationl X . .
i il With Override selected, the signal
EFY S H] will be ‘overridden’ to DANGER
Signal 'passed’ sensor: 1 Signal 'approached’ - / if the track section on the
__— Selected route is OCCUPIED
Track occupancy changes
MAIN = | 4 ntrol button)
Hi- |3 | &
2 — LH2- V¥ override signal to ON if section(s) ahead occupiec
RH1 =+ [N
RH2 —+

Signals 2 should then be similarly configured, but for these this signal, we also need to take into
account the Fiddle Yard entry/exit track section. This Track Section (Track Section 1) should be
added to the list of track sections ahead of the signal for the MAIN route:

Signal 2 v x
Configuration] Interlocking] Automation] If Signal 2 |_S set fql’ the‘MAIN_ route’
Then the signal will be ‘overridden
ISR A To danger if either of the Track
Signal 'passed' sensor: 2 Signal 'approached' sensgg: Sections ahead is OCCUPIED
Track occupancy changes General 1
MAIN— | 2 | 1 Fully automatic signal
LH1 = [
3 = LH2-> ¥ Ovetride signal to ON if section(s) ahead occupiec
RH1 = 5 [
RH2 —»

Finally Signal 3 should be configured to be overridden on track sections ahead, also taking into
account the Fiddle Yard entry/exit track section. We don’t need to configure Signal 5 as this is a
‘fixed distant’. We also don’t need to configure Signal 4 as this is a shunting signal.

Now when we run trains through the layout to test the track occupancy, the signals will
automatically change to DANGER to reflect the passing of the train:

Platform 2 is OCCUPIED

Siding
Fiddle |
Yard U

W | .
_— i / Py R '
ererel gy O gy % ' S :

the world = o

* s
-

Although Signal 1 is still ‘OFF’ as far as the
Manual control button is concerned, it is
now Overridden to DANGER as the Track
Section on the route ahead is OCCUPIED

Enabling Signal Passed At Danger (SPAD) warnings

As per the ‘real thing’, it is the driver’s responsibility not to pass a signal at danger (the Signalling
application doesn’t provide automatic train control), but if you want to shame the drivers then the
application can be configured to generate popup Signal Passed At Danger (SPAD) warnings

This is configured via the general settings dialog (from the Menubar select Settings => General) :

Check Box and click OK or APPLY
to enable popup SPAD warnings

laenera w7 X

~Run Layout settings

¥ Enable popup SPAD warnings

[" Enable popup Lever warnings

[” Ignore Lever interlocking

Reset switching delay: 0

Ok | Apply ‘ Reset | Cancel ‘

Now, each time a train passes a signal at danger, a popup window will appear with details of the
event. If the popup window is left open then subsequent SPAD events will be added to list. If the list
gets too long (bad drivers) then the list can be cleared down or the window closed.

Pop up SPAD warnings

Layout Warnings v oA X

_> 10:25:22 - SPAD alert - Signal 2 has been Passed at Danger by 'HST1'
10:25:54 - SPAD alert - Signal 1 has been Passed at Danger by 'DMU'

OK/Close | Clear

Using external sensors to drive track occupancy

The benefit of using the Raspberry-Pi is that we can connect external sensors into the GPIO ports of
the Raspberry-Pi and use them to trigger the ‘signal passed’ events.

Firstly, we need to define the physical GPIO pins we want to use for each GPIO sensor. To do this,
open the GPIO Sensors window by selecting Settings => GPIO from the Main Menubar.
Individual ‘GPIO sensors’ can then be associated with each of the GPIO ports.

Note that only a subset of GPIO ports are available for use by the signalling application.
Never connect external sensors to the unsupported GPIO inputs (1, 2, 3, 14, 15, 16, 17)

For this example, we’ll allocate ‘GPIO sensors’ to each signal, matching the numbering of each
signal. To do this, just enter a unique identifier for the ‘GPIO sensor’ against the required GPIO port
(this identifier will be the identifier we will use when subsequently configuring the signals). We
have a total of 5 signals so need to allocate a total of 5 Sensors, each mapped to a GPIO port.

e ~ x l
|-GPIO Port Settings
Delay (ms): 1 Timeout (ms): | 1000 Max events per second: | 100 Atrigger on GPIO port 4
|-GPIO port to GPIO Sensor mappings Will trigger “GPIO Sensor 1”
Port
Strius l cros [1 44— = -] GPIO18 [e
(Il cpPos |2 < lGpio1g [0 e P J——
s = T e rigger on por
|l cros | 3 || GPIO-20 Wil trigger “GPIO Sensor 2
|[] cpio-7 [- [l GPIO-21 [e
[[-] 6PIO8 | e [-]
[[] ©PIO-9 [e [-] GPIO-23 [e — Atrigger on GPIO port 6
|:| GPIO-10 | s : GPIO-24 | Will trigger “GPIO Sensor 3”
[-] GPIO-11 | e [-] GPIO-25 [e
(Il sPo12 [4 e [-] 6PI0-26 [e
B cro1z |5 G DTS B R —
| = Etc

ok | Apply | Reset | Cancel |

Each signal then needs to be configured to use a GPIO Sensor to generate the ‘signal passed’ event.
This configuration is defined via the Automation tab of the signal configuration dialog.

i’gnal ‘approached" sensN ‘

- -General setting B

Configration] Interlocking] Automation]

Track sensors to associate with signal
’V Signal 'passed' sensar: 1

Track occupancy changes

—~—
MAIN => | 4 I~ Fully automatic signamnym)\ \ Map each signal to its
LH1 => | 3 - T~ A_ssomated GPIO sensor
2 => LH2=> o .) _ (Signal 1 => Sensor 1 etc)
[~ Override signal to ON if section(s) ahead occupied
RH1 ==
RH2 => =

Once all signals have been mapped to their associated GPIO sensors, ‘signal passed’ events will be

triggered whenever the associated GPIO port is connected to OV.

Normally Open (closed when triggered) sensors can therefore be connected directly between the
appropriate GPIO input pin and a 0V DC pin (available on the GPIO header).

Note that other sensor types (providing a switched voltage) should never be connected directly
to the GPIO pins as this could damage the Raspberry-Pi. In these cases, external opto-
isolators are recommended to protect the GPIO input pins.

Re-opening the GPIO settings window will now display all Signal mappings to provide an overview
of the GPIO sensors (and GPIO Ports) used in the layout configuration.

U SeNsors w x
~GPIO Port Settings Atrigger on GPIO port 4
. ; . b Will trigger “GPIO Sensor 1"
Delay (ms): 1 Timeout (ms): | 1000 Max events per second: | 100 g
g 4_[),——-—*/-/ Mapped to Signal 1
~GPIO port to GPIO Sensor mappings .
B cro2 |1 -signall [-] GPIO-18 [e
Bl cros 2 -signal 2——— = ,Dl]trigger on GPIO port 5
. l Will trigger “GPIO Sensor 2"
GPIO-6 | 3 - Signal 3 -] GPI0-20 | e g
| gnal 3 —_ Mapped to Signal 2
[-] cpio-7 - 5]
[-] cPio-s [-] cpio-22 - —
[-] sPO® [- | GPIO-23 | -reoemememeemmeoee A trigger on GPIO port 6
[[] GPIO-10 | e [-] GPIO-24 | e Will trigger “GPIO Sensor 3"
[-] GPIO-11 | e [-] 6PIO-25 | e Mapped to Signal 3
B cro-12 [4 -signala [-] GPIO-26 | -
B cro-13 |5 -signals ¢ - 027
Etc
ok | Apply | Reset | Cancel |

Configuring interlocking with occupied track sections

So far, we have configured interlocking, track occupancy and signal automation (based on track
occupancy), but it is still be possible for signals to be set to ‘OFF’ if the Track section(s) ahead
OCCUPIED (although they would still be OVERRIDDEN to DANGER assuming we have
configured the automation correctly as per the previous sections).

Fiddle | \]
— - A — |
The rest of J <o ﬂ Lod
L — m— g - — - |
> [CrmmsT
. T

Signal 3 is still Unlocked so

Track Section is OCCUPIED Could be changed to OFF

To rectify this, we can also interlock signals with OCCUPIED Track sections. In this case we want
to Interlock Signal 3 with Track Section 2 and also Track Section 1 (representing a train already on
the single line to/from the rest of the world). To configure Track Section interlocking, open the
signal configuration dialog (in EDIT mode) and select the Interlocking Tab.

Signal 3 v oA X
Configration] Interlocking] Automation]
Signal routes and point interlocking
main [1 = | | | [_|sig Blk:
va [Css[ek
ve [_iss Bik:|
The MAIN route for Signal 3 oINSl = Blki[
RH2 Sig: Blk:
will be locked (at DANGER) - ’,_J’,_J'__J’_J’_J’_J 9 [
If Track Section 1 or Track Interlock with occupied track sections
Section 2 is OCCUPIED (Mai“ i e T Rel 1 [RH2 T
22 IS 1 o |
Conflicting signals not locked by the above point selections
~MAIN Route - interlocking with conflicting signals
1 |MAIN LH1 | LH2 | RH1 | RH2
R N [[[I S

Signal 1 will now be locked (at ‘ON’) whenever Track Section 1 or 2 is OCCUPIED. Note that if a
signal is ‘OFF’ when a Track Section becomes OCCUPIED then it will only be locked when
returned to ‘ON’ (signals must always be capable of being returned to DANGER).

- [rmeome]
i | i (]
e ——— - - _— |
/ eo 5|
The rest of J oo ﬂ Lo
i i i (]
the world L -t 5] ¥ i |

Stockbox

Signal 3 is Now Unlocked so
Cannot be changed to OFF

Track Section is OCCUPIED

Other signals should be similarly configured to complete the interlocking schema. For example,
signal 2 should be interlocked with Track Sections 1 and 2 for the MAIN route (out to the rest of the
world) and Track Section 5 for the RH1 route (back into the siding).

Signal 2 v A X
Configration] Interlocking] Automation]
~Signal routes and point interlocking
Main (1 [t] | | o [[fsig[Bk
wi [se[k[
we [| s Bik:|
The MAIN route for Signal 2 RHL [1 =f]] O][] sie: Blk:|
will be locked (at DANGER) RH2 LI e sie Blk:[
If either of the Track sections \—Interlock with occupied track sections
Out to the rest of the world Main - rLHl - rLH2 - rRH1 - rRH2 I
Are OCCUPIED *ﬁz|1||||||||||<u|s|||||||
~Conflicting signals not locked by the abo selections
~MAIN Route - interlocking wi icting signals
1 1 LH2 | RH1|RH2| | S]] |
The RH1 route for Signal 2 | — A O Y S
will be locked (at DANGER) ~RH1 Route - interlocking with conflicting signals
If The Track Section for the |4 [MAIN LH1| LH2 | RH1| RH2| | I |
Siding is OCCUPIED | . I

Ok | Apply | Reset | Cancel ‘

Once all signals have been configured, the interlocking of signals with Track Sections can be
viewed via the Interlocking tab of the Track Section configuration dialog (read only).

Track Section2 ~ ~ x
configration} Interlocking] Automation]

Signals locked when section occupied
The MAIN routes for Signal 2 _LHL | LH2 | RH1 | RH2 |
and Signal 3 will be locked _LH1 | LH2 | RH1 | RH2 |

When Track Section 2
Is OCCUPIED

Ok ‘ Apply | Reset | Cancel |

Configuring ‘one-click’ route setting

If you’ve followed the previous sections then you should now have a fully interlocked layout, with
automatic passing of trains between track sections as they move through the layout.

However, setting up routes through your layout might be time consuming (especially for complex,
larger layouts), so if you’d rather concentrate on keeping the trains moving, you might want to use
‘route buttons’ to simplify layout operation. These enable you to automatically set up and clear
down routes through your layout with a single click of the mouse.

For this example, we’re going to take the basic layout from the previous section and configure four
‘route buttons’, one for each of the main movements into and out of the layout:

* Route 1 - The rest of the world to Platform 1
* Route 2 - The rest of the world to Platform 2
* Route 3 - Platform 1 to the rest of the world
* Route 4 - Platform 2 to the rest of the world

We’re also going to use intermediate ‘track sensors’” to automatically clear down routes when the
train has cleared all signals and points along the route.

Firstly (in EDIT Mode), add the ‘track sensors’ to the schematic to signify the ‘end’ of each route.
Route 3 and Route 4 share the same end-point (the rest of the world), so you only need to add three
track sensors to cover all four routes. You might have to slightly re-jig the schematic from the
previous section to make room for the ‘track sensors’.

L Next Train Siding o] ' | Platform 2 |
— 04
KN I 4 i - —
D ' pamey: [2
The rest of [05] oo 01 o
/_ the world _GA; L “ [= o] “ =] — ngl I
-— e [~Flat 1 |
SN
_@ |
Button to add .
Track Sensors Track Sensor Objects

Note that we are going to refer to the ‘track sensor’ IDs in the route configuration, so make sure you
put them in the right place (track sensor 1 going out to the rest of the world, track sensor 2 at the
end of platform 2 and track sensor 3 at the end of platform 1).

N

The main purpose of intermediate ‘track sensors’ is to extend train tracking into areas of the layout that aren’t fully
signalled (e.g. goods yards, fiddle yards etc) or provide a finer granularity of train tracking between signals. They
can be mapped to GPIO sensors (similar to how signals can be mapped to GPIO sensors for ‘signal passed’ events)
and configured to pass trains from one track section to another when triggered (again, similar to signals). In this
instance we’re just going to use them to detect when a train has ‘cleared’ a route.

For the next step, add 4 ‘route buttons’ to the schematic (which we are going to use to set up and
clear down the routes through our layout routes).

L Next Train Siding o) ' | Platform 2 |
. 04
| I f
(D N I L0 2 / -a == - ——
The rest of J [os) ﬂ (o

_/ the world _Gfl b n b A _:EI “_GJ: I

—_— it | Platform 1 |

AY

——

Hol

[route wame |
= \ /

Button to add .
Route Buttons Route Button Objects

Basic configuration of each route is relatively straightforward in that we just need to define the
required point settings for the route and list the signals that need to be cleared. We don’t need to
worry about point 2 as this is automatically switched with Point 1.

* For Route 1 (into platform 1), we need Point 1 to be ‘normal’ and Signal 1 to be cleared

* For Route 2 (into platform 2), we need Point 1 to be ‘switched’ and Signal 1 to be cleared
* For Route 3 (from platform 1), we need Point 1 to be ‘normal’ and Signal 3 to be cleared

* For Route 3 (from platform 2), we need Point 1 to be ‘switched’ and Signal 2 to be cleared

Defining the highlighting of the route is slightly more complicated in that we need to specify all
points and lines which need to be highlighted (in a different colour) when the route is set. This
includes any automatic points along the route.

* To find the ID of an automatic point (if you can’t remember it) double click on it to bring up
the Point configuration Window.

* Similarly, to find the ID of a route line, double click on the line to bring up the Line’s
configuration window

The route configuration on the next page assumes the following:

Point ID = 2 Line ID =2
Next Train | Siding ﬂ'\ | PUENEREED & |
“ “ [[“—J
|] A Ul
The rest of =] oo o e
the world _Gfl [“ i = J 2 “_J_I

L | Flatform 1 - |

LineID=1 Line ID =3

To configure a Route, double click on the button (in EDIT Mode) to bring up the Route’s
configuration window. For this example we’re going to configure all routes with:

* A switching delay of 1 second (1000 milliseconds) — this will be the time delay between
each layout change that needs to be made in order to set up or clear down the route — e.g
unlocking a FPL, changing a point, re-locking the FPL, changing a signal etc.

* Automatic clear-down of routes (when the track sensor at the end of a route is triggered).

* Reset of points back to their default (un-switched) state when a route is cleared down rather
than leaving them in their switched states.

The first Route we are going to set up is Route 1 (into platform 1 from the rest of the world):

The colour that will
be used to highlight
the route once set up

The time delay between
each change (switching
facing point locks, switching
Points, changing signals etc)

Switch delay (ms):
’-F' 1000

Route

Button

The name that will appear on the Button

"ButtonID—

Route Name
! ’V

Into Platform 1 Chars: | 20

Route information

From the rest of the world

The description that will appear when you
hover the cursor over the button in RUN Mode

into platform 1

\f\

E
~Button colour Text colour

l:l Change ’V * Auto " Black © White
Button font

* Courier Times Helvetica © TkFixedFont

" Bold [Ttallic [Underline

Font size Font style
Pixels: | 9 ’V

The list of points to set/lock for the route
and their required settings (normal or switched)

Points to set

I

DCC switches to set

The list of signals to clear for the route

JJJJJJ

1 [

These are the route lines that will be highlighted
once the route has been successfully set up

Subsidary signals to clear

Route lines to highlight

These are the points that will be highlighted
once the route has been successfully set up

1 [

Points to highlight

(
(
K
|
(
i
K

Track sensors can also be used to
Trigger route setup if required

Route highlighting |

- Change

Route settings

NN

Track Sensor to trigger route setup:

Track Sensor to trigger route reset: | 3

The ID of the track sensor that (when
triggered), will clear down of the route

¥ Reset points on deselection

k

™ Reset Switches on deselection

ok Apply | Reset | Cancel ‘

Points can either be left ‘as is’ when a route
Is cleared down or reset to their default state.

Once you are happy with the configuration click on OK to save it and then similarly configure the
other 3 routes (see next page for details).

Point 1 needs to be switched for the
Platform 2 arrival/departure routes

Route 2 v x Route 3 v X Route 4

x

v
Button ID- -Rqute Name Button width ButtdW]D | Route Name Button width| Button ID- -Route Name Button width-
((Into Platform 2 [Chars: | 20 (3 Depart Platform 1 (Chars: 20 [4 “ Depart Platform 2 (Chars: | 20
~Route informftion rRoute informatio rRoute information
From the gest of the World mi Platform 1 depart j Platform 2 departure i
into Platjorm 2 J’, to rest of the worl 7 to the rest of the world Jj

| = N\] <

[Button coi;r

Textcolour ——— rButton colour Text colour Button colour Text colour
{ Auto © Black © White - Change { = Autowt " white - Change [* Aauto © Black White

Buttonfl Button font N\ Button font

’V * cqurier Times { Helvetica [TkFixedFont ‘ ’7 * Courier © Times © Helvetica © Tkmt ‘ ’V “ cCourier © Times Helvetica TkFixedFont ‘
Font siz Font style Font size Font style Font size Font style

{ pivgks [9 H T Bold mallic ~ Underline ‘ { Pixels: [" Bold [rallic [Underline N Pixels: 9 H " Bold [Itallic I Underline ‘
Points to set: Points to set Points to set

[0 o o o o o e (FJFJFJFJFJFJFJJ | e o e o o e
DCC Switches to set DCC Switches to set DCC Switches to set

Cor oyt ev e [Cer ey oy iy tye] [Cer oy ey iis
Main signals to clear MBIﬂSIgﬂa'StDucal Malnslgnalstouem

(LTI (T[] I (T T |G EEEEEEE- |
Subsldaryslgnalst()ucm id. 1slgnalstou=m Subsldaryslgnalstoucm

| Tl [(T [[[=] [EEEEEEN-
Reute lines to highl |||g| it Route linesto hlghllght Route lines to hlghllght

ﬁ1|z| |||||||ﬂ\ﬁa|w |\|\|\|Mﬂz|1| ([([1s]
Points to highlight Points to hlghllght Points to highlight

I 1O O B B

jger route reset: | 2

Track Sensor to trigger route reset: | 1

W Reset points on deselection

¥ Reset points on deselection

Track Sensor to trigger route reset: | 1

Route highlighti til Route | ng | - Route settings oute highlighting | - Route settings
{ - Change r to trigger route setup: { Change Track Sensor to trigger route setup: - Change Track Senser to trigger route setup:

(i "Swmchdelay(ms):*

1000

"5witch delay (ms):

1000

I” Reset Switches on deselection

[Reset Switches on desele

[Reset Switches on deselection

ok Apply | Reset | Cancel |

Apply ‘ Reset ‘ Cancel ‘ ok Apply | Reset | Cancel |

Note that for Routes 2 and 4 we want to highlight both
Points (the one we need to switch and the automatic
Point switched with it) to show the full route

For the arrival routes, we’'ll use a
Different Colour to differentiate them
from the departure routes

The Routes can now be tested in RUN Mode.

First, click on the Route 2 button (Into Platform 2) and watch the points and signals being changed
in sequence to set up the route. Once the route has been successfully set up it should be highlighted:

Next Train et B I
1 ! | e _I
' - / ol || .
; T —
B oe

The rest of : J : co
| [CEem

the world - -

Route Other Routes are ‘locked’
set up T [e N |) IR
__nto Platfom 1| \b—

Note that (assuming you have configured interlocking correctly following the previous sections of
this guide), the other route buttons will be ‘locked’. If you hover the cursor over these buttons, a
‘tool tip’ will appear to tell you why the route button is ‘locked’.

Routes can be cleared down by either deselecting the route button or triggering the track sensor at
the end of the route. The signals will revert to ON and the points along the route will change to their
default (un-switched) states. Each change is sequenced in a similar fashion to the route set up.

Once the route has been cleared down then it will be un-highlighted (revert to the default point/line
colours) and the other route buttons re-enabled ready for you to set up the next movement.

Next Train e

| ¥ .
s ' o) / od ||
The rest of J : o o) @o :
L p——T

the world E -

De-select the Route button to o

manually clear down the route or

[Tneo Platfom 2| A/ Click on the track sensor to Depart platform 2
automatically clear down the route
Into Platform 1 Depart Platform 1

Note that if you make any changes that invalidate a route that has been successfully set-up (for
example, changing signal 1 back to DANGER), the route highlighting will be immediately cleared
down (to show the route has been invalidated), but any other signals or points along the route will
be left in their current states (in this case, point 1 will remain switched).

Full interlocking (assuming you have configured it correctly) is preserved. For example, if you have
set up a movement from the siding back into Platform 2 (point 1 un-switched and Signal 4 cleared)
then the routes into and out of Platform 2 will be ‘locked’.

Signal 4 cleared for a movement
From the siding into Platform 2

cqy
>

Next Train

. I . A 4 — —
' / o g F
The rest of J o ﬂ e
the world = 4 [I 0] I -_J_I

u4ﬂ_

Routes 2 and 4 ‘locked’ as
nto Platform 2) N rt Platform 2
- ‘ Point 1 s locked by Signal 4) e

Inte Platform 1 pepart Platform 1

The final part of the configuration is to link external GPIO events to the track sensors so they can be
triggered by the trains out on your layout.

The first thing to do is to assign another three GPIO ports to your layout via the GPIO Sensor
Settings window (Settings => GPIO):

SPI0 Sensors v x

~GPIO Port Settings
Delay (ms): 1 Timeout (ms): | 1000 Max events per second: | 100

|—GPIO port to GPIO Sensor mappings

|. GPIO-4 | 1 - sSignal 1 [-] GPIO-18 | -ereremeeememeeeee :

|. GPIO-5 | 2 —Signal 2 [-] Gpio-19 '

. GPIO-6 | 3 - Signal 3 . GPIO-20 | 6 ' We'll use GPIO Ports 20, 21 & 22
For the track sensors and assign

D B . S 7 47 """ | Sensor IDs of 6, 7 and 8

] cmes |- B cro22 s /

1[-] GPIO- [e [-] GPIO-23 | e

[-] GPIO-10 | e [-] GPIO-24 | -

[-] GPIO-11 | e [-] GPIO-25 | e

B cro12 |4 -signal4 [-] GPIO-26 | -rrereremeeemeneee

B cro13 |5 -signals [-] GPIO-27 | e

Ok | Apply ‘ Reset ‘ Cancel ‘

Now, in EDIT Mode, click on each track sensor object in turn and configure the GPIO sensors:
* Track Sensor 1 — GPIO Sensor 6
* Track Sensor 2 — GPIO Sensor 7
* Track Sensor 1 — GPIO Sensor 8

Track Sensor 1 v x

For Track Sensor 1 we’'ll assign
GPIO Sensor 6 (mapped to

Track Sensor 'passed' sensor: 6 GPIO Port 20) to trigger

‘track sensor passed’ events

"Track Sensor ID- - GPIO sensor events
1 ’V

rRoutes / Track Sections 'behind' Track Sensor
Main J J J J J J Section:
LH1 J J J J J J Section:
LH2 J J J J J J Section:
RH1 J J J J J J Section: \
Feme The rest of the configuration can be
82 J J J J J J section ignored as we are only using these
~Routes/ Track Sections 'ahead of' Track Sensor track sensors to automatically clear
main| | | | | || | section: down routes and not passing trains
1 J J J J J J section: ‘/ from one track section to another
LH2 J J J J J J Section:
RH1 J J J J J J Section:
RH2 J J J J J J Section:
Ok | Apply ‘ Reset ‘ Cancel ‘

Once all three track sensors have been configured, our ‘one click’ route configuration is complete.

Saving and loading your layout

Once you are happy with your layout, it can be saved to file (File => Save or File => Save-as from
the Main Menubar — in the case of a “first time’ save or ‘save as’, this will bring up a dialog to
choose the filename and destination folder). Files are saved with a ‘.sig’ extension.

Note that the current state of the layout (in terms of signal and point settings) is saved with the
configuration, allowing you to pick up a running session from where you left off.

The current mode is also saved so if your layout was saved in RUN mode it will be loaded in RUN
mode (and if saved in EDIT mode it will be loaded in EDIT Mode).

To load your layout select File => Load from the Main Menubar. This will bring up a dialog to
choose the filename load the layout configuration in the mode/state at the point of save.

When a layout is loaded, the Pi-SPROG settings will default to DISCONNECTED with DCC
Power OFF. If you are using the application in a ‘fixed’ configuration (i.e. with the Pi-SPROG
permanently connected to your layout), then you may want to configure the application to
automatically connect to the Pi-SPROG and turn on DCC Power on layout file load.

This is achieved via the application settings (select Settings => SPROG from the Main Menubar,
select the appropriate check-boxes and click on OK or APPLY to save the changes).

SPROG DCC v x

~SPROG Configuration

Select these two checkboxes Port: /dev/serial0 Baud: 460800 — |
Prior to saving the layout to enable

Automatic connect/power on on
Next layout load (this will then
Automatically send out the required
DCC commands to synchronise

[Enhanced SPROG debug logging

¥ Initialise SPROG on layout load

v Enable DCC power on layout load

Your layout with the application

rDCC Address Offsets

* MNoOffset © Plus4Offset © Minus4 Offset

Extended help for this setting ‘

Test SPROG connectivity ‘

Ok ‘ Apply ‘ Reset ‘ Cancel ‘

If the layout file is configured to auto connect and apply DCC power then this will also result in
DCC commands being sent out to set all signals and points on your layout to to synchronise them
with the loaded state of your schematic (useful in case anything has changed between sessions).

One thing to be aware of is that the DCC commands will all be sent out at the same time so, if you
have a large layout and a large number of points need to be changed, this may place a significant
momentary power load on the DCC accessory bus.

Note that these SPROG settings are specific to the layout configuration (i.e. saved and loaded as
part of the layout file) and will not apply to other layouts you load into the application. Similarly the
Track Sensor configuration (in terms of GPIO port mappings to “Track Sensors’) is specific to the
layout and will be saved / loaded with the rest of the layout configuration.

Quick start example 2 - semaphore signals

In the first quick-start example, we configured a layout using colour light signals. Depending on the
period modeled, you might prefer the use of semaphore signals on your layout.

For Quick Start Example 2 we’re going to change our colour light signalling scheme (from Quick
Start Example 1) to use the equivalent semaphore signal types

- - Semaphore with a subsidiary arm
Ground Disc Signal For the RH1 route into the siding
216D
Fiddle | \ L
—— - ! T -]
o o N S
The rest of 1
fhe s — ———— - - - - —
N S

Semaphore with a secondary route arm
For the LH1 route into Platform 2

As we have fully configured the colour light signalling scheme in terms of interlocking, track
occupancy and automation, its easy to swap between the two signal types by editing each signal in
turn ~The only things to change in the configuration are:

» Signal type and subtype — select ‘semaphore’ and then either home or distant
* The route indications — additional semaphore route arms rather than route feathers
* DCC addressing — each signal arm need to be configured with a single DCC address

Firstly, edit signal 1 and change it to a Semaphore Home signal with Route Arms (a MAIN route
arm for Platform 1 and a LH1 route arm for platform 2). Each signal arm should be configured with
its corresponding DCC address. The remainder of the configuration (on the Interlocking and
Automation tabs) remains unchanged from the colour light signalling example.

Signal 1 v »

Configuration] Interlocking] Automation] Signal Type and

T Subtype have
—1 Been changed

rSignal ID "SignalTyp:

1 " colour Light © GroundPos * Semaphore GrW

rSignal Subtype /
* Home Distant
Route Arms
General Config -Route Indications / Selected
’7 [Rotated ’V " None " Theatre indicator * Route arms

" rControl buttons
Additional route arm
Selected for the LH1 " Hidden Button X offset: Button Y offset:

Route (MAIN route

\-Semaphore Signal Arms and DCC Addresses

J5 2L G721 Gl EEED) ain [100 [Subsidary arm ’— [Distantarm ’—
LH1 ¥ Main(home)arm 101 [Subsidary Distant arm ’—
LH2 [Main(home)arm ’— [Subsidary arm ’— il ™ Single DCC address
RH1 [Main (home) arm ’— [Subsidary arm ’— I ’— Specified for each arm

RH2 [~ Main (home)arm [Subsidary arm [

The other signals also need to be changed to Semaphore types. Note that for signal 2, the MAIN
route (controlled by the main home arm) remains the route out from platform 2 to the rest of the
world. A subsidiary arm controls the RH1 route back into the siding.

The MAIN Route (always
selected) remains the route
out from the Platform to the

Rest of the world

Additional route arm
Selected for the RH1

Sign

18]

Configuration] Interlocking] Automation]

2

rSignal ID+ "SignalTyp\:

*" Colour Light * GroundPos ©® Semaphore ¢ Ground Disc

rSignal Subtype

* Home (Distant

General Config -Route Indications
’V v Rotated HV

" None " Theatre indicator ¥ Route arms

\

rControl buttons

" Hidden Button X offset: Button Y offset:

Main

LH1
LH2

r ore Signal Arms and DCC Addresses

I3 201 [Subsidary arm " Distant arm

[Main (home) arm [~ Subsidary arm [
[Main (home) arm I Subsidary arm [

Subsidiary Route
(into the siding)

RH1

RH2

[Mamm?ﬂn-’; W Subsidary arm | 202 [

[” Main (home) arm [Subsidary arm [

E1ETEL

Route Arms
Selected

Changing the other signals (Signals 3, 4 and 5) to semaphore types is relatively straightforward in
that only the signal type, sub-type and DCC addresses need to be changed. The remainder of the
configuration remains identical to the colour light signalling example.

Quick start example 3 - signal box levers

Simulated signhal box levers

For ultimate realism, you can also control your signals and points with virtual signal box levers,

allowing to to simulate the layout and operation of a real signal box.

For Quick Start Example 3, we will modify our semaphore signalling example to:

* Add signal box levers and ‘connect’ them to the signals/points on the schematic.

* Configure the point and signal buttons to be hidden in RUN Mode (this is optional).

* Annotate the points and signals on the schematic with their corresponding lever numbers
(alternatively you could use the ‘bulk renumbering’ utility to align the Point/Signal IDs with
the IDs of their corresponding Levers if not hiding the point/signal buttons). Note that you
may need to turn off ‘snap-to-grid’ to position the text boxes appropriately.

Text boxes added to indicate the corresponding Lever number
(Note we have assigned separate levers for each signal arm)

ﬂr®£ j

Siding
} 5 ._|
0] ! £ 15 '10
The rest of oL . 1 P

S S m—— . : J T . ———

Sockool ‘s [

[0
8=spare
Into Platform 2 | |Vapart Platform 2 |
Into Flatform 1 | | D\%rt Flatform 1 |

1] 02| 03[0s_o5| ve| wr] va] oo 10

s

Signal Box Levers added to the schematic
and ‘connected to the corresponding signals/points

Note separate levers for point
Switching and the FPL

Point and Signal buttons will
Be hidden in RUN Mode

The first step is to add the levers to the schematic. These are initially created as White (‘spare’)
levers , but will automatically inherit the correct lever colour when connected (Yellow for Distant
signals, Red for Stop signals, Blue for FPLs and Black for Points).

To connect the levers to their respective signals and points, double-left-click on each Lever in turn
to bring up the configuration dialog. For Lever 1 the configuration would be:

Signalbox Lever 1 v x

rLever ID- Signalbox lever type
1 HV " Spare “ signal © Peint 4/

Select the Lever Type
(in this case Signal)

ID of the signal to control

rSignal to switch

SignalID: 5 © Signal

Element of the signal to control

Point selections are greyed
out as we have selected
a Signal Lever type

Point to switch
__—‘ Point D: o o o

Signal Routes: | MAIN Mﬁﬂﬂ -«

Selections for integration
of external physical levers
(covered later)

Keyboard event codes (for external lever inputs)

Select the ‘Routes’ to Control with
The lever (this allows you to either
use a single lever for the signal or

Individual levers for each arm)

'OFF' keycode: 'ON' keycode:

Keycode events are only enabled in Run Mode
and are disabled whilst editing Train Identifiers

Ok | Apply ‘ Reset | Cancel |

For this example, we are going to connect Levers 2 and 3 to different signal arms of Signal 1
(although you could use a single lever to controlling ALL routes if you prefer):

Signalbox Lever 2 v x

Both Levers are

_—

Linked to Signal 1

rLever 1D Signalbox lever type

rSignal to switch

Signal ID: | 1 * Signal @,

Signal Routes: |MAIN LH1 | LH2 | RH1 | RH2|

rPoint to switch
Point I1D: o - \

 Keyboard event codes (for external lever inputs)

'OFF keycode: 'ON' keycode:

Keycode events are enly enabled in Run Mode
and are disabled whilst editing Train Identifiers

Ok | Apply | Reset | Cancel |

Lever 2 is linked
To the MAIN arm
Of Signal 1

Lever 1D
3

Lever 3 is linked
To the LH1 arm
Of Signal 1

e

Signalbox Lever 3 v x

Signalbox lever type
’7 " Point

‘" Spare * Signal

r &h‘to switch

Signal ID: | 1 * Signal

Signal Routes: MAIN || LH1 EMM

Point to switch

PointID: ; (& @,

~Keyboard
OFF' keycode:

nt codes (for external lever inputs)

'ON' keycode:

Keycode events are only enabled in Run Mode
and are disabled whilst editing Train Identifiers

Ok | Apply ‘ Reset | Cancel |

Similarly, we’ll use two Levers for Point 1 (one to control the FPL and one to switch the point):

Signalbox Lever 4 v x

-LeverID—‘ "Signalbox lever type

4 " Spare Signal * Point

rSignal to switch
Signal ID: @

Signal Routes: JJ ﬁ‘_
- &

rPoint to switch

PointID: | 1 " Point

rKeyboard event codes (for external lever inputs)

'OFF keycode: 'ON' keycode:

Keycode events are only enabled in Run Mode
and are disabled whilst editing Train Identifiers

Ok | Apply | Reset | Cancel |

* FPL i Point/FPL
i e —

Both Levers are
Linked to Point 1

Lever 4 is controlling
The FPL of Point 1

Lever 5 is controlling
The switching of Point 1

vl

Signalbox Lever 5 ~ X

5 " Spare * Point

rLever ID- -Signalbox lever type
HV " Signal

~Signal to switch

\SlgnaIID ’_ 2 2

\Slgnal Routes: JJJJJ

rPoint toYlitch

PointID: | 1 * point * FPL Peint/FPL

rKeyboard evep#Codes (for external lever inputs)

keycode: 'ON' keycode:

Keycode events are only enabled in Run Mode
and are disabled whilst editing Train Identifiers

Ok | Apply | Reset | Cancel |

The remaining Levers can then be configured as appropriate (note that we’re also going to use

separate Levers for each signal arm

of Signal 2).

To finalise the schematic, the signals and points on the schematic need to be annotated with their
respective lever numbers (by adding text boxes). The the point and signals buttons can then be
configured to be hidden in run Mode — simply edit each Point and Signal in turn, select ‘Hidden’ in

the ‘Control Buttons’ section of the dialog and apply the changes.

Operation is identical to the signal/point control buttons, Levers will only be unlocked when their
respective Point or Signal is unlocked. When they are unlocked they can be switched as required.

2 [z
Fiddle | L
s I L - S — —
1 12 /)
The rest of 1
the worta — 1R J L 2 g ——

Into Flatform 2 |

Into Flatform 1 |

8 = spare

Depart FPlatform 2 |

Depart Platform 1 |

01| g2 03[[o4 05| 05| o7 us| w| 10

Physical switchesl/levers

If you prefer to use physical levers or switches for controlling the signals and points on your layout
(such as the DCC Concepts Cobalt S Levers) then these can easily be integrated with the application
through the use of readily available USB Keyboard encoders.

Choosing and configuring USB keyboard encoders

These devices can be connected into the computer running the application and generate key-press
events for the application whenever an input is momentarily activated (they effectively act as an
additional USB keyboard for your computer).

Many different units are available from many different suppliers, but we would recommend the
Ultimarc I-PAC series of encoders. Although these units are primarily designed for arcade gaming,
they have a number of useful features that make it ideal for integrating signal box levers:

* Units are available that provide either 32 or 56 inputs, which should be sufficient for most
signal box lever frames (you will need to use 2 inputs per Lever)

* Each input can be programmed to simulate any keyboard event (printable characters,
function keys or other control keys present on a standard PC keyboard). Note that the unit
would need to be programmed using the WinIPAC PC application, available to download
from the Ultimarc website (this runs on Windows PCs only)

e Multiple units (when programmed with different keyboard mappings) can be used in
parallel, allowing you to create large lever frames if your layout is complex.

Although you can program each I-PAC input to simulate any key-press event, you need to avoid
key-press events which will have an undesired effect on either the application or the platform you
are running the application on:

* The following keys are reserved for the application: Ctrl , A, M, R and the Arrow keys

* Other keys which may produce undesired effects are: F10, Caps-Lock and the Windows key

Choosing and connecting external switches/levers

Any type of external switch or lever can be connected into the keyboard encoder as long as it
produces a MOMENTARY output, as we only need a single keyboard event to switch the lever
(switches or levers that provide a LATCHING output cannot be used). In this respect, the DCC
Concepts Cobalt S Levers are ideal as they provide the required MOMENTARY outputs.

DCC Concepts I-PAC2 USB
Cobalt S Levers | | ovhoard Encoder

USB connection
(to computer)

Momentary contacts
Wired between
Input and OV DC

Configuring signal box levers to use external inputs

Once we have configured the USB keyboard encoder and connected the momentary contacts of the
external levers into the USB keyboard encoder, the signal box levers can then to be configured to
‘act’ on the external key-press events.

The first thing you need to do is to find the ‘key-code’ for each key-press event produced by the
USB keyboard encoder. The application uses ‘key-codes’ rather than keyboard characters as not all
key-press events will produce printable characters (e.g. Function Keys).

The easiest way of finding out the key-codes you have programmed is to set the application into
RUN mode and then set the log level to DEBUG (settings => logging from the main menubar).
Each key-press (with its corresponding key-code) will now be logged to the terminal output:

File Edit Tabs Help
DEBUG S C T

DEBUG
DEBUG

Key-presses that result
In Printable characters

DEBUG

DEBUG

DEBUG
DEBUG

Key-presses without printable
Characters (in this case the

I
I
I
|
DEBUG o
I
I
I
T Function Keys F1 - F4)

DEBUG

Once the required key-codes are known, then they can be mapped to each signal box lever via the
Lever configuration dialog:

rLever ID "Signalbox lever type

2 ‘ " Spare * Signal Point

rSignal to switch

Signal ID: | 1 * Signal C
Signal Routes: |MAIN LH1 | LH2 | RH1 | RH2 .
JJJJ Specify the key-code to
' Point to switch _— Pull the lever ‘OFF’
PointID: @, @, f/
~Keyboard event codes (for e ever inputs) T

'OFF' keycode: | 25 'ON' keycode: = 52

Keycode events are only enabled in Run Mode“\
and are disabled whilst editing Train Identifiers

Specify the key-code to
Reset the lever to ‘ON’

Ok | Apply | Reset ‘ Cancel |

Operating with external switches/levers

The signalling application will respect interlocking by default, but the external levers or switches
you connect into the system will have no mechanism for interlocking. Each simulated lever on the
schematic has a clear indication as to its locking state, and it is therefore the responsibility of the
user to respect the interlocking and not ‘pull”’ any levers that are locked.

If required, the application can be configured to generate pop-up warnings if an external lever is
operated whilst ‘locked’ (to shame the signaler).

There is also an option to ignore interlocking (with or without pop-up warnings) if you wanted the

state of the schematic (and hence the signals and points on your layout) to always reflect the state of

the external levers/switches you are operating the layout with.

Genera v b

Select to enable ~Run Layout settings

Pop-up lever warnings \ " Enable popup SPAD warnings

* [Enable popup Lever warnings

Select to ignore [Ignore Lever interlocking
lever interlocking

Reset switching delay: 0

Ok ‘ Apply ‘ Reset ‘ Cancel ‘

ayout Warninas v oA X

13:04:14 - External Lever Switching event - Lever 3 is locked - NOT switching

13:05:53 - External Lever Switching event - Lever 6 is locked - NOT switching ‘_/— Example pop-up warnings
With interlocking respected

13:05:58 - External Lever Switching event - Lever 7 is locked - NOT switching

OK/Close ‘ Clear |

ayout Warnings v oA X

Lay QUL Vg

13:06:33 - External Lever Switching event - Lever 2 has been switched whilst locked

13:06:40 - External Lever Switching event - Lever 3 has been switched whilst locked

13:06:46 - External Lever Switching event - Lever 4 has been switched whilst locked 4——— If/)&iane:?eﬁgg-kuﬁgwgggg%s
Itn | | |

13:06:48 - External Lever Switching event - Lever 4 has been switched whilst locked

13:06:52 - External Lever Switching event - Lever 5 has been switched whilst locked

OK/Close Clear

When using external levers it is important to note the following:
* Key-press events will only switch signal box levers in RUN Mode

* Key-press events will only switch signal box levers if the signalling application ‘has focus’.
If you are doing something in another window, for example editing a text document, then
the key-press events will be re-directed to that other window.

* Switching of levers by key-press events will be disabled when editing train designators in
Track Sections in RUN Mode (otherwise the characters you type for the train designator
may trigger switching of the levers depending on your chosen key-press mappings).

Quick start example 4 - more automation

Now we’ve mastered the basics, we’ll create a new layout to demonstrate some of the advanced
automation features provided by the application, with a double track main line junction signalled
with 4 aspect colour light signals:

Approach Control Example (Signals 4, 3 and 2)

As this layout is quite large, first you need to increase the size of the canvas. To do this, select
Settings => Canvas from the Main Menubar and increase the width accordingly.

v x
~General settings
Canvas width: | 1300 < Increase the width of the Canvas
Canvas height:| 500 and click OK or APPLY

Canvas Grid: 25

" Spaptogrid » Display grid

rCanvas colour "Grid colour

I:I Change I:I Change

Ok ‘ Apply ‘ Reset

Cancel

Configuring interlocking

Now draw the basic schematic as per the diagram above and add the signals and track occupancy
sections in the appropriate positions. Point 1 should be configured with a FPL, but point 2 can be
left “as is’ as this is a trailing point with respect to the direction of travel. Signal 1 should be
configured with a left hand route feather for the diverging route.

Interlocking can then be configured for Signals 4, 8 and 10:

* Signal 4 needs to be interlocked with Point 1 (Point 1 needs to be NORMAL for the MAIN
route and SWITCHED for the LH1 diverging route).

* Signal 8 needs to be interlocked with Point 2 (Point 2 needs to be SWITCHED).
* Signal 10 needs to be interlocked with Point 2 (Point 2 needs to be NORMAL).
As this layout includes a diamond crossover, we also need to interlock the conflicting Signals:
* Signal 4 needs to be interlocked with the MAIN route of Signal 8.
» Signal 8 needs to be interlocked with the MAIN route of Signal 4.

Configuring track occupancy

The track occupancy configuration should then be defined for each signal:

» Signal 4 needs to be configured with a ‘section ahead’ for both routes (Section 5 for the
MAIN route and Section 6 for the LH1 route) and a ‘section behind’ (Section 4).

* Signals 6, 5 and 13 only have a ‘section behind’ configured (no ‘section ahead’) .

* All other signals have a ‘section behind’ and a ‘section ahead’ for the MAIN route.

Configuring basic automation

For this layout, we want all signals to:

* Reflect the state of the ‘signals ahead’ so when the signal is ‘OFF’ the displayed aspect will
take into account the displayed aspect of the signal ahead (e.g. if the signal ahead is
displaying DANGER, the signal should display CAUTION rather than PROCEED).

* Automatically change to DANGER as soon as a train passes the signal (and then cycle
through the aspects back to PROCEED as the train progresses further down the track).

Firstly, configure each signal with details of the ‘signal ahead’ This is achieved via the Interlocking
tab of the signal configuration dialog. Note that Signal 4 supports two routes, so we have to specify
the signal ahead for each route:

Signal 4

If Signal 4 is cleared for the
MAIN Route then the signal
| _— ahead will be Signal 5

Configuration] Interlocking] Automation]

v X
Signal routes and point interlocking
main (8 =]]] I LI | lse[s |
LH1 |1 |t Ol o o o] sie| e lﬂ-’_\

Blkc|

Blkc|

Blkc|

T—————1 |If Signal 4 is cleared for the
LH1 Route then the signal

ahead will be Signal 6

S S I
w [s
wo [[[s

Secondly, configure each signal to be ‘Overridden’ to ‘ON’ if the track section ahead of the signal
is occupied (so the signal will display DANGER as soon as the train passes the signal and enters the
section). At the same time we can also make the signals we don’t need to manually control ‘fully
automatic (without a control button). For this example, the only signals where we need to retain
manual control are those signals ‘protecting’ the junction (Signals 4, 8 and 10). These selections are
enabled by checkboxes on the Automation tab of the signal configuration dialog.

Signal 1 ~ »
Configuration] Interlocking] Automation]
GPIO sensor events
’V Signal 'passed' sensor: 1 Signal 'approached' sensor: Sel!‘:"Ct to create the signal
without a control button
Track occupancy changes 'General settings / (all signals apart from 4, 8 & 10)
MAIN = | 2 v Fully automatic signal (no control button) ‘/
LH1 = r -
5 de sianal — head . Select to enable the signal to
1 = LH2-— Override signal to ON if section(s) ahead occupiec ‘_ be overridden (tO DANGER) if
RH1 = [Override to CAUTION to reflect home signals ahe: the section ahead Is occupied
RH2 =

Once all signals have been configured, the overriding of signals by Track Sections can be viewed
via the Automation tab of the Track Section configuration dialog (read only).

Track Section 4~ x

Configuration] Interlocking] Automation]

rSignals controlling access into section

[3 [wain et | una | me | w2

rSignals controlling access out of section

2] R | reiz|

"SEHSOFS controlllng access into SECtIOn_‘

Nothing configured

Signal 3 (immediately Sensors controlling access out of section—;
’7 Nothing configured

Behind this track section)

Will be overridden to ‘ON’
When section 4 is occupied

overridden when section occupied

B 5 v

Ok ‘ Apply ‘ Reset ‘ Cancel ‘

The configuration can then be tested (in RUN mode with Automation ENABLED) by left clicking
on each track section in turn to change from CLEAR to OCCUPIED and then back to CLEAR.
When the track section is OCCUPIED, the signal behind the track section will display DANGER.

Configuring timed signals

You will note that Signals 5, 6 and 13 do not have any track sections ‘ahead of’ the signal as these
go out to the ‘rest of the world’ . To add realism, we still want these signals to change to DANGER
when passed and then cycle back through the aspects to PROCEED as the train supposedly travels
further down the track. This is achieved, by configuring them as ‘timed signals’ via the automation
tab of the signal configuration dialog.

Timed sequences can be configured for each route supported by the signal. In this case, Signals 5, 6

and 13 control a single route and so we only need to configure a sequence for the MAIN route.

Signal 13 ~ »

Configuration w Interlocking] Automation]

"GPIO sensor events

Signal 'passed' sensor: 13

Signal 'approached' sensor:

Track occupancy changes

MAIN —

LH1 —»
13 = LH2-»
RH1 =
RH2 —»

i rGeneral settings

=

M Fully automatic signal (no control button)

I Override signal to ON if section(s) ahead occupiec

[Override to CAUTION to reflect home Signﬂy

A start delay of blank/zero
means that the sequence
will be started (signal
changed to DANGER)
as soon as the
Signal is passed

Trigger a timed

Sequence when
The signal is passed

Routes to
trigger

rTrigger timed signal sequence

MAIN M

LH1

LH2
RH1
RH2

r

-
-
-

rd

Signal to trigger:| 13 Start delay: Time delay:| 5

Signal to trigger: Start delay: Time delay:
Signal to trigger: Start delay: Time delay:
Signal to trigger: Start delay: Time delay:

The time delay is the
Defines the time between
Subsequent aspect
Changes as the signal
Cycles through the
Supported aspects
Back to PROCEED

Signal to trigger: Start delay: Time delay:

To test the timed signal, click on the ‘signal passed’ button at the base of the signal (in RUN mode
with Automation ENABLED). The signal will initially change to DANGER and then cycle through
the aspects (CAUTION, PRELIMINARY CAUTION) back to PROCEED.

Configuring approach control

Approach control is normally used when a diverging route has a lower speed restriction. Even
though the route ahead may be clear, the signal controlling the diverging route will display a more
restrictive aspect (either DANGER or CAUTION) to slow down the train. As the train approaches,
the signal will then be ‘released’ to display its normal aspect (PROCEED).

Note that if you are going to use approach control for your layout, this will require an additional
track sensor located on the approach to the signal, to trigger the ‘signal approached’ event.

The application supports both ‘release on red’ and ‘release on yellow’ approach control modes. For
‘release on red’, the signal will display a DANGER aspect and the signals behind will display the
expected aspects (CAUTION, PRELIMINARY CAUTION). For ‘release on yellow’, the signal will
display a CAUTION aspect and the signals behind will display special aspects to provide the driver
with pre-warning of the diverging route (FLASHING-CAUTION for the previous signal and
FLASHING-PRELIMINARY-CAUTION for the signal behind that).

We’ll configure Signal 4 to apply ‘release on yellow’ approach control for the diverging route, and
configure an additional track sensor to trigger the ‘signal approached’ event. This is achieved via
the automation tab of the signal configuration dialog.

Signal 4 v X
Configuration] Interlocking] Automation]
GPIO sensor events
’V Signal 'passed’ sensor: 4 Signal 'approached' sensor: 14

Track Sensor to

Track occupancy changes i rGeneral settings Trigger the 'signal
MAIN =+ | 5 [Fully automatic signal (no control button) Released’ event
LH1 = 6 [
4 = LH2-> v Override signal to ON if section(s) ahead occupiec
RH1 — [~ Override to CAUTION to reflect home signals ahe:
RH2 =

rTrigger timed signal sequence
99 g i Release on yellow

MAIN | Signal to trigger: Start delay: Time delay: / Mode selected

Approach Control LH1 ™ signal to trigger: Start delay: Time delay: z
Routes t
Sele_Cted _for the Ol,J esto LH2 " signal to trigger: Start delay: Time delay:
LH1 diverging route trigger)) i
RH1 " Signal totrigger: Start delay: Timed

\ RH2 " signal to trigger: Start delay: Tirfe delay:
pd

rApproac ntrol selections
N [Releaseon: @ /
Routes LH1 ¥ Releaseon: (Red © Yellow

subject to

LH2 [Releaseon: L L

approach
control RH1 [Releaseon: o @
RH2 | Releaseon: L L

Signal 4 will now be displayed with a second button positioned on the track (on the approach to the
signal). This is the button to simulate the ‘signal approached’ event to ‘release’ the signal.

This can be tested (in RUN mode with Automation ON) by setting up the diverging route (Point 1
SWITCHED) and clearing Signal 4. Signals 4, 3 and 2 should display CAUTION, FLASH-
CAUTION and FLASH-PRELIMINARY-CAUTION respectively. Clicking on the ‘signal
approached’ button should then ‘release’ the signal (to PROCEED).

Note that the DCC signalling application does not actually flash the aspects of the signals out on
your layout — it just sends the required DCC commands telling the signal/decoder to select the
flashing aspect (the signal/decoder actually flashes them). To use approach control on your layout
you will therefore need DCC signals or DCC accessory decoders that support the flashing signal
aspects - such as the Train Tech DS5HS DCC-enabled 4 aspect signals.

DCC commands /

aspects

Signal 3

Configuration] Interlocking] Automation]

-SignaIID-‘ "Signal'lyp:

3 ColourLight © GroundPos ¢ Semaphore

" Ground Disc

rSignal Subtype
T 2AspG/R T 2AspG/Y 2AspY/R 3 Aspect

* 4 Aspect

[~ Rotated " Theatre indicator

General Config Route Indications
’V ’V " Route feathers

* None

rControl buttons

" Hidden Button X offset: Button Y offset:

N

FF

Command sequences Prelim Caution| 31 FF
For flashing signal Flash Caution | 32 | ON
FF

~DCC command sequences for Colour Light signal aspects
Danger 30 | O
Proceed 30 O
O

Caution 31 | ON

LR
LR
LR
LR
LEEEEE

oFF|

Flash Prelim 32

[Subsidary signal

Testing the competed layout

The completed layout can now be tested in much the same way as the first quick-start example
layout by feeding trains into the layout (via Track Sections 1, 8 or 9) and then progressing them
through the layout from one track section to the next by clicking on the ‘signal passed’ buttons (and
the ‘signal approached’ button) along the route.

Flashing] Signal 4 is OFF but in - -
Preliminary Flashing Approach control mode Displaying
Caution Caution For diverging route Caution
oeco
. —
BApproach\Contreol Example\ (Signals 4, 3 and\2)
— +——
oece 08 ooco
oece o080 [5955) [ecee / \ eco
-— — - — - — -
oo gece ocoe | oece

—
CoCe

Signal 12 overridden to ON as

track section ahead is occupied

/

Displayed aspect
Reflects signal ahead

Button to simulate
‘signal approached’ events

Displayed aspects
Reflects signals ahead

Quick start example 5 - intermediate track sensors

In quick-start example 1 we briefly touched on the use of Track Sensors for the clearing down of
routes (once the train was ‘clear’ of the last signal on the route).

You can also use Track sensors for finer granularity track occupancy between signals and for
extending track occupancy into non-signaled areas of your layout such as storage yards:

01 (eo50] o1 02 02 Coco
— ww " m EmEm

Track Sensor objects /\>
L% 02
(R
ﬂ -

The configuration of Signal 1 is straight forward. The signal ahead for the MAIN route (configured
via the Interlocking Tab) is Signal 2, and Signal 1 is configured to be OVERRIDDEN if any of the
Track Sections ahead are OCCUPIED (configured via the Automation Tab).

S gna] ~ x

Configuration] Interlocking] Automation]

Signal Ahead is
Signal routes and point interlocking L1 Signal 2

man |]] o] L Ll Llsel 2 A&
J JI_J Sig: Blk:
we [[T T T |se B[
0 I I I N Bl
2 [[[[[_|se Bl

Signal will be OVERRIDDEN Signa v X
(to DANGER) if any of the
Track Sections ahead
Are OCCUPIED

Configuration] Interlocking] Automation]

PIO sensor events

| 'passed’ sensor: Signal 'approached' sensor:
Track occupancy c!anges i rGeneral settings
2 |3 |4 [Fully automatic signal (no control button)
Trains will be passed LH1 =~ =
From Track Section 1 to 1 = LHZ2- ¥ Override signal to ON if section(s) ahead occupiec
Track SeCtiQn 2 when RH1 - [Override to CAUTION to reflect home signals ahe:
The signal is passed o

To keep things simple, Signal 2 is configured to clear the Track Section immediately behind the
signal when the signal is passed by the train:

Signal 2 v x
Configuration] Interlocking] Automation
GPIO sensor events
’V Signal 'passed' sensor: Signal '‘approached' sensor:
Track occupancy changes ' rGeneral settings
Track Section 4 will MAIN - I Fully automatic signal (no control button)
be cleared when LH1 = -
the signal is passed I . . -
4 - LH2- [Override signal to ON if section(s) ahead occupiec
RH1 = [override to CAUTION to reflect home signals ahe:
RH2 =

The intermediate Track Sensors can then be configured to pass Trains from one track Section to the
next when a ‘sensor passed’ event is triggered (either by clicking on the small button to simulate an
event, or mapping Track Sensors to GPIO sensors for real layout events):

Track Sensor 1 v %
rTrack Sensor ID | GPIO sensor events | General Settings | GPIO Sensors can _be mfflpped tC’)
’1— Hs‘anw‘ csed sensor: ﬁ% T Track Sensors to trigger ‘passed
| [’ Events from external train sensors
-Routesflack Seiions'be_hind' Tick Sensor———— —
Main 7J7J7J7J7J7J Section: 2#\
NS S S S S sections] When a Track Sensor 1 ‘passed’ event
LH2 _J_J_J_J_J_J Sy | is triggered, Trains will be passed
Rhl _J_J_J_J_J_J Section:| From Track Section 2 to Track Section 3
RH2 o o L] section:
-Routesf'Ek Seﬁns 'aﬁd of'Eck ".mﬂ. — — A
Main J J J J J J Section:| 3
war [[L L L L] section|
LHZ2 _J_J_J_J_J_J Section:_
et | [[] sections|
ez | [| |] sections|
Ok | Apply | Reset ‘ Cancel |
Track Sensor 2 v x
rTrack Sensor ID GPIO sensor events—— [General Settings
,7 HVSEnsor 'passed' sensor: ’V [~ Hidden

rRoutes / Track Sections 'behind' Track Sensor
Main J Section:| 3 #\

LH1 O [| section: When a Track Sensor 2 ‘passed’ event
— = o is triggered, Trains will be passed
LH2 J J Section:

| |
|
HL

S

— From Track Section 3 to Track Section 4

|
LHLLL
L%LLL
Ll

R [L O _J Section:|
RH2 | section:
Main _J_J_J_J_J_J Section:i
LH1 _J_J_J_J_J_J Section:|
LH2 _J_J_J_J_J_J Section:_
RH1 _J_J_J_J J_J Section:
RH2 1 o L] section:
|

Apply | Reset | Cancel |

o]
=

Track Sensor 3 is configured to pass trains from one Track Section to another depending on the
setting of the points either side. Configuration is similar to that of the Signal Interlocking tab but in
this case we can define possible routes both ‘before’ and ‘after’ the Track Section:

Track Sensor 3 v X
rTrack Sensor ID ~GPIO sensor events———— - General Settings
3 ’75ensor ‘passed' sensor: ’V [Hidden

rRoutes / Track Sections 'behind' Track Sensor

=]
=

Main | 1 |T J_J_J J_J Section:T

w1 [+ = [| sectiom:| s <\

LH2 _J_J_J_J_J_J seeren | Possible Movements when triggered:

RH1 —J—J—J—J—J—J section:| Point 1 Normal, Point 2 Normal : 6 <-->7

[HE B T section: Point 1 Normal, Point 2 Switched : 6 <--> 8
~Routes/ Track Sections 'ahead of' Track Sensor Point 1 Switched, Point 2 Normal : 5 <-->7

main[2 =] || || | | section: 7 ‘/ Point 1 Switched, Point 2 Switched : 5 <--> 8

LH1 | 2 |1 D] section:| &

w2 [| [] sectiom:|

en [[[] sectiom|

RH2 _J_J_J_J_J_J Section:_

|

Apply | Reset | Cancel |

Quick start example 6 — DCC accessory switches

The signalling application also provides ‘DCC switches’ that can be added to the schematic and

used to operate any other DCC accessory out on your layout such as track isolating sections (if you

are still using analogue for train control), level crossings, light/sound effects etc.

Switches can either be configured as LATCHING or MOMENTARY:

* LATCHING switches can be configured to transmit different DCC command sequences (via

the DCC accessory bus) when selected and deselected.

* MOMENTARY Switches can be configured to transmit different DCC command sequences

when ‘pressed’ and ‘released’. They can also be configured with a delay to ‘release’ (and
transmit the ‘released’ command sequence), a fixed time after the switch was pressed.

For quick-start example 6 we’re going to modify the first example layout to include DCC Switches

for track power switching and a horn sound effect.

Main Line Power Feed /

Platform 2 Power Feed
Sidin
9 P [Esesssn e]

Latching Switches for track power feeds

Fiddle 1 05 - [m_—l I
Yard 1 2 cod |
The rest of n] e] oo / L
e rest of N e " 02 | g = = N —
08| 06|
| Into Platform 2 | | Depart Platform 2 |
| Into Platform 1 | | Depart Platform 1 |

Momentary Switch for sound effect

The Switch objects are added to the schematic and positioned in the normal way. However, you

should note that these use the same underlying ‘button’ object as the Schematic Route Buttons and

and so the ‘one-up’ numbering will reflect this.

To configure the Switches, double click on each one in turn to bring up its configuration dialog:

w x DCC

w x

DC 7
ButtonID DCCswitchname——————— rButton width Button ID | DCC switch name Button width |
’V 7 ’V Siren Effect HV Chars: |15 (5 [Main Line Power Feed [Chars: | 20
rButton information rButton information
Sound the siren = i i i i Enables the main power feed to =
J SWItCh 7is SWItCh Sis the Fiddle Yard and Platform 1 J
B ‘ // MOMENTARY LATCHING K L
rButton colour i Text colour 1 Button colour Text colour
|:| Shanme | ’V & Auto O Black 5 l:l Change [% auto " Black © White
P i d ‘SpeC|fy’a fixed delay for ——
release’. If blank or zero e % e © e
" Courier Times ¢ Helvetic * TkFixedFont then switch will be released Courier Times Helvetica TkFixedFont
Fontsize Fontstyle—~ - when released by the user otz Feniayls
’V Pixels: | 9 ’V V_)ﬂd/l_ Itallic ™ Underline Pixels: | 8 [" Bold [Ttallic [Underline
DCC accessory switch General Settings | ~Release Delay- DCC command " accessory switch type— "General Settings | "REIEHSE Delayy
i i i
’V © onfeff = Momentary ’V I Hidden ’V Sequences for e [prET Ty " Hidden
f ’ ‘ i
DCC command sequences: press and ‘release DCC command sequences
ON commands: 2010 ON EEles s pd gy 2001 | ON J J
OFF commands: 2010 OFF DCC command OFf commands: 2001 OFF| | |

S fi
ﬂ Apply| Reset | Cancel ‘ gﬁ\jugzge(gF?:r I ﬂ Apply| RESEt‘ il |

Once the DCC Switches have been configured, they will send out the specified DCC command
sequences when operated (in RUN Mode, with SPROG connected and DCC Power ON).

DCC Switches can also be specified as part of a Route configuration. In this example, we have

configured each Route to apply power to the required track feeds on route setup, and switch off the

track feeds on route clear down:

Route 1 v x
Button ID | - Route Name Button width |
’7 1 “ Into Platform 1 [Chars: | 20

~Route information

From the rest of the world]
into platform 1 J

E]

rButton colour i Text colour

- Change [# auto Black © White
Button font
’V “ Courier © Times Helvetica * TkFixedFont ‘
Font size Font style
’V Pixels: ’V [" Bold [1tallic [underline ‘
Points to set
(FJFJFJﬁJﬁJﬁJFJJ |
DCC Switches to set
[s v - e

"Main signals to clear

JNEEEEEEEEEN-

"Subsidary signals to clear

Route 1 will set Switch 5
To ON during route set-up
and revert to OFF during

Route clear-down

EEEEEEEEEER
Route lines to highlight
ﬁ1a|||||||||ﬂ/
Points to highlight //
EEEEEEEEERZ

rRoute highlighting ~Route settings
- Change Track Sensor to triggef route setup:
Track Sensor to jfigger route reset: | 3

- Switch delay (ms):

1000 W Reset Switches on deselection

ok Apply ‘ Reset | Cancel ‘

W R points on deselection

Route 1 has enabled the main line
Power feed as part of the route set-up

Main Line Power Feed

Platform 2 Power Feed

Fiddle

Route 2 v X
Button ID -Route Name Button width-
’V 2 “ Into Platform 2 ‘ ’V Chars: | 20 ‘
rRoute information
From the rest of the World =
into Platform 2 J{
El]
rButton colour Text colour
- Change ’V # auto Black © White
Button font
’7 Courier Times ¢ Helvetica [TkFixedFont
Font size Font style
’V Pixels: ’V " Beld [Itallic [Underline

"Polnts to set

KRG

"DCC Switches to set

(slonfefon| f] =

Ma’gnalstome
AT L=

"Sub5|dary signals to clear

(LI [[[75

Route linesto h .uguugm

Route 3 will set Switches 5
And 6 to ON during route
Set-up and revert them to OFF
during Route clear-down

Siding

EREN

LI L1 1 [=

"Polnts to hlghllght

RRER [L [[[1 [’

oute highlighting | - Route settings
Track Sensor to trigger route setup:
Track Sensor to trigger route reset: | 2

rSwitch delay (msh

1000
Ok

¥ Reset points on deselection

¥ Reset Switches on deselection

Apply | Reset | Cancel |

The rest of

the world

Stockbox

| Into Platform 1

L

Still to discover

There are still several features of the application that have not been covered in this quick-start
guide, but once you are familiar with the features above, you should be able to experiment and
figure them out for yourself:

Theater Route Indications — supported by main semaphore and main colour light signals
(use instead of feathers or route arms). Provides the ability to display a single ‘character’ for
the selected signal route.

Block Instruments — intended for layouts split into separate ‘block sections’ . This is a
particularly useful feature when using multiple application instances networked together,
where each instance represents a different signal box, as the block instruments can be used
to communicate (via bell codes) between the signal boxes and control the movement of
trains between the two block sections. A basic example including Block Instruments is
included in the application networking guide (which can be downloaded from the website).

Automation - Approach control ‘release on red (signals ahead)’ for automation of Home
signals in a block section. In this case, signals are overridden to ‘ON’ if any Home signals
ahead are still at DANGER and only ‘released’ to ‘OFF’ as the train approaches them
(reverting to ‘ON’ as soon as the train has passed).

Automation - Override to caution to reflect home signals ahead — For distant signals
(semaphore or colour light) — Will override the distant signal to display CAUTION if any
home signals ahead (within the block section) are at DANGER.

Interlocking - Interlock on home signals ahead — For distant signals (semaphore or colour
light) - To interlock the distant signal (prevent it being cleared) unless all home signals
ahead (within the block section) are also clear.

MQTT Networking — Publishing and subscribing to Signals, Track Sections, Track sensors
and Block Instruments. The ‘remote’ items can then be used within the signalling scheme to
provide seamless integration of different signalling areas. This is the subject of a separate
networking guide (which can be downloaded from the website).

The DCC Mappings utility (select Utilities and then DCC Mappings from the main
menubar) — Allows you to view all DCC addresses used in your layout configuration an
what signals and points they are associated with.

The Bulk Renumbering utility (select Utilities and then Item Renumbering from the main
menubar) — Allows you to re-number all schematic objects to your requirements (e.g. for
aligning Signal/Point IDs with their signal box Lever numbers.

Changing schematic object styles (select Styles and then the required menu) — Allows you
to change the styles of ALL or SELECTED objects to “prettify” your schematic as required.

Appendix 1 - How track occupancy works

As the Signalling application primarily uses momentary ‘passed’ events to detect train movements,
it has to make certain assumptions about train movements based on the ‘route’ that has been set, the
state of the signals and the state of the track Sections ahead and behind the signal.

The basic concepts are:

* Normal operation - Trains will be passed from the OCCUPIED to the CLEAR section
* If both sections are OCCUPIED or both sections are CLEAR then no train will be passed
» If there is ‘no route’ either ahead of or behind the signal then no trains will be passed

The following diagram explains what will happen for ‘signal passed’ events under both ‘normal
operation’, where the driver is respecting the state of the signals, and some of the ‘edge cases’ that
may occur if the driver inadvertently passes a signal at DANGER:

All signals configured with Section ahead and Section behind
All signals configured to be OVERRIDDEN if Section ahead is OCCUPIED

Train will be passed from Section 1 to Section 2

mJ ¥ oo

Section 1 4 Section 2

-

Train will be passed from Section 3 to Section 4
(with Signal Passed At Danger (SPAD)warning)

2:| Feo
Section 3 + Section 4
-

Train will be passed from Section 6 to Section 5
(irrespective of the state of the main or subsidary signal)

— s Weo
Section 5 ; Section 6

-t

No train will be passed (both sections occupied)

ATy s Wes
Section 7 Section 8
? ?

No train will be passed (both sections occupied)

| Weo

Section 9 Section 10
? ?

Train will be passed from Section 11 to Section 12
(both sections occupied but shunting move assumed)

| Be

Section 11 ; Section 12

-

No Train will be passed (both sections clear)
(irrespective of the state of the main or subsidary signal)

s Wee

Section 11 Section 12
? ?

Signal 8 event - Train will be passed from Section 15 to Section 16
Signal 9 event (immediately after signal 8 event)- will be ignored

| e
Section 15 f oo A J [5][99] 5%6_
4 -

Signal 11 event - Train will be passed from Section 18 to Section 17
Signal 10 event (immediately after signal 11 event) - will be ignored

SR A S—. -
Section 17 T oo & [Sectionis

|

Signal 12 event - No train will be passed
(No route ahead of the signal)

2] Fee
Section 21
|| Feo .
Section 19 * 05 \“‘ ﬂlz Section 20
)

The configuration and operation of Track Sensors is identical, but with the added ability to specify
multiple routes (and hence multiple Track Sections) both ‘ahead of’ and ‘behind’ the Track Sensor.

Appendix 2 - Using ‘track circuit’ | ‘block’ sensors

The DCC Signalling system is primarily designed to use ‘event-based’ track sensors to drive track
occupancy and ‘pass’ train designators around the layout.

As an alternative, the system can also be configured to use ‘track circuit’ / ‘block’ type sensors (e.g.
current sensing or optical sensors) to provide an absolute indication of occupancy. In this case the
Track Section (on the schematic) will always represent the state of the external sensor (either
‘occupied’ or ‘clear’), but then will not be able to track train designators around the layout.

Double click on a Track Section (in Edit Mode) to bring up the configuration window and then
specify the GPIO sensor linked to the ‘track circuit’. The Track Section should also be set to ‘read
only’ to ensure the state always reflects the state of the external ‘track circuit’.

Heule v Set to ‘read only’ so the
Track Section cannot be
Manually toggled or the

Designator changed

Configuration] Interlocking | Automatig)

[Section 1D+ [Genera
|

| 1 v Read only [Hidden
Define the default label - .

(displayed when the track \Jie:ult section label
Section is occupied) OCCUPIED Specify the GPIO sensor

|-Section width- ~"Track circuit* sensor—/ Linked to the associated
Chars: | 8 H 4 4 ‘track circuit’ on the layout

GPIO sensor:
~Section to mirror- ~Highlight colour
’7 - Change K
~Route lines to highlight (when occupied)— The route Iirl1es and points
4 Representing the ‘track

circuit’ can be configured
to be highlighted when the
4 Track Section is ‘occupied’

~Points to highlight (when occupied)

Ok ‘ Apply ‘ Reset | Cancel ‘

Note that the highlighting of route lines and points can also be configured for Track Sections driven
by ‘event based’ GPIO sensors if required.

Appendix 3 - The DCC programming utility

A basic DCC programming utility is provided to enable ‘one touch’ programming (suitable for the
majority of DCC point & signal decoders on the market) and Configuration Variable (CV)
programming (suitable for more complex decoders such as the Harman Signallist SC1).

If ‘One touch’ programming is supported by the device, this is always the preferred method as this
can be done ‘on layout’ without disconnecting all other devices from the DCC accessory bus.

The utility can be opened by selecting Utilities = > DCC Programming from the Main Menubar.
Note that The Pi-SPROG needs to be CONNECTED with DCC Power ON to program devices
(refer to the ‘Operating your layout’ section for further information).

One-touch DCC programming

Ensure the device it is connected to the DCC bus and has been put into ‘one touch’ Programming
mode (refer to the device documentation for specific instructions).

Enter the required DCC address and click the required command (On or Off) to program. Once
programmed, the device should respond to all subsequent DCC commands.

DLCL Frogramming v oA X

~DCC One Touch Programming
Address to program |1000 On (fwd) | Off (rev) |

A
~

~DCC Configuration Vari CV) Programming

Value New Notes cv

200 Click the appropriate
Enter the required L~ — Button tozgn(? the

DCC address — — Required DCC command

Read CVs | Write CVs || |

Document your CV configuration here

|5 I

= I
Open | Save | Save as || |

Ok / Close

DCC CV programming

Warning — before using the CV programming utility the DCC accessory bus should only be
connected to the device you want to program (all other devices should be disconnected).

Enter the addresses of the CVs you want to inspect / program and click Read CVs to retrieve the
current values. New values can then be entered and programmed by clicking on Write Cvs.

A partial configuration (for the Harman Signallist SC1 decoder) is shown below:

DCC Programming v 3

~DCC One Touch Programming
Address to program on (fwd) Off (rev)

~DCC Configuration Variable (CV) Programming

WARNING - Before programming CVs, ensure only the device to be programmed
is connected to the DCC bus - all other devices should be disconnected

CV Value New Notes CV Value New Notes
1 5 Lower Address bits
s [| o Upper Address Bits]
29 [[192 (Address Mode)
33 [[o (Default Mode) —
38 | | 8 Decoder Type \]
Values to Free text notes —
Write
CVs to read Read / Write
Or write Current values Status / Errors
(populated after
Py ? Free text notes
1

Read CVs | Write CVs |\ |

Minimum Configuration for Harman Signallist SC1 Decoder
The base DCC address of the 5C1 decoder is configured by CV1 and CV9

- For Pi-SPROG3 V1, you need to set this to the required DCC address plus 4 (e.g. DCC 1: CV1=5 and CV9=0)

- For the Pi-SPROG3 VW2 everything works as expected (not sure whats going on - just something I discovered)
Also, another thing I have found is that the base address has to be a multiple of & for it to work correctly
(so DCC addresses need to be set as 1, 9, 17,25 etc - trying to set a DCC address of, say 4, doesn't work)
The decoder type of 8 gives 8 individually controlled outputs (addresses 1,2,3,4,5,6,7,8)

(=

Open | Save ‘ Save as || Configuration file: signalist_scl.cvc |

0Ok / Close

Loaded
configuration file

During a ‘read’ operation, either the retrieved values will be displayed or “---” signifying a
particular CV could not be read.

During a ‘write’ operation, the displayed values will either turn Green (if the write was successful)
or Red (if the write operation failed).

	Introduction
	The importance of research
	The schematic editor
	Quick start example 1 – colour light signals
	Drawing your layout schematic
	Planning your signalling scheme
	Adding signals to the schematic
	Configuring basic interlocking
	Signal 1
	Signal 2
	Signal 3
	Signal 4
	Signal 5

	Testing basic interlocking
	Configuring the DCC bus output
	Configuring track occupancy
	Testing track occupancy
	Automating signals based on track occupancy
	Enabling Signal Passed At Danger (SPAD) warnings
	Using external sensors to drive track occupancy
	Configuring interlocking with occupied track sections
	Configuring ‘one-click’ route setting
	Saving and loading your layout

	Quick start example 2 – semaphore signals
	Quick start example 3 – signal box levers
	Simulated signal box levers
	Physical switches/levers
	Choosing and configuring USB keyboard encoders
	Choosing and connecting external switches/levers
	Configuring signal box levers to use external inputs
	Operating with external switches/levers

	Quick start example 4 - more automation
	Configuring interlocking
	Configuring track occupancy
	Configuring basic automation
	Configuring timed signals
	Configuring approach control
	Testing the competed layout

	Quick start example 5 – intermediate track sensors
	Quick start example 6 – DCC accessory switches
	Still to discover
	Appendix 1 – How track occupancy works
	Appendix 2 – Using ‘track circuit’ / ‘block’ sensors
	Appendix 3 – The DCC programming utility
	One-touch DCC programming
	DCC CV programming

